Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adipocyte and Cell Biology

Calcium-dependent release of adipocyte fatty acid binding protein from human adipocytes

Abstract

Background:

Fatty acid binding protein 4 (FABP4) is a predominantly cytosolic protein of the adipocytes, but also abundantly present in human plasma; its plasma concentrations were linked to obesity and metabolic syndrome. Recent studies have suggested a direct extracellular effect of FABP4 in the regulation of glucose metabolism and heart function independently of its effect as a carrier protein. Interestingly, FABP4 has no secretory signal sequence; hence, the mechanisms how FABP4 is released from adipocytes are unclear.

Methods and results:

In this study we investigated the mechanisms for FABP4 secretion from human adipocytes by using isolated primary pre-adipocytes (PAs) and the human adipocyte cell strain Simpson–Golabi–Behmel syndrome. In undifferentiated PAs, FABP4 expression was barely detectable and increased continuously during differentiation. The increase in FABP4 mRNA expression was accompanied by high levels of FABP4 secretion. In differentiated human adipocytes, FABP4 secretion was not abolished by blocking the Golgi-dependent secretory pathway in vitro, supporting a non-classical secretion mechanism for FABP4. However, raising intracellular Ca2+ levels enhanced FABP4 secretion in a concentration-dependent manner.

Conclusion:

This study shows that FABP4 is actively released from human adipocytes in vitro via a non-classical, calcium-dependent mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hertzel AV, Bernlohr DA . The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol Metab 2000; 11: 175–180.

    Article  CAS  PubMed  Google Scholar 

  2. Baxa CA, Sha RS, Buelt MK, Smith AJ, Matarese V, Chinander LL et al. Human adipocyte lipid-binding protein: purification of the protein and cloning of its complementary DNA. Biochemistry 1989; 28: 8683–8690.

    Article  CAS  PubMed  Google Scholar 

  3. Fu Y, Luo N, Lopes-Virella MF, Garvey WT . The adipocyte lipid binding protein (ALBP/aP2) gene facilitates foam cell formation in human THP-1 macrophages. Atherosclerosis 2002; 165: 259–269.

    Article  CAS  PubMed  Google Scholar 

  4. Elmasri H, Karaaslan C, Teper Y, Ghelfi E, Weng M, Ince TA et al. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J 2009; 23: 3865–3873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE, Spiegelman BM . Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 1996; 274: 1377–1379.

    Article  CAS  PubMed  Google Scholar 

  6. Uysal KT, Scheja L, Wiesbrock SM, Bonner-Weir S, Hotamisligil GS . Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 2000; 141: 3388–3396.

    Article  CAS  PubMed  Google Scholar 

  7. Boord JB, Maeda K, Makowski L, Babaev VR, Fazio S, Linton MF et al. Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe hypercholesterolemia. Arterioscler Thromb Vasc Biol 2002; 22: 1686–1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 2001; 7: 699–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Furuhashi M, Hotamisligil GS . Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 2008; 7: 489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamounier-Zepter V, Look C, Alvarez J, Christ T, Ravens U, Schunck WH et al. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction: a new link between obesity and heart disease. Circ Res 2009; 105: 326–334.

    Article  CAS  PubMed  Google Scholar 

  11. Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J et al. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 2006; 52: 405–413.

    Article  CAS  PubMed  Google Scholar 

  12. Tonjes A, Kralisch S, Lossner U, Kovacs P, Bluher M, Stumvoll M et al. Metabolic and genetic predictors of circulating adipocyte fatty acid-binding protein. Int J Obes (Lond) 2012; 36: 766–773.

    Article  CAS  Google Scholar 

  13. Wabitsch M, Brenner RE, Melzner I, Braun M, Moller P, Heinze E et al. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int J Obes Relat Metab Disord 2001; 25: 8–15.

    Article  CAS  PubMed  Google Scholar 

  14. Klausner RD, Donaldson JG, Lippincott-Schwartz J, Brefeldin A . insights into the control of membrane traffic and organelle structure. J Cell Biol 1992; 116: 1071–1080.

    Article  CAS  PubMed  Google Scholar 

  15. Tartakoff A, Vassalli P, Detraz M . Comparative studies of intracellular transport of secretory proteins. J Cell Biol 1978; 79: 694–707.

    Article  CAS  PubMed  Google Scholar 

  16. Beeler TJ, Jona I, Martonosi A . The effect of ionomycin on calcium fluxes in sarcoplasmic reticulum vesicles and liposomes. J Biol Chem 1979; 254: 6229–6231.

    CAS  PubMed  Google Scholar 

  17. Pressman BC, Fahim M . Pharmacology and toxicology of the monovalent carboxylic ionophores. Annu Rev Pharmacol Toxicol 1982; 22: 465–490.

