Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry

Abstract

BACKGROUND:

The biological mechanisms that link the development of depression to metabolic disorders such as obesity and diabetes remain obscure. Dopamine- and plasticity-related signalling in mesolimbic reward circuitry is implicated in the pathophysiology and aetiology of depression.

OBJECTIVE:

To determine the impact of a palatable high-fat diet (HFD) on depressive-like behaviour and biochemical alterations in brain reward circuitry in order to understand the neural processes that may contribute to the development of depression in the context of diet-induced obesity (DIO).

METHODS:

Adult male C57Bl6 mice were placed on a HFD or ingredient-matched, low-fat diet for 12 weeks. At the end of the diet regimen, we assessed anxiety and depressive-like behaviour, corticosterone levels and biochemical changes in the midbrain and limbic brain regions. Nucleus accumbens (NAc), dorsolateral striatum (DLS) and ventral tegmental area dissections were subjected to SDS-PAGE and immunoblotting using antibodies against D1A receptor, D2 receptor, brain-derived neurotrophic factor (BDNF), phospho-DARPP-32(thr75), phospho-CREB and ΔFosB.

RESULTS:

HFD mice showed significant decreases in open arm time and centre time activity in elevated plus maze and open field tasks, respectively, and increased immobility (behavioural despair) in the forced swim test. Corticosterone levels following acute restraint stress were substantially elevated in HFD mice. HFD mice had significantly higher D2R, BDNF and ΔFosB, but reduced D1R, protein expression in the NAc. Notably, the expression of BDNF in both the NAc and DLS and phospho-CREB in the DLS was positively correlated with behavioural despair.

CONCLUSIONS:

Our results demonstrate that chronic consumption of high-fat food and obesity induce plasticity-related changes in reward circuitry that are associated with a depressive-like phenotype. As increases in striatal BDNF and CREB activity are well implicated in depressive behaviour and reward, we suggest these signalling molecules may mediate the effects of high-fat feeding and DIO to promote negative emotional states and depressive-like symptomology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Dong C, Sanchez LE, Price RA . Relationship of obesity to depression: a family-based study. Int J Obes Relat Metab Disord 2004; 28: 790–795.

    CAS  Article  Google Scholar 

  2. Roberts RE, Deleger S, Strawbridge WJ, Kaplan GA . Prospective association between obesity and depression: evidence from the Alameda County Study. Int J Obes Relat Metab Disord 2003; 27: 514–521.

    CAS  Article  Google Scholar 

  3. Simon GE, Von Korff M, Saunders K, Miglioretti DL, Crane PK, van Belle G et al. Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry 2006; 63: 824–830.

    Article  Google Scholar 

  4. Davis JF, Tracy AL, Schurdak JD, Tschop MH, Lipton JW, Clegg DJ et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 2008; 122: 1257–1263.

    Article  Google Scholar 

  5. Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN . Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 2009; 159: 1193–1199.

    CAS  Article  Google Scholar 

  6. Teegarden SL, Nestler EJ, Bale TL . Delta FosB-mediated alterations in dopamine signaling are normalized by a palatable high-fat diet. Biol Psychiatry 2008; 64: 941–950.

    CAS  Article  Google Scholar 

  7. Fulton S . Appetite and reward. Front Neuroendocrinol 2010; 31: 85–103.

    Article  Google Scholar 

  8. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W et al. Brain dopamine and obesity. Lancet 2001; 357: 354–357.

    CAS  Article  Google Scholar 

  9. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 2008; 42: 1537–1543.

    Article  Google Scholar 

  10. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006; 51: 811–822.

    CAS  Article  Google Scholar 

  11. Geiger BM, Behr GG, Frank LE, Caldera-Siu AD, Beinfeld MC, Kokkotou EG et al. Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. Faseb J 2008; 22: 2740–2746.

    CAS  Article  Google Scholar 

  12. Nestler EJ, Carlezon Jr WA . The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 2006; 59: 1151–1159.

    CAS  Article  Google Scholar 

  13. Hyman SE, Malenka RC, Nestler EJ . Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006; 29: 565–598.

    CAS  Article  Google Scholar 

  14. Russo SJ, Bolanos CA, Theobald DE, DeCarolis NA, Renthal W, Kumar A et al. IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci 2007; 10: 93–99.

    CAS  Article  Google Scholar 

  15. Lucki I . The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 1997; 8: 523–532.

    CAS  Article  Google Scholar 

  16. Porsolt RD, Bertin A, Jalfre M . Behavioral despair in mice: a primary screening test for antidepressants. Arch Int de Pharmacodynamie et de Therapie 1977; 229: 327–336.

    CAS  Google Scholar 

  17. Dong C, Sanchez LE, Price RA . Relationship of obesity to depression: a family-based study. Int J Obes Relat Metab Disord 2004; 28: 790–795.

