Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Obesity development in caspase-1-deficient mice

Abstract

Caspase-1 is a member of the intracellular cysteine protease family that mediates inflammation through the activation of the cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). As mice lacking IL-18 become obese and insulin resistant, and both IL-18 and IL-1β have a role in overall energy balance, we sought to determine whether caspase-1 deficiency also causes obesity. Male and female caspase-1-deficient (caspase-1−/−) and control (wild-type (WT)) mice were fed either a high-fat (HF, 45% of kcal) or a low-fat (LF, 10% of kcal) synthetic diet starting at 6 weeks of age. Caspase-1−/− mice maintained lower but detectable levels of IL-18 compared with WT mice. Plasma IL-1β levels were below the detection limit for both KO and WT mice. Male caspase-1−/− mice gained extra fat mass by 16 weeks on the HF diet, but not until 40 weeks on the LF diet. Female capase-1−/− mice gained more fat by 28 weeks but only on the HF diet. These data indicate that caspase-1−/− mice develop obesity with an age and sex-dependent differences, and only male mice display obesity on LF diet. Overall, this study suggests that the lower level of IL-18 in caspase-1−/− mice might be causing obesity development similarly to IL-18-deficient mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Pop C, Salvesen GS . Human caspases: activation, specificity, and regulation. J Biol Chem 2009; 284: 21777–21781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fantuzzi G, Dinarello CA . Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1). J Clin Immunol 1999; 19: 1–11.

    Article  CAS  PubMed  Google Scholar 

  3. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G . The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009; 10: 241–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Connat JL . [Inflammasome and cardiovascular diseases]. Ann Cardiol Angeiol (Paris) 2011; 60: 48–54.

    Article  Google Scholar 

  5. Anders HJ, Muruve DA . The inflammasomes in kidney disease. J Am Soc Nephrol 2011; 22: 1007–1018.

    Article  CAS  PubMed  Google Scholar 

  6. Troseid M, Seljeflot I, Arnesen H . The role of interleukin-18 in the metabolic syndrome. Cardiovasc Diabetol 2010; 9: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Netea MG, Joosten LA, Lewis E, Jensen DR, Voshol PJ, Kullberg BJ et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med 2006; 12: 650–656.

    Article  CAS  PubMed  Google Scholar 

  8. Membrez M, Ammon-Zufferey C, Philippe D, Aprikian O, Monnard I, Mace K et al. Interleukin-18 protein level is upregulated in adipose tissue of obese mice. Obesity (Silver Spring) 2009; 17: 393–395.

    Article  CAS  Google Scholar 

  9. Bruun JM, Stallknecht B, Helge JW, Richelsen B . Interleukin-18 in plasma and adipose tissue: effects of obesity, insulin resistance, and weight loss. Eur J Endocrinol 2007; 157: 465–471.

    Article  CAS  PubMed  Google Scholar 

  10. Bosch M, Lopez-Bermejo A, Vendrell J, Musri M, Ricart W, Fernandez-Real JM . Circulating IL-18 concentration is associated with insulin sensitivity and glucose tolerance through increased fat-free mass. Diabetologia 2005; 48: 1841–1843.

    Article  CAS  PubMed  Google Scholar 

  11. Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 1995; 267: 2000–2003.

    Article  CAS  PubMed  Google Scholar 

  12. Zilverschoon GR, Tack CJ, Joosten LA, Kullberg BJ, van der Meer JW, Netea MG . Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus. Int J Obes (Lond) 2008; 32: 1407–1414.

    Article  CAS  Google Scholar 

  13. Louet JF, LeMay C, Mauvais-Jarvis F . Antidiabetic actions of estrogen: insight from human and genetic mouse models. Curr Atheroscler Rep 2004; 6: 180–185.

    Article  PubMed  Google Scholar 

  14. Brown LM, Clegg DJ . Central effects of estradiol in the regulation of food intake, body weight, and adiposity. J Steroid Biochem Mol Biol 2010; 122: 65–73.

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y, Nedungadi TP, Zhu L, Sobhani N, Irani BG, Davis KE et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab 2011; 14: 453–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clegg DJ . Minireview: the year in review of estrogen regulation of metabolism. Mol Endocrinol 2012; 26: 1957–1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T . Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diab Care 2009; 32: 1663–1668.

    Article  CAS  Google Scholar 

  18. Osborn O, Brownell SE, Sanchez-Alavez M, Salomon D, Gram H, Bartfai T . Treatment with an Interleukin 1 beta antibody improves glycemic control in diet-induced obesity. Cytokine 2008; 44: 141–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Osborn O, Gram H, Zorrilla EP, Conti B, Bartfai T . Insights into the roles of the inflammatory mediators IL-1, IL-18 and PGE2 in obesity and insulin resistance. Swiss Med Wkly 2008; 138: 665–673.

    CAS  PubMed  Google Scholar 

  20. Stienstra R, Joosten LA, Koenen T, van TB, van Diepen JA, van den Berg SA et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 2010; 12: 593–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL, Perera D et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci USA 2011; 108: 15324–15329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH 5K12 HD057022 (PI: Regensteiner, Judith), a mentored BIRCWH training grant awarded to Hong Wang; NIH grant DK69291 awarded to Warren Capell; and NIH grant DK26356 awarded to Robert H. Eckel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Wang.

Ethics declarations

Competing interests

All authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Capell, W., Yoon, J. et al. Obesity development in caspase-1-deficient mice. Int J Obes 38, 152–155 (2014). https://doi.org/10.1038/ijo.2013.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2013.59

Keywords

This article is cited by

Search

Quick links