Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic influences in childhood obesity: recent progress and recommendations for experimental designs

Abstract

The increasing prevalence of pediatric obesity around the world has become an area of scientific interest because of public health concern. Although since early stages of the lifespan body weight might be heavily influenced by an individual's behavior, epidemiological research highlights the involvement of genetic influences contributing to variation in fat accumulation and thus body composition. Results from genome-wide association studies and candidate gene approaches have identified specific regions across the human genome influencing obesity-related phenotypes. Reviewing the scientific literature provides support to the belief that at the conceptual level scientists understand that genes and environments do not act independently, but rather synergistically, and that such interaction might be the responsible factor for differences within and among populations. However, there is still limited understanding of genetic and environmental factors influencing fat accumulation and deposition among different populations, which highlights the need for innovative experimental designs, improved body composition measures and appropriate statistical methodology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB . Years of life lost due to obesity. JAMA 2003; 289: 187–193.

    Article  PubMed  Google Scholar 

  2. Afghani A, Goran MI . Racial differences in the association of subcutaneous and visceral fat on bone mineral content in prepubertal children. Calcif Tissue Int 2006; 79: 383–388.

    CAS  Article  PubMed  Google Scholar 

  3. Gower BA, Nagy TR, Goran MI . Visceral fat, insulin sensitivity, and lipids in prepubertal children. Diabetes 1999; 48: 1515–1521.

    CAS  Article  PubMed  Google Scholar 

  4. Lee S, Kuk JL, Hannon TS, Arslanian SA . Race and gender differences in the relationships between anthropometrics and abdominal fat in youth. Obesity (Silver Spring) 2008; 16: 1066–1071.

    Article  Google Scholar 

  5. Bhardwaj S, Misra A, Khurana L, Gulati S, Shah P, Vikram NK . Childhood obesity in Asian Indians: a burgeoning cause of insulin resistance, diabetes and sub-clinical inflammation. Asia Pac J Clin Nutr 2008; 17 (Suppl 1): 172–175.

    PubMed  Google Scholar 

  6. Maes HH, Neale MC, Eaves LJ . Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 1997; 27: 325–351.

    CAS  Article  PubMed  Google Scholar 

  7. Stunkard AJ, Sorensen TI, Hanis C, Teasdale TW, Chakraborty R, Schull WJ et al. An adoption study of human obesity. N Engl J Med 1986; 314: 193–198.

    CAS  Article  PubMed  Google Scholar 

  8. Segal NL, Feng R, McGuire SA, Allison DB, Miller S . Genetic and environmental contributions to body mass index: comparative analysis of monozygotic twins, dizygotic twins and same-age unrelated siblings. Int J Obes (Lond) 2009; 33: 37–41.

    CAS  Article  Google Scholar 

  9. Haworth CM, Plomin R, Carnell S, Wardle J . Childhood obesity: genetic and environmental overlap with normal-range BMI. Obesity (Silver Spring) 2008; 16: 1585–1590.

    Article  Google Scholar 

  10. Stunkard AJ, Harris JR, Pedersen NL, McClearn GE . The body-mass index of twins who have been reared apart. N Engl J Med 1990; 322: 1483–1487.

    CAS  Article  PubMed  Google Scholar 

  11. Wardle J, Carnell S, Haworth CM, Plomin R . Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr 2008; 87: 398–404.

    CAS  Article  PubMed  Google Scholar 

  12. Selby JV, Newman B, Quesenberry Jr CP, Fabsitz RR, King MC, Meaney FJ . Evidence of genetic influence on central body fat in middle-aged twins. Hum Biol 1989; 61: 179–194.

    CAS  PubMed  Google Scholar 

  13. Katzmarzyk PT, Malina RM, Perusse L, Rice T, Province MA, Rao DC et al. Familial resemblance in fatness and fat distribution. Am J Hum Biol 2000; 12: 395–404.

    Article  PubMed  Google Scholar 

  14. Haworth CM, Carnell S, Meaburn EL, Davis OS, Plomin R, Wardle J . Increasing heritability of BMI and stronger associations with the FTO gene over childhood. Obesity (Silver Spring) 2008; 16: 2663–2668.

    Article  Google Scholar 

  15. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392: 398–401.

    CAS  Article  PubMed  Google Scholar 

  16. Vaisse C, Clement K, Guy-Grand B, Froguel P . A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998; 20: 113–114.

    CAS  Article  PubMed  Google Scholar 

  17. Cole SA, Butte NF, Voruganti VS, Cai G, Haack K, Kent Jr JW et al. Evidence that multiple genetic variants of MC4R play a functional role in the regulation of energy expenditure and appetite in Hispanic children. Am J Clin Nutr 2010; 91: 191–199.

