Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of human subcutaneous adipose tissue blood flow

Abstract

Subcutaneous adipose tissue represents about 85% of all body fat. Its major metabolic role is the regulated storage and mobilization of lipid energy. It stores lipid in the form of triacylglycerol (TG), which is mobilized, as required for use by other tissues, in the form of non-esterified fatty acids (NEFA). Neither TG nor NEFA are soluble to any extent in water, and their transport to and out of the tissue requires specialized transport mechanisms and adequate blood flow. Subcutaneous adipose tissue blood flow (ATBF) is therefore tightly linked to the tissue’s metabolic functioning. ATBF is relatively high (in the fasting state, similar to that of resting skeletal muscle, when expressed per 100 g tissue) and changes markedly in different physiological states. Those most studied are after ingestion of a meal, when there is normally a marked rise in ATBF, and exercise, when ATBF also increases. Pharmacological studies have helped to define the physiological regulation of ATBF. Adrenergic influences predominate in most situations, but nevertheless the regulation of ATBF is complex and depends on the interplay of many different systems. ATBF is downregulated in obesity (when expressed per 100 g tissue), and its responsiveness to meal intake is reduced. However, there is little evidence that this leads to adipose tissue hypoxia in human obesity, and we suggest that, like the downregulation of catecholamine-stimulated lipolysis seen in obesity, the reduction in ATBF represents an adaptation to the increased fat mass. Most information on ATBF has been obtained from studying the subcutaneous abdominal fat depot, but more limited information on lower-body fat depots suggests some similarities, but also some differences: in particular, marked alpha-adrenergic tone, which can reduce the femoral ATBF response to adrenergic stimuli.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Thomas EL, Saeed N, Hajnal JV, Brynes A, Goldstone AP, Frost G et al. Magnetic resonance imaging of total body fat. J Appl Physiol 1998; 85: 1778–1785.

    Article  CAS  PubMed  Google Scholar 

  2. Frayn KN, Macdonald IA . Adipose tissue circulation. In: Bennett T, Gardiner SM, (eds). Nervous Control of Blood Vessels 1996. Harwood Academic: Amsterdam pp 505–539.

    Google Scholar 

  3. Sotornik R, Brassard P, Martin E, Yale P, Carpentier AC, Ardilouze JL . Update on adipose tissue blood flow regulation. Am J Physiol Endocrinol Metab 2012; 302: E1157–E1170.

    Article  CAS  PubMed  Google Scholar 

  4. Lee MJ, Wu Y, Fried SK . Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med 2013; 34: 1–11.

    Article  CAS  PubMed  Google Scholar 

  5. Alemany M . Regulation of adipose tissue energy availability through blood flow control in the metabolic syndrome. Free Radic Biol Med 2012; 52: 2108–2119.

    Article  CAS  PubMed  Google Scholar 

  6. Goossens GH, Blaak EE . Adipose tissue oxygen tension: implications for chronic metabolic and inflammatory diseases. Curr Opin Clin Nutr Metab Care 2012; 15: 539–546.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson D, Karpe F, Lafontan M, Frayn K . Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol Rev 2012; 92: 157–191.

    Article  CAS  PubMed  Google Scholar 

  8. Berthoud H-R, Fox EA, Neuhuber WL . Vagaries of adipose tissue innervation. Am J Physiol Regul Integr Comp Physiol 2006; 291: R1240–R1242.

    Article  CAS  PubMed  Google Scholar 

  9. Kreier F, Buijs RM . Evidence for parasympathetic innervation of white adipose tissue, clearing up some vagaries. Am J Physiol Regul Integr Comp Physiol 2007; 293: R548–R549.

    Article  CAS  PubMed  Google Scholar 

  10. Bickerton AS, Roberts R, Fielding BA, Hodson L, Blaak EE, Wagenmakers AJ et al. Preferential uptake of dietary fatty acids in adipose tissue and muscle in the postprandial period. Diabetes 2007; 56: 168–176.

    Article  CAS  PubMed  Google Scholar 

  11. Hodson L, Skeaff CM, Fielding BA . Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Progr Lipid Res 2008; 47: 348–380.

    Article  CAS  Google Scholar 

  12. Strawford A, Antelo F, Christiansen M, Hellerstein MK . Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am J Physiol Endocrinol Metab 2004; 286: E577–E588.

    Article  CAS  PubMed  Google Scholar 

  13. Pinnick KE, Neville MJ, Fielding BA, Frayn KN, Karpe F, Hodson L . Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes 2012; 61: 1399–4103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collins JM, Neville MJ, Pinnick KE, Hodson L, Ruyter B, van Dijk TH et al. De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J Lipid Res 2011; 52: 1683–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Camps L, Reina M, Llobera M, Vilar S, Olivecrona T . Lipoprotein lipase: cellular origin and functional distribution. Amer J Physiol 1990; 258: C673–C681.