    CAS  Article  Google Scholar 

  18. Zhao G, Ford ES, Dhingra S, Li C, Strine TW, Mokdad AH . Depression and anxiety among US adults: associations with body mass index. Int J Obes (Lond) 2009; 33: 257–266.

    CAS  Article  Google Scholar 

  19. Yamada N, Katsuura G, Ochi Y, Ebihara K, Kusakabe T, Hosoda K et al. Impaired CNS leptin action is implicated in depression associated with obesity. Endocrinology 2011; 152: 2634–2643.

    CAS  Article  Google Scholar 

  20. Maniam J, Morris MJ . Palatable cafeteria diet ameliorates anxiety and depression-like symptoms following an adverse early environment. Psychoneuroendocrinology 2010; 35: 717–728.

    CAS  Article  Google Scholar 

  21. McClean PL, Irwin N, Cassidy RS, Holst JJ, Gault VA, Flatt PR . GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am J Physiol Endocrinol Metab 2007; 293: 1746–1755.

    Article  Google Scholar 

  22. Tannenbaum BM, Brindley DN, Tannenbaum GS, Dallman MF, McArthur MD, Meaney MJ . High-fat feeding alters both basal and stress-induced hypothalamic-pituitary-adrenal activity in the rat. Am J Physiol 1997; 273: E1168–E1E77.

    CAS  Article  Google Scholar 

  23. Barrot M, Olivier JD, Perrotti LI, DiLeone RJ, Berton O, Eisch AJ et al. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci USA 2002; 99: 11435–11440.

    CAS  Article  Google Scholar 

  24. Barrot M, Wallace DL, Bolanos CA, Graham DL, Perrotti LI, Neve RL et al. Regulation of anxiety and initiation of sexual behavior by CREB in the nucleus accumbens. Proc Natl Acad Sci USA 2005; 102: 8357–8362.

    CAS  Article  Google Scholar 

  25. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM . Neurobiology of depression. Neuron 2002; 34: 13–25.

    CAS  Article  Google Scholar 

  26. Olson VG, Zabetian CP, Bolanos CA, Edwards S, Barrot M, Eisch AJ et al. Regulation of drug reward by cAMP response element-binding protein: evidence for two functionally distinct subregions of the ventral tegmental area. J Neurosci 2005; 25: 5553–5562.

    CAS  Article  Google Scholar 

  27. Wallace DL, Han MH, Graham DL, Green TA, Vialou V, Iniguez SD et al. CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat Neurosci 2009; 12: 200–209.

    CAS  Article  Google Scholar 

  28. Carlezon Jr WA, Duman RS, Nestler EJ . The many faces of CREB. Trends Neurosci 2005; 28: 436–445.

    CAS  Article  Google Scholar 

  29. McPherson CS, Lawrence AJ . The nuclear transcription factor CREB: involvement in addiction, deletion models and looking forward. Curr Neuropharmacol 2007; 5: 202–212.

    CAS  Article  Google Scholar 

  30. Nestler EJ . Molecular neurobiology of addiction. Am J Addict 2001; 10: 201–217.

    CAS  Article  Google Scholar 

  31. Nestler EJ . Common molecular and cellular substrates of addiction and memory. Neurobiol Learn Mem 2002; 78: 637–647.

    CAS  Article  Google Scholar 

  32. Nestler EJ . Molecular mechanisms of drug addiction. Neuropharmacology 2004; 47 (Suppl 1): 24–32.

    CAS  Article  Google Scholar 

  33. Pandey SC, Chartoff EH, Carlezon Jr WA, Zou J, Zhang H, Kreibich AS . et al. CREB gene transcription factors: role in molecular mechanisms of alcohol and drug addiction. Alcohol Clin Exp Res 2005; 29: 176–184.

    CAS  Article  Google Scholar 

  34. Briand LA, Blendy JA . Molecular and genetic substrates linking stress and addiction. Brain Res 2010; 1314: 219–234.

    CAS  Article  Google Scholar 

  35. Carlezon Jr WA, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N et al. Regulation of cocaine reward by CREB. Science 1998; 282: 2272–2275.

    CAS  Article  Google Scholar 

  36. Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon Jr WA . Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci 2001; 21: 7397–7403.

    CAS  Article  Google Scholar 

  37. Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T . Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 2007; 85: 525–535.

    CAS  Article  Google Scholar 

  38. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME . Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 1998; 20: 709–726.

    CAS  Article  Google Scholar 

  39. Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy JA . cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci 2002; 22: 3262–3268.

    CAS  Article  Google Scholar 

  40. Gooney M, Messaoudi E, Maher FO, Bramham CR, Lynch MA . BDNF-induced LTP in dentate gyrus is impaired with age: analysis of changes in cell signaling events. Neurobiol Aging 2004; 25: 1323–1331.