    CAS  Article  PubMed  Google Scholar 

  18. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14: 529–644.

    Article  Google Scholar 

  19. Saunders CL, Chiodini BD, Sham P, Lewis CM, Abkevich V, Adeyemo AA et al. Meta-analysis of genome-wide linkage studies in BMI and obesity. Obesity (Silver Spring) 2007; 15: 2263–2275.

    Article  Google Scholar 

  20. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316: 889–894.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 2009; 41: 18–24.

    CAS  Article  PubMed  Google Scholar 

  22. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009; 41: 25–34.

    CAS  Article  PubMed  Google Scholar 

  23. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 2008; 40: 768–775.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Meyre D, Delplanque J, Chevre JC, Lecoeur C, Lobbens S, Gallina S et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 2009; 41: 157–159.

    CAS  Article  PubMed  Google Scholar 

  25. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010; 42: 937–948.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14: 529–644.

    Article  Google Scholar 

  27. Haworth CM, Butcher LM, Docherty SJ, Wardle J, Plomin R . No evidence for association between BMI and 10 candidate genes at ages 4, 7 and 10 in a large UK sample of twins. BMC Med Genet 2008; 9: 12.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Podolsky RH, Barbeau P, Kang HS, Zhu H, Treiber FA, Snieder H . Candidate genes and growth curves for adiposity in African- and European-American youth. Int J Obes (Lond) 2007; 31: 1491–1499.

    CAS  Article  Google Scholar 

  29. Stutzmann F, Cauchi S, Durand E, Calvacanti-Proença C, Pigeyre M, Hartikainen AL et al. Common genetic variation near MC4R is associated with eating behaviour patterns in European populations. Int J Obes (Lond) 2009; 33: 373–378.

    CAS  Article  Google Scholar 

  30. Shriver MD, Parra EJ, Dios S, Bonilla C, Norton H, Jovel C et al. Skin pigmentation, biogeographical ancestry and admixture mapping. Hum Genet 2003; 112: 387–399.

    PubMed  Google Scholar 

  31. Fernandez JR, Shriver MD, Beasley TM, Rafla-Demetrious N, Parra E, Albu J et al. Association of African genetic admixture with resting metabolic rate and obesity among women. Obes Res 2003; 11: 904–911.

    Article  PubMed  Google Scholar 

  32. Tang H, Jorgenson E, Gadde M, Kardia SL, Rao DC, Zhu X et al. Racial admixture and its impact on BMI and blood pressure in African and Mexican Americans. Hum Genet 2006; 119: 624–633.

    Article  PubMed  Google Scholar 

  33. Fernandez J, Willig A, Jones A, Shriver MD, Beasley TM, Albu J et al. Genetic admixture is associated with visceral adipose tissue in Puerto Rican women. Int J Body Compos Res 2006; 4: 137–143.

    Google Scholar 

  34. Bonilla C, Shriver MD, Parra EJ, Jones A, Fernandez JR . Ancestral proportions and their association with skin pigmentation and bone mineral density in Puerto Rican women from New York city. Hum Genet 2004; 115: 57–68.

    Article  PubMed  Google Scholar 

  35. Klimentidis YC, Miller GF, Shriver MD . The relationship between European genetic admixture and body composition among Hispanics and Native Americans. Am J Hum Biol 2009; 21: 377–382.

    CAS  Article  PubMed  Google Scholar 

  36. Parra EJ, Hoggart CJ, Bonilla C, Dios S, Norris JM, Marshall JA et al. Relation of type 2 diabetes to individual admixture and candidate gene polymorphisms in the Hispanic American population of San Luis Valley, Colorado. J Med Genet 2004; 41: e116.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Sweeney C, Wolff RK, Byers T, Baumgartner KB, Giuliano AR, Herrick JS et al. Genetic admixture among Hispanics and candidate gene polymorphisms: potential for confounding in a breast cancer study? Cancer Epidemiol Biomarkers Prev 2007; 16: 142–150.

    CAS  Article  PubMed  Google Scholar 

  38. Ziv E, John EM, Choudhry S, Kho J, Lorizio W, Perez-Stable EJ et al. Genetic ancestry and risk factors for breast cancer among Latinas in the San Francisco Bay Area. Cancer Epidemiol Biomarkers Prev 2006; 15: 1878–1885.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Williams RC, Long JC, Hanson RL, Sievers ML, Knowler WC . Individual estimates of European genetic admixture associated with lower body-mass index, plasma glucose, and prevalence of type 2 diabetes in Pima Indians. Am J Hum Genet 2000; 66: 527–538.

    CAS  Article  PubMed  Google Scholar 

  40. Reiner AP, Carlson CS, Ziv E, Iribarren C, Jaquish CE, Nickerson DA . Genetic ancestry, population sub-structure, and cardiovascular disease-related traits among African-American participants in the CARDIA Study. Hum Genet 2007; 121: 565–575.