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Eckel RH . Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 2009; 297: E271–E288.

    Article  CAS  PubMed  Google Scholar 

  17. Fielding BA, Frayn KN . Lipoprotein lipase and the disposition of dietary fatty acids. Brit J Nutr 1998; 80: 495–502.

    Article  CAS  PubMed  Google Scholar 

  18. Ruge T, Hodson L, Cheeseman J, Dennis AL, Fielding BA, Humphreys SM et al. Fasted to fed trafficking of fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. J Clin Endocrinol Metab 2009; 94: 1781–1788.

    Article  CAS  PubMed  Google Scholar 

  19. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A et al. FAT SIGNALS—lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012; 15: 279–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lafontan M, Langin D . Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 2009; 48: 275–297.

    Article  CAS  PubMed  Google Scholar 

  21. Samra JS, Simpson EJ, Clark ML, Forster CD, Humphreys SM, Macdonald IA et al. Effects of epinephrine infusion on adipose tissue: interactions between blood flow and lipid metabolism. Am J Physiol 1996; 271: E834–E839.

    CAS  PubMed  Google Scholar 

  22. Goossens GH, Karpe F . Human adipose tissue blood flow and micromanipulation of human subcutaneous blood flow. Methods Mol Biol 2008; 456: 97–107.

    Article  PubMed  Google Scholar 

  23. Bülow J . Measurement of adipose tissue blood flow. Methods Mol Biol 2001; 155: 281–293.

    PubMed  Google Scholar 

  24. Larsen OA, Lassen NA, Quaade F . Blood flow through human adipose tissue determined with radioactive xenon. Acta Physiol Scand 1966; 66: 337–345.

    Article  CAS  PubMed  Google Scholar 

  25. Samra JS, Frayn KN, Giddings JA, Clark ML, Macdonald IA . Modification and validation of a commercially available portable detector for measurement of adipose tissue blood flow. Clin Physiol 1995; 15: 241–248.

    Article  CAS  PubMed  Google Scholar 

  26. Bülow J, Jelnes R, Astrup A, Madsen J, Vilmann P . Tissue/blood partition coefficients for xenon in various adipose tissue depots in man. Scand J Clin Lab Invest 1987; 47: 1–3.

    Article  PubMed  Google Scholar 

  27. Jelnes R, Rasmussen LB, Eickhoff JH . Direct determination of the tissue-to-blood partition coefficient for Xenon in human subcutaneous adipose tissue. Scand J Clin Lab Invest 1984; 44: 643–647.

    Article  CAS  PubMed  Google Scholar 

  28. Simonsen L, Bülow J, Astrup A, Madsen J, Christensen NJ . Diet-induced changes in subcutaneous adipose tissue blood flow in man: effect of ß-adrenoceptor inhibition. Acta Physiol Scand 1990; 139: 341–346.

    Article  CAS  PubMed  Google Scholar 

  29. Karpe F, Fielding BA, Ardilouze J-L, Ilic V, Macdonald IA, Frayn KN . Effects of insulin on adipose tissue blood flow in man. J Physiol 2002; 540: 1087–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ardilouze J, Fielding B, Currie J, Frayn K, Karpe F . Nitric oxide and beta-adrenergic stimulation are major regulators of pre- and postprandial subcutaneous adipose tissue blood flow in humans. Circulation 2004; 109: 47–52.

    Article  CAS  PubMed  Google Scholar 

  31. Goossens GH, McQuaid SE, Dennis AL, van Baak MA, Blaak EE, Frayn KN et al. Angiotensin II: a major regulator of subcutaneous adipose tissue blood flow in humans. J Physiol 2006; 571: 451–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ardilouze JL, Sotornik R, Dennis LA, Fielding BA, Frayn KN, Karpe F . Failure to increase postprandial blood flow in subcutaneous adipose tissue is associated with tissue resistance to adrenergic stimulation. Diabetes Metab 2012; 38: 27–33.

    Article  CAS  PubMed  Google Scholar 

  33. Galitzky J, Lafontan M, Nordenström J, Arner P . Role of vascular alpha-2 adrenoceptors in regulating lipid mobilization from human adipose tissue. J Clin Invest 1993; 91: 1997–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barbe P, Millet L, Galitzky J, Lafontan M, Berlan M . In situ assessment of the role of the beta 1-, beta 2- and beta 3-adrenoceptors in the control of lipolysis and nutritive blood flow in human subcutaneous adipose tissue. Br J Pharmacol 1996; 117: 907–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barbe P, Stich V, Galitzky J, Kunesova M, Hainer V, Lafontan M et al. In vivo increase in beta-adrenergic lipolytic response in subcutaneous adipose tissue of obese subjects submitted to a hypocaloric diet. J Clin Endocrinol Metab 1997; 82: 63–69.