    Article  CAS  PubMed  Google Scholar 

  18. Tuncman G, Erbay E, Hom X, De Vivo I, Campos H, Rimm EB et al. A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc Natl Acad Sci USA 2006; 103: 6970–6975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao H, Sekiya M, Ertunc ME, Burak MF, Mayers JR, White A et al. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab 2013; 17: 768–778.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nickel W, Rabouille C . Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 2009; 10: 148–155.

    Article  CAS  PubMed  Google Scholar 

  21. Ayers SD, Nedrow KL, Gillilan RE, Noy N . Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPARgamma by FABP4. Biochemistry 2007; 46: 6744–6752.

    Article  CAS  PubMed  Google Scholar 

  22. Gillilan RE, Ayers SD, Noy N . Structural basis for activation of fatty acid-binding protein 4. J Mol Biol 2007; 372: 1246–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie L, Boyle D, Sanford D, Scherer PE, Pessin JE, Mora S . Intracellular trafficking and secretion of adiponectin is dependent on GGA-coated vesicles. J Biol Chem 2006; 281: 7253–7259.

    Article  CAS  PubMed  Google Scholar 

  24. Xie L, O'Reilly CP, Chapes SK, Mora S . Adiponectin and leptin are secreted through distinct trafficking pathways in adipocytes. Biochim Biophys Acta 2008; 1782: 99–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Makowski L, Hotamisligil GS . The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr Opin Lipidol 2005; 16: 543–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Furuhashi M, Fucho R, Gorgun CZ, Tuncman G, Cao H, Hotamisligil GS . Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J Clin Invest 2008; 118: 2640–2650.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Boord JB, Maeda K, Makowski L, Babaev VR, Fazio S, Linton MF et al. Combined adipocyte-macrophage fatty acid-binding protein deficiency improves metabolism, atherosclerosis, and survival in apolipoprotein E-deficient mice. Circulation 2004; 110: 1492–1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lamounier-Zepter V, Ehrhart-Bornstein M, Karczewski P, Haase H, Bornstein SR, Morano I . Human adipocytes attenuate cardiomyocyte contraction: characterization of an adipocyte-derived negative inotropic activity. FASEB J 2006; 20: 1653–1659.

    Article  CAS  PubMed  Google Scholar 

  29. Look C, Morano I, Ehrhart-Bornstein M, Bornstein SR, Lamounier-Zepter V . Adipocyte-derived factors suppress heart contraction. Int J Obes (Lond) 2011; 35: 84–90.

    Article  CAS  Google Scholar 

  30. Engeli S, Utz W, Haufe S, Lamounier-Zepter V, Pofahl M, Traber J et al. Fatty acid binding protein 4 predicts left ventricular mass and longitudinal function in overweight and obese women. Heart 2013; 99: 944–948.

    Article  CAS  PubMed  Google Scholar 

  31. Lehmann F, Haile S, Axen E, Medina C, Uppenberg J, Svensson S et al. Discovery of inhibitors of human adipocyte fatty acid-binding protein, a potential type 2 diabetes target. Bioorg Med Chem Lett 2004; 14: 4445–4448.

    Article  CAS  PubMed  Google Scholar 

  32. Ringom R, Axen E, Uppenberg J, Lundback T, Rondahl L, Barf T . Substituted benzylamino-6-(trifluoromethyl)pyrimidin-4(1H)-ones: a novel class of selective human A-FABP inhibitors. Bioorg Med Chem Lett 2004; 14: 4449–4452.

    Article  CAS  PubMed  Google Scholar 

  33. Furuhashi M, Tuncman G, Gorgun CZ, Makowski L, Atsumi G, Vaillancourt E et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 2007; 447: 959–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Look C, Morano I, Ehrhart-Bornstein M, Bornstein SR, Lamounier-Zepter V . BMS309403 directly suppresses cardiac contractile function. Naunyn Schmiedebergs Arch Pharmacol 2011; 384: 255–263.

    Article  CAS  PubMed  Google Scholar 

  35. Kralisch S, Ebert T, Lossner U, Jessnitzer B, Stumvoll M, Fasshauer M . Adipocyte fatty acid-binding protein is released from adipocytes by a non-conventional mechanism. Int J Obes (Lond) 2014 doi:10.1038/ijo.2013.232.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the excellent technical support of Uta Lehnert. We thank Dr med. Holger Pult for the help in obtaining human adipose tissue. Furthermore, we thank Kathleen Eisenhofer for proofreading this paper. This study was supported by the German Competence Network for Obesity (‘Kompetenznetz Adipositas’) and funded by the Federal Ministry of Education and Research (Central and Peripheral Mechanisms of Obesity, Grant 01GI1122G to VLZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Lamounier-Zepter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlottmann, I., Ehrhart-Bornstein, M., Wabitsch, M. et al. Calcium-dependent release of adipocyte fatty acid binding protein from human adipocytes. Int J Obes 38, 1221–1227 (2014). https://doi.org/10.1038/ijo.2013.241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2013.241

Keywords

This article is cited by

Search

Quick links