Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adaptive thermogenesis can make a difference in the ability of obese individuals to lose body weight

Abstract

The decrease in energy expenditure that occurs during weight loss is a process that attenuates over time the impact of a restrictive diet on energy balance up to a point beyond which no further weight loss seems to be possible. For some health professionals, such a diminished energy expenditure is the normal consequence of a progressive decrease in the motivation to exercise over the course of a weight-reducing program. Another explanation of decreased energy needs during weight loss is the decrease in body energy stores (that is, fat mass and muscle mass) and its related obligatory costs of living. Many studies have also documented the existence of adaptive thermogenesis in the context of weight loss, which represents a greater-than-predicted decrease in energy expenditure. In this paper, we pursue the analysis of this phenomenon by demonstrating that an adaptive decrease in thermogenesis can have a major role in the occurrence of resistance to further lose fat in weight-reduced obese individuals. Evidence is also presented to support the idea of greater hunger sensations in individuals displaying more pronounced thermogenic changes. Finally, as the decrease in thermogenesis persists over time, it is also likely associated with a greater predisposition to body-weight regain after weight loss. Globally, these observations suggest that the adaptive reduction in thermogenesis that accompanies a prolonged negative energy balance is a major determinant of the ability to spontaneously lose body fat.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Tremblay A, Major GC, Doucet E, Trayhurn P, Astrup A . Role of adaptive thermogenesis in unsuccessful weight-loss intervention. Future Lipidol 2007; 2: 651–658.

    Article  Google Scholar 

  2. Major GC, Doucet E, Trayhurn P, Astrup A, Tremblay A . Clinical significance of adaptive thermogenesis. Int J Obes (Lond) 2007; 31: 204–212.

    CAS  Article  Google Scholar 

  3. Leibel RL, Rosenbaum M, Hirsch J . Changes in energy expenditure resulting from altered body weight. N Engl J Med 1995; 332: 621–628.

    CAS  Article  PubMed  Google Scholar 

  4. Doucet E, Imbeault P, St-Pierre S, Almeras N, Mauriege P, Richard D et al. Appetite after weight loss by energy restriction and a low-fat diet-exercise follow-up. Int J Obes 2000a; 24: 906–914.

    CAS  Article  Google Scholar 

  5. Doucet E, Pierre S, Almeras N, Mauriege P, Richard D, Tremblay A . Changes in energy expenditure and substrate oxidation resulting from weight loss in obese men and women: is there an important contribution of leptin? J Clin Endocrinol Metab 2000b; 85: 1550–1556.

    CAS  PubMed  Google Scholar 

  6. Doucet E, Imbeault P, St-Pierre S, Almeras N, Mauriege P, Despres JP et al. Greater than predicted decrease in energy expenditure during exercise after body weight loss in obese men. Clin Sci (Lond) 2003; 105: 89–95.

    Article  Google Scholar 

  7. Wijers SL, Saris WH, van Marken Lichtenbelt WD . Individual thermogenic responses to mild cold and overfeeding are closely related. J Clin Endocrinol Metab 2007; 92: 4299–4305.

    CAS  Article  PubMed  Google Scholar 

  8. Alfonzo-Gonzalez G, Doucet E, Almeras N, Bouchard C, Tremblay A . Estimation of daily energy needs with the FAO/WHO/UNU 1985 procedures in adults: comparison to whole-body indirect calorimetry measurements. Eur J Clin Nutr 2004; 58: 1125–1131.

    CAS  Article  PubMed  Google Scholar 

  9. Rothwell NJ, Stock MJ . A role for brown adipose tissue in diet-induced thermogenesis. Nature 1979; 281: 31–35.

    CAS  PubMed  Google Scholar 

  10. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500–1508.

    CAS  Article  PubMed  Google Scholar 

  11. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509–1517.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518–1525.

    CAS  Article  PubMed  Google Scholar 

  13. Chernogubova E, Cannon B, Bengtsson T . Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 2004; 145: 269–280.

    CAS  Article  PubMed  Google Scholar 

  14. Marette A, Bukowiecki LJ . Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport. Biochem J 1991; 277: 119–124.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Nedergaard J, Bengtsson T, Cannon B . Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293: E444–E452.

    CAS  Article  PubMed  Google Scholar 

  16. Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring) 2011; 19: 13–16.

    Article  Google Scholar 

  17. Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 2012; 122: 545–552.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rosenbaum M, Hirsch J, Murphy E, Leibel RL . Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. Am J Clin Nutr 2000; 71: 1421–1432.