    CAS  Article  Google Scholar 

  41. Pandey SC, Zhang H, Roy A, Misra K . Central and medial amygdaloid brain-derived neurotrophic factor signaling plays a critical role in alcohol-drinking and anxiety-like behaviors. J Neurosci 2006; 26: 8320–8331.

    CAS  Article  Google Scholar 

  42. Russo SJ, Bolanos CA, Theobald DE, DeCarolis NA, Renthal W, Kumar A et al. IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci 2007; 10: 93–99.

    CAS  Article  Google Scholar 

  43. Gray J, Yeo GS, Cox JJ, Morton J, Adlam AL, Keogh JM . et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 2006; 55: 3366–3371.

    CAS  Article  Google Scholar 

  44. Han JC, Liu QR, Jones M, Levinn RL, Menzie CM, Jefferson-George KS et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med 2008; 359: 918–927.

    CAS  Article  Google Scholar 

  45. Kernie SG, Liebl DJ, Parada LF . BDNF regulates eating behavior and locomotor activity in mice. EMBO J 2000; 19: 1290–1300.

    CAS  Article  Google Scholar 

  46. Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA 1999; 96: 15239–15244.

    CAS  Article  Google Scholar 

  47. Cordeira JW, Frank L, Sena-Esteves M, Pothos EN, Rios M . Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system. J Neurosci 2010; 30: 2533–2541.

    CAS  Article  Google Scholar 

  48. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006; 311: 864–868.

    CAS  Article  Google Scholar 

  49. Berton O, Nestler EJ . New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 2006; 7: 137–151.

    CAS  Article  Google Scholar 

  50. Nestler EJ, Kelz MB, Chen J . [Delta]FosB: a molecular mediator of long-term neural and behavioral plasticity. Brain Res 1999; 835: 10–17.

    CAS  Article  Google Scholar 

  51. McClung CA, Ulery PG, Perrotti LI, Zachariou V, Berton O, Nestler EJ . DeltaFosB: a molecular switch for long-term adaptation in the brain. Brain Res Mol Brain Res 2004; 132: 146–154.

    CAS  Article  Google Scholar 

  52. Vialou V, Robison AJ, Laplant QC, Covington III HE, Dietz DM, Ohnishi YN et al. DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci 2010; 13: 745–752.

    CAS  Article  Google Scholar 

  53. Teegarden SL, Nestler EJ, Bale TL . Delta]FosB-mediated alterations in dopamine signaling are normalized by a palatable high-fat diet. Biol Psychiatry 2008; 64: 941–950.

    CAS  Article  Google Scholar 

  54. Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, Snyder GL et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 2001; 410: 376–380.

    CAS  Article  Google Scholar 

  55. Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA et al. Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 1999; 402: 669–671.

    CAS  Article  Google Scholar 

  56. Rauggi R, Scheggi S, Cassanelli A, De Montis MG, Tagliamonte A, Gambarana C . The mesolimbic dopaminergic response to novel palatable food consumption increases dopamine-D1 receptor-mediated signalling with complex modifications of the DARPP-32 phosphorylation pattern. J Neurochem 2005; 92: 867–877.

    CAS  Article  Google Scholar 

  57. Benavides DR, Bibb JA . Role of Cdk5 in drug abuse and plasticity. Ann NY Acad Sci. [Review] 2004; 1025: 335–344.

    CAS  Article  Google Scholar 

  58. Alsio J, Olszewski PK, Norback AH, Gunnarsson ZE, Levine AS, Pickering C et al. Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats. Neuroscience 2010; 171: 779–787.

    CAS  Article  Google Scholar 

  59. Haroon E, Raison CL, Miller AH . Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 2012; 37: 137–162.

    CAS  Article  Google Scholar 

  60. Maniam J, Morris MJ . Voluntary exercise and palatable high-fat diet both improve behavioural profile and stress responses in male rats exposed to early life stress: role of hippocampus. Psychoneuroendocrinology 2010; 35: 1553–1564.

    CAS  Article  Google Scholar 

  61. Maniam J, Morris MJ . Palatable cafeteria diet ameliorates anxiety and depression-like symptoms following an adverse early environment. Psychoneuroendocrinology 2010; 35: 717–728.

    CAS  Article  Google Scholar 

  62. Finger BC, Dinan TG, Cryan JF . High-fat diet selectively protects against the effects of chronic social stress in the mouse. Neuroscience 2011; 192: 351–360.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This project was supported by a Grant from the Canadian Diabetes Association (OG-2-09-2835-SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Fulton.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, S., Fulton, S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes 37, 382–389 (2013). https://doi.org/10.1038/ijo.2012.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.48

Keywords

  • high-fat food
  • depression
  • anxiety
  • striatum
  • BDNF
  • CREB

Further reading

Search

Quick links