    CAS  PubMed  Google Scholar 

  36. Galitzky J, Sengenès C, Thalamas C, Marques MA, Senard JM, Lafontan M et al. The lipid-mobilizing effect of atrial natriuretic peptide is unrelated to sympathetic nervous system activation or obesity in young men. J Lipid Res 2001; 42: 536–544.

    Article  CAS  PubMed  Google Scholar 

  37. Karpe F, Fielding BA, Ilic V, Humphreys SM, Frayn KN . Monitoring adipose tissue blood flow in man: a comparison between the 133xenon washout method and microdialysis. Int J Obes 2002; 26: 1–5.

    Article  CAS  Google Scholar 

  38. Viljanen AP, Lautamäki R, Jarvisalo M, Parkkola R, Huupponen R, Lehtimäki T et al. Effects of weight loss on visceral and abdominal subcutaneous adipose tissue blood-flow and insulin-mediated glucose uptake in healthy obese subjects. Ann Med 2009; 41: 152–160.

    Article  CAS  PubMed  Google Scholar 

  39. Iozzo P, Viljanen A, Guzzardi MA, Laine H, Honka MJ, Ferrannini E et al. The interaction of blood flow, insulin, and bradykinin in regulating glucose uptake in lower-body adipose tissue in lean and obese subjects. J Clin Endocrinol Metab 2012; 97: E1192–E1196.

    Article  CAS  PubMed  Google Scholar 

  40. Wellhöner P, Rolle D, Lönnroth P, Strindberg L, Elam M, Dodt C . Laser-Doppler flowmetry reveals rapid perfusion changes in adipose tissue of lean and obese females. Am J Physiol Endocrinol Metab 2006; 291: E1025–E1030.

    Article  PubMed  CAS  Google Scholar 

  41. Tobin L, Simonsen L, Bülow J . Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment. Clin Physiol Funct Imaging 2010; 30: 447–452.

    Article  CAS  PubMed  Google Scholar 

  42. Tobin L, Simonsen L, Bülow J . The dynamics of the microcirculation in the subcutaneous adipose tissue is impaired in the postprandial state in type 2 diabetes. Clin Physiol Funct Imaging 2011; 31: 458–463.

    Article  CAS  PubMed  Google Scholar 

  43. Flechtner-Mors M, Jenkinson CP, Alt A, Adler G, Ditschuneit HH . In vivo α1-adrenergic lipolytic activity in subcutaneous adipose tissue of obese subjects. J Pharmacol Exp Ther 2002; 301: 229–233.

    Article  CAS  PubMed  Google Scholar 

  44. Manolopoulos KN, Karpe F, Frayn KN . Marked resistance of femoral adipose tissue blood flow and lipolysis to adrenaline in vivo. Diabetologia 2012; 55: 3029–3037.

    Article  CAS  PubMed  Google Scholar 

  45. Birkenfeld AL, Boschmann M, Moro C, Adams F, Heusser K, Franke G et al. Lipid mobilization with physiological atrial natriuretic peptide concentrations in humans. J Clin Endocrinol Metab 2005; 90: 3622–3628.

    Article  CAS  PubMed  Google Scholar 

  46. Arner P, Hellmér J, Hagström-Toft E, Bolinder J . Effect of phosphodiesterase inhibition with amrinone or theophylline on lipolysis and blood flow in human adipose tissue in vivo as measured with microdialysis. J Lipid Res 1993; 34: 1737–1743.

    Article  CAS  PubMed  Google Scholar 

  47. Flechtner-Mors M, Jenkinson CP, Alt A, Biesalski HK, Adler G, Ditschuneit HH . Studies of phosphodiesterase effects on adipose tissue metabolism in obese subjects by the microdialysis technique. J Physiol Pharmacol 2005; 56: 355–368.

    CAS  PubMed  Google Scholar 

  48. Coppack SW, Evans RD, Fisher RM, Frayn KN, Gibbons GF, Humphreys SM et al. Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal. Metabolism 1992; 41: 264–272.

    Article  CAS  PubMed  Google Scholar 

  49. Summers LKM, Samra JS, Humphreys SM, Morris RJ, Frayn KN . Subcutaneous abdominal adipose tissue blood flow: variation within and between subjects and relationship to obesity. Clin Sci 1996; 91: 679–683.