    CAS  Article  PubMed  Google Scholar 

  19. Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest 2005; 115: 3579–3586.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Rosenbaum M, Murphy EM, Heymsfield SB, Matthews DE, Leibel RL . Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab 2002; 87: 2391–2394.

    CAS  Article  PubMed  Google Scholar 

  21. Collins WT, Capen CC, Kasza L, Carter C, Dailey RE . Effect of polychlorinated biphenyl (PCB) on the thyroid gland of rats. Ultrastructural and biochemical investigations. Am J Pathol 1977; 89: 119–136.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bastomsky CH . Goitres in rats fed polychlorinated biphenyls. Can J Physiol Pharmacol 1977; 55: 288–292.

    CAS  Article  PubMed  Google Scholar 

  23. Byrne JJ, Carbone JP, Hanson EA . Hypothyroidism and abnormalities in the kinetics of thyroid hormone metabolism in rats treated chronically with polychlorinated biphenyl and polybrominated biphenyl. Endocrinology 1987; 121: 520–527.

    CAS  Article  PubMed  Google Scholar 

  24. Hagmar L, Rylander L, Dyremark E, Klasson-Wehler E, Erfurth EM . Plasma concentrations of persistent organochlorines in relation to thyrotropin and thyroid hormone levels in women. Int Arch Occup Environ Health 2001; 74: 184–188.

    CAS  Article  PubMed  Google Scholar 

  25. Sala M, Sunyer J, Herrero C, To-Figueras J, Grimalt J . Association between serum concentrations of hexachlorobenzene and polychlorobiphenyls with thyroid hormone and liver enzymes in a sample of the general population. Occup Environ Med 2001; 58: 172–177.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Van Birgelen AP, Smit EA, Kampen IM, Groeneveld CN, Fase KM, Van der Kolk J et al. Subchronic effects of 2,3,7,8-TCDD or PCBs on thyroid hormone metabolism: use in risk assessment. Eur J Pharmacol 1995; 293: 77–85.

    CAS  Article  PubMed  Google Scholar 

  27. Barter RA, Klaassen CD . UDP-glucuronosyltransferase inducers reduce thyroid hormone levels in rats by an extrathyroidal mechanism. Toxicol Appl Pharmacol 1992; 113: 36–42.

    CAS  Article  PubMed  Google Scholar 

  28. Imbeault P, Tremblay A, Simoneau JA, Joanisse DR . Weight loss-induced rise in plasma pollutant is associated with reduced skeletal muscle oxidative capacity. Am J Physiol Endocrinol Metab 2002; 282: E574–E579.

    CAS  Article  PubMed  Google Scholar 

  29. Narasimhan TR, Kim HL, Safe SH . Effects of hydroxylated polychlorinated biphenyls on mouse liver mitochondrial oxidative phosphorylation. J Biochem Toxicol 1991; 6: 229–236.

    CAS  Article  PubMed  Google Scholar 

  30. Pardini RS . Polychlorinated biphenyls (PCB): effect on mitochondrial enzyme systems. Bull Environ Contam Toxicol 1971; 6: 539–545.

    CAS  Article  PubMed  Google Scholar 

  31. Pelletier C, Doucet E, Imbeault P, Tremblay A . Associations between weight loss-induced changes in plasma organochlorine concentrations, serum T(3) concentration, and resting metabolic rate. Toxicol Sci 2002; 67: 46–51.

    CAS  Article  PubMed  Google Scholar 

  32. Tremblay A, Pelletier C, Doucet E, Imbeault P . Thermogenesis and weight loss in obese individuals: a primary association with organochlorine pollution. Int J Obes Relat Metab Disord 2004; 28: 936–939.

    CAS  Article  PubMed  Google Scholar 

  33. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G et al. The response to long-term overfeeding in identical twins. N Engl J Med 1990; 322: 1477–1482.

    CAS  Article  PubMed  Google Scholar 

  34. Poehlman ET, Despres JP, Marcotte M, Tremblay A, Theriault G, Bouchard C . Genotype dependency of adaptation in adipose tissue metabolism after short-term overfeeding. Am J Physiol 1986a; 250: E480–E485.

    CAS  Article  PubMed  Google Scholar 

  35. Poehlman ET, Tremblay A, Fontaine E, Despres JP, Nadeau A, Dussault J et al. Genotype dependency of the thermic effect of a meal and associated hormonal changes following short-term overfeeding. Metabolism 1986b; 35: 30–36.

    CAS  Article  PubMed  Google Scholar 

  36. Bouchard C, Tremblay A, Despres JP, Theriault G, Nadeau A, Lupien PJ et al. The response to exercise with constant energy intake in identical twins. Obes Res 1994; 2: 400–410.