    Article  CAS  Google Scholar 

  50. Karpe F, Fielding BA, Ilic V, Macdonald IA, Summers LKM, Frayn KN . Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. Diabetes 2002; 51: 2467–2473.

    Article  CAS  PubMed  Google Scholar 

  51. Fried SK, Russell CD, Grauso NL, Brolin RE . Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest 1993; 92: 2191–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hjemdahl P, Linde B . Influence of circulating NE and Epi on adipose tissue vascular resistance and lipolysis in humans. Am J Physiol 1983; 245: H447–H452.

    CAS  PubMed  Google Scholar 

  53. Patel JN, Eisenhofer G, Coppack SW, Miles JM . Norepinephrine spillover in forearm and subcutaneous adipose tissue before and after eating. J Clin Endocrinol Metab 1999; 84: 2815–2819.

    CAS  PubMed  Google Scholar 

  54. Perez-Matute P, Neville MJ, Tan GD, Frayn KN, Karpe F . Transcriptional control of human adipose tissue blood flow. Obesity 2009; 17: 681–688.

    Article  CAS  PubMed  Google Scholar 

  55. Bertin E, Arner P, Bolinder J, Hagström-Toft E . Action of glucagon and glucagon-like peptide-1-(7-36) amide on lipolysis in human subcutaneous adipose tissue and skeletal muscle in vivo. J Clin Endocrinol Metab 2001; 86: 1229–1234.

    CAS  PubMed  Google Scholar 

  56. Asmar M, Simonsen L, Madsbad S, Stallknecht B, Holst JJ, Bülow J . Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes 2010; 59: 2160–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Hall G, Bülow J, Sacchetti M, Al Mulla N, Lyngsø D, Simonsen L . Regional fat metabolism in human splanchnic and adipose tissues; the effect of exercise. J Physiol 2002; 543: 1033–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hodgetts V, Coppack SW, Frayn KN . Hockaday TDR Factors controlling fat mobilization from human subcutaneous adipose tissue during exercise. J Appl Physiol 1991; 71: 445–451.

    Article  CAS  PubMed  Google Scholar 

  59. Lange KH, Lorentsen J, Isaksson F, Simonsen L, Juul A, Christensen NJ et al. Subcutaneous abdominal adipose tissue lipolysis during exercise determined by arteriovenous measurements in older women. J Am Geriatr Soc 2002; 50: 275–281.

    Article  PubMed  Google Scholar 

  60. Bülow J, Madsen J . Adipose tissue blood flow during prolonged, heavy exercise. Pflügers Arch 1976; 363: 231–234.

    Article  PubMed  Google Scholar 

  61. Heinonen I, Bucci M, Kemppainen J, Knuuti J, Nuutila P, Boushel R et al. Regulation of subcutaneous adipose tissue blood flow during exercise in humans. J Appl Physiol 2012; 112: 1059–1063.

    Article  PubMed  Google Scholar 

  62. Bülow J . Human adipose tissue blood flow during prolonged exercise, III. Effect of β-adrenergic blockade, nicotinic acid and glucose infusion. Scand J Clin Lab Invest 1981; 41: 415–424.

    Article  PubMed  Google Scholar 

  63. Moro C, Crampes F, Sengenes C, De Glisezinski I, Galitzky J, Thalamas C et al. Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans. FASEB J 2004; 18: 908–910.

    Article  CAS  PubMed  Google Scholar 

  64. Moro C, Pillard F, De Glisezinski I, Harant I, Riviere D, Stich V et al. Training enhances ANP lipid-mobilizing action in adipose tissue of overweight men. Med Sci Sports Exerc 2005; 37: 1126–1132.

    Article  CAS  PubMed  Google Scholar 

  65. Frayn KN, Humphreys SM . Metabolic characteristics of human subcutaneous abdominal adipose tissue after overnight fast. Am J Physiol Endocrinol Metab 2012; 302: E468–E475.

    Article  CAS  PubMed  Google Scholar 

  66. Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Rydén M et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 2005; 54: 3190–3197.

    Article  CAS  PubMed  Google Scholar 

  67. McQuaid SE, Hodson L, Neville MJ, Dennis AL, Cheeseman J, Humphreys SM et al. Down-regulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes 2011; 60: 47–55.

    Article  CAS  PubMed  Google Scholar 

  68. Frayn KN . Obesity and metabolic disease: is adipose tissue the culprit? Proc Nutr Soc 2005; 64: 7–13.

    Article  PubMed  Google Scholar 

  69. Stich V, De Glisezinski I, Crampes F, Hejnova J, Cottet-Emard JM, Galitzky J et al. Activation of α2-adrenergic receptors impairs exercise-induced lipolysis in SCAT of obese subjects. Am J Physiol Regul Integr Comp Physiol 2000; 279: R499–R504.

    Article  CAS  PubMed  Google Scholar 

  70. Stich V, Marion Latard F, Hejnova J, Viguerie N, Lefort C, Suljkovicova H et al. Hypocaloric diet reduces exercise-induced alpha 2-adrenergic antilipolytic effect and alpha 2-adrenergic receptor mRNA levels in adipose tissue of obese women. J Clin Endocrinol Metab 2002; 87: 1274–1281.

    CAS  PubMed  Google Scholar 

  71. Jansson PA, Larsson A, Lonnroth PN . Relationship between blood pressure, metabolic variables and blood flow in obese subjects with or without non-insulin-dependent diabetes mellitus. Eur J Clin Invest 1998; 28: 813–818.

    Article  CAS  PubMed  Google Scholar 

  72. Mitrou P, Boutati E, Lambadiari V, Maratou E, Komesidou V, Papakonstantinou A et al. Rates of lipid fluxes in adipose tissue in vivo after a mixed meal in morbid obesity. Int J Obes 2010; 34: 770–774.

    Article  CAS  Google Scholar 

  73. Dimitriadis G, Lambadiari V, Mitrou P, Maratou E, Boutati E, Panagiotakos DB et al. Impaired postprandial blood flow in adipose tissue may be an early marker of insulin resistance in type 2 diabetes. Diabetes Care 2007; 30: 3128–3130.

    Article  CAS  PubMed  Google Scholar 

  74. Trayhurn P . Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 2013; 93: 1–21.

    Article  CAS  PubMed  Google Scholar 

  75. Pasarica M, Rood J, Ravussin E, Schwarz JM, Smith SR, Redman LM . Reduced oxygenation in human obese adipose tissue is associated with impaired insulin suppression of lipolysis. J Clin Endocrinol Metab 2010; 95: 4052–4055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 2011; 124: 67–76.

    Article  CAS  PubMed  Google Scholar 

  77. Hodson L, Humphreys SM, Karpe F, Frayn KN . Metabolic signatures of human adipose tissue hypoxia in obesity. Diabetes 2013; 62: 1417–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manolopoulos KN, Karpe F, Frayn KN . Gluteofemoral body fat as a determinant of metabolic health. Int J Obes 2010; 34: 949–959.

    Article  CAS  Google Scholar 

  79. Wahrenberg H, Lönnqvist F, Arner P . Mechanisms underlying regional differences in lipolysis in human adipose tissue. J Clin Invest 1989; 84: 458–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arner P, Kriegholm E, Engfeldt P, Bolinder J . Adrenergic regulation of lipolysis in situ at rest and during exercise. J Clin Invest 1990; 85: 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jensen MD . Lipolysis: contribution from regional fat. Annu Rev Nutr 1997; 17: 127–139.

    Article  CAS  PubMed  Google Scholar 

  82. Tan G, Goossens GH, Humphreys SM, Vidal H, Karpe F . Upper and lower body adipose tissue function: a direct comparison of fat mobilization in humans. Obes Res 2004; 12: 114–118.

    Article  PubMed  Google Scholar 

  83. McQuaid SE, Humphreys SM, Hodson L, Fielding BA, Karpe F, Frayn KN . Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified fatty acids. Diabetes 2010; 59: 2465–2473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Millet L, Barbe P, Lafontan M, Berlan M, Galitzky J . Catecholamine effects on lipolysis and blood flow in human abdominal and femoral adipose tissue. J Appl Physiol 1998; 85: 181–188.

    Article  CAS  PubMed  Google Scholar 

  85. Jansson P-A, Larsson A, Smith U, Lönnroth P . Glycerol production in subcutaneous adipose tissue in lean and obese humans. J Clin Invest 1992; 89: 1610–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank many colleagues who have worked with us on ATBF regulation, including Professor Jean-Luc Ardilouze from the University of Sherbrooke and Dr Gijs Goossens from Maastricht University. We have particularly used data generated by Dr Siobhán McQuaid and Dr Konstantinos Manolopoulos in writing this review. Funding for our work in this area has come from many sources including British Heart Foundation, Biotechnology and Biological Sciences Research Council and Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Karpe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frayn, K., Karpe, F. Regulation of human subcutaneous adipose tissue blood flow. Int J Obes 38, 1019–1026 (2014). https://doi.org/10.1038/ijo.2013.200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2013.200

Keywords

  • adipose tissue
  • hypoxia
  • blood flow

This article is cited by

Search

Quick links