    CAS  Article  PubMed  Google Scholar 

  37. Tremblay A, Poehlman ET, Nadeau A, Dussault J, Bouchard C . Heredity and overfeeding-induced changes in submaximal exercise VO2. J Appl Physiol 1987; 62: 539–544.

    CAS  Article  PubMed  Google Scholar 

  38. Tremblay A, Poehlman ET, Despres JP, Theriault G, Danforth E, Bouchard C . Endurance training with constant energy intake in identical twins: changes over time in energy expenditure and related hormones. Metabolism 1997; 46: 499–503.

    CAS  Article  PubMed  Google Scholar 

  39. Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE et al. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 2006; 1761: 736–744.

    CAS  Article  PubMed  Google Scholar 

  40. Gnaiger E . Heat dissipation and energetic efficiency in animal anoxibiosis: economy contra power. J Exp Zoo 1983; 228: 471–490.

    CAS  Article  Google Scholar 

  41. Shi H, Dirienzo D, Zemel MB . Effects of dietary calcium on adipocyte lipid metabolism and body weight regulation in energy-restricted aP2-agouti transgenic mice. Faseb J 2001; 15: 291–293.

    CAS  Article  PubMed  Google Scholar 

  42. Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC . Regulation of adiposity by dietary calcium. Faseb J 2000; 14: 1132–1138.

    CAS  Article  PubMed  Google Scholar 

  43. Ping-Delfos WC, Soares M . Diet induced thermogenesis, fat oxidation and food intake following sequential meals: influence of calcium and vitamin D. Clin Nutr 2011; 30: 376–383.

    Article  PubMed  Google Scholar 

  44. St-Onge MP, Claps N, Heshka S, Heymsfield SB, Kosteli A . Greater resting energy expenditure and lower respiratory quotient after 1 week of supplementation with milk relative to supplementation with a sugar-only beverage in children. Metabolism 2007; 56: 1699–1707.

    CAS  Article  PubMed  Google Scholar 

  45. Major GC, Alarie FP, Dore J, Tremblay A . Calcium plus vitamin D supplementation and fat mass loss in female very low-calcium consumers: potential link with a calcium-specific appetite control. Br J Nutr 2009; 101: 659–663.

    CAS  Article  PubMed  Google Scholar 

  46. Teegarden D, White KM, Lyle RM, Zemel MB, Van Loan MD, Matkovic V et al. Calcium and dairy product modulation of lipid utilization and energy expenditure. Obesity (Silver Spring) 2008; 16: 1566–1572.

    CAS  Article  Google Scholar 

  47. Atkinson RL, Dhurandhar NV, Allison DB, Bowen RL, Israel BA, Albu JB et al. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes (Lond) 2005; 29: 281–286.

    CAS  Article  Google Scholar 

  48. Atkinson RL, Lee I, Shin HJ, He J . Human adenovirus-36 antibody status is associated with obesity in children. Int J Pediatr Obes 2010; 5: 157–160.

    Article  PubMed  Google Scholar 

  49. Chaput JP, Despres JP, Bouchard C, Tremblay A . The association between sleep duration and weight gain in adults: a 6-year prospective study from the Quebec Family Study. Sleep 2008; 31: 517–523.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chaput JP, Leblanc C, Perusse L, Despres JP, Bouchard C, Tremblay A . Risk factors for adult overweight and obesity in the Quebec Family Study: have we been barking up the wrong tree? Obesity (Silver Spring) 2009; 17: 1964–1970.

    Article  Google Scholar 

  51. Koban M, Swinson KL . Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue. Am J Physiol Endocrinol Metab 2005; 289: E68–E74.

    CAS  Article  PubMed  Google Scholar 

  52. Cirelli C, Tononi G . Uncoupling proteins and sleep deprivation. Arch Ital Biol 2004; 142: 541–549.

    CAS  PubMed  Google Scholar 

  53. Brondel L, Romer MA, Nougues PM, Touyarou P, Davenne D . Acute partial sleep deprivation increases food intake in healthy men. Am J Clin Nutr 2010; 91: 1550–1559.

    CAS  Article  PubMed  Google Scholar 

  54. Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD . Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med 2010; 153: 435–441.

    Article  PubMed  PubMed Central  Google Scholar 

  55. McGuire MT, Wing RR, Klem ML, Seagle HM, Hill JO . Long-term maintenance of weight loss: do people who lose weight through various weight loss methods use different behaviors to maintain their weight? Int J Obes 1998; 22: 572–577.

    CAS  Article  Google Scholar 

  56. Rosenbaum M, Leibel RL . Adaptive thermogenesis in humans. Int J Obes (Lond) 2010; 34: S47–S55.

    Article  Google Scholar 

  57. Doucet E, St-Pierre S, Alméras N, Després J-P, Bouchard C, Tremblay A . Evidence for the existence of adaptive thermogenesis during weight loss. Br J Nutr 2001; 85: 715–723.

    CAS  Article  PubMed  Google Scholar 

  58. Tremblay A, Chaput JP . Adaptive reduction in thermogenesis and resistance to lose fat in obese men. Br J Nutr 2009; 102: 488–492.

    CAS  Article  PubMed  Google Scholar 

  59. Doucet E, Cameron J . Appetite control after weight loss: what is the role of bloodborne peptides? Appl Physiol Nutr Metab 2007; 32: 523–532.

    CAS  Article  PubMed  Google Scholar 

  60. Doucet E, Pomerleau M, Harper ME . Fasting and postprandial total ghrelin remain unchanged after short-term energy restriction. J Clin Endocrinol Metab 2004; 89: 1727–1732.

    CAS  Article  PubMed  Google Scholar 

  61. Pasman WJ, Saris WH, Westerterp-Plantenga MS . Predictors of weight maintenance. Obes Res 1999; 7: 43–50.

    CAS  Article  PubMed  Google Scholar 

  62. McGuire MT, Wing RR, Klem ML, Lang W, Hill JO . What predicts weight regain in a group of successful weight losers? J Consult Clin Psychol 1999; 67: 177–185.

    CAS  Article  PubMed  Google Scholar 

  63. Gilbert JA, Drapeau V, Astrup A, Tremblay A . Relationship between diet-induced changes in body fat and appetite sensations in women. Appetite 2009; 52: 809–812.

    Article  PubMed  Google Scholar 

  64. Bray GA . Effect of caloric restriction on energy expenditure in obese patients. Lancet 1969; 2: 397–398.

    CAS  Article  PubMed  Google Scholar 

  65. Schwartz A, Doucet E . Relative changes in resting energy expenditure during weight loss: a systematic review. Obes Rev 2010; 11: 531–547.

    CAS  Article  PubMed  Google Scholar 

  66. Miller DS, Parsonage S . Resistance to slimming: adaptation or illusion? Lancet 1975; 1: 773–775.

    CAS  Article  PubMed  Google Scholar 

  67. Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WGH et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 1988; 318: 467–472.

    CAS  Article  PubMed  Google Scholar 

  68. Cameron JD, Goldfield GS, Cyr MJ, Doucet E . The effects of prolonged caloric restriction leading to weight-loss on food hedonics and reinforcement. Physiol Behav 2008; 94: 474–480.

    CAS  Article  PubMed  Google Scholar 

  69. Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL . The Biology of Human Starvation. The University of Minnesota Press: Minneapolis, 1950.

    Book  Google Scholar 

  70. Dulloo AG, Jacquet J . Adaptive reduction in basal metabolic rate in response to food deprivation in humans: a role for feedback signals from fat stores. Am J Clin Nutr 1998; 68: 599–606.

    CAS  Article  PubMed  Google Scholar 

  71. Astrup A, Gotzsche PC, van de Werken K, Ranneries C, Toubro S, Raben A et al. Meta-analysis of resting metabolic rate in formerly obese subjects. Am J Clin Nutr 1999; 69: 1117–1122.

    CAS  Article  PubMed  Google Scholar 

  72. Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL . Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr 2008a; 88: 906–912.

    CAS  PubMed  Google Scholar 

  73. Westerterp-Plantenga MS, Saris WH, Hukshorn CJ, Campfield LA . Effects of weekly administration of pegylated recombinant human OB protein on appetite profile and energy metabolism in obese men. Am J Clin Nutr 2001; 74: 426–434.

    CAS  Article  PubMed  Google Scholar 

  74. Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J . Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest 2008b; 118: 2583–2591.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

AT is partly funded by the Canada Research Chair in Environment and Energy Balance. JPC holds a Junior Research Chair in Healthy Active Living and Obesity Research. ED is a recipient of a CIHR/Merck-Frosst New Investigator Award, CFI/OIT New Opportunities Award and of an Early Researcher Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Tremblay.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tremblay, A., Royer, MM., Chaput, JP. et al. Adaptive thermogenesis can make a difference in the ability of obese individuals to lose body weight. Int J Obes 37, 759–764 (2013). https://doi.org/10.1038/ijo.2012.124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.124

Keywords

  • appetite
  • brown adipose tissue
  • energy expenditure
  • fat
  • metabolic rate
  • weight loss

Further reading

Search

Quick links