    Article  PubMed  Google Scholar 

  41. Gonzalez BE, Borrell LN, Choudhry S, Naqvi M, Tsai HJ, Rodriguez-Santana JR et al. Latino populations: a unique opportunity for the study of race, genetics, and social environment in epidemiological research. Am J Public Health 2005; 95: 2161–2168.

    Article  Google Scholar 

  42. Halder I, Shriver MD . Measuring and using admixture to study the genetics of complex diseases. Hum Genomics 2003; 1: 52–62.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Paradies YC, Montoya MJ, Fullerton SM . Racialized genetics and the study of complex diseases: the thrifty genotype revisited. Perspect Biol Med 2007; 50: 203–227.

    CAS  Article  PubMed  Google Scholar 

  44. Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH . Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988-1994. Arch Pediatr Adolesc Med 2003; 157: 821–827.

    Article  PubMed  Google Scholar 

  45. Harris KM, Gordon-Larsen P, Chantala K, Udry JR . Longitudinal trends in race/ethnic disparities in leading health indicators from adolescence to young adulthood. Arch Pediatr Adolesc Med 2006; 160: 74–81.

    Article  PubMed  Google Scholar 

  46. Ogden CL, Carroll MD, Flegal KM . High body mass index for age among US children and adolescents, 2003-2006. JAMA 2008; 299: 2401–2405.

    CAS  Article  PubMed  Google Scholar 

  47. Carnell S, Wardle J . Appetitive traits in children. New evidence for associations with weight and a common, obesity-associated genetic variant. Appetite 2009; 53: 260–263.

    Article  PubMed  Google Scholar 

  48. Llewellyn CH, van Jaarsveld CH, Boniface D, Carnell S, Wardle J . Eating rate is a heritable phenotype related to weight in children. Am J Clin Nutr 2008; 88: 1560–1566.

    CAS  Article  PubMed  Google Scholar 

  49. Smith GP . Ontogeny of ingestive behavior. Dev Psychobiol 2006; 48: 345–359.

    CAS  Article  PubMed  Google Scholar 

  50. Lau FC, Bagchi M, Sen C, Roy S, Bagchi D . Nutrigenomic analysis of diet-gene interactions on functional supplements for weight management. Curr Genomics 2008; 9: 239–251.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Benzinou M, Chevre JC, Ward KJ, Lecoeur C, Dina C, Lobbens S et al. Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations. Hum Mol Genet 2008; 17: 1916–1921.

    CAS  Article  PubMed  Google Scholar 

  52. Wolfarth B, Bray MS, Hagberg JM, Pérusse L, Rauramaa R, Rivera MA et al. The human gene map for performance and health-related fitness phenotypes: the 2004 update. Med Sci Sports Exerc 2005; 37: 881–903.

    CAS  PubMed  Google Scholar 

  53. Kral JG, Biron S, Simard S, Hould FS, Lebel S, Marceau S et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 2006; 118: e1644–e1649.

    Article  PubMed  Google Scholar 

  54. Oken E, Gillman MW . Fetal origins of obesity. Obes Res 2003; 11: 496–506.

    Article  PubMed  Google Scholar 

  55. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008; 105: 17046–17049.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Vimaleswaran KS, Li S, Zhao JH, Luan J, Bingham SA, Khaw KT et al. Physical activity attenuates the body mass index-increasing influence of genetic variation in the FTO gene. Am J Clin Nutr 2009; 90: 425–428.

    CAS  Article  PubMed  Google Scholar 

  57. Chang YC, Liu PH, Lee WJ, Chang TJ, Jiang YD, Li HY et al. Common variation in the fat mass and obesity-associated (FTO) gene confers risk of obesity and modulates BMI in the Chinese population. Diabetes 2008; 57: 2245–2252.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Villalobos-Comparan M, Teresa Flores-Dorantes M, Teresa Villarreal-Molina M, Rodríguez-Cruz M, García-Ulloa AC, Robles L et al. The FTO gene is associated with adulthood obesity in the Mexican population. Obesity (Silver Spring) 2008; 16: 2296–2301.

    CAS  Article  Google Scholar 

  59. Al Attar SA, Pollex RL, Ban MR, Young TK, Bjerregaard P, Anand SS et al. Association between the FTO rs9939609 polymorphism and the metabolic syndrome in a non-Caucasian multi-ethnic sample. Cardiovasc Diabetol 2008; 7: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cha SW, Choi SM, Kim KS, Park BL, Kim JR, Kim JY et al. Replication of genetic effects of FTO polymorphisms on BMI in a Korean population. Obesity (Silver Spring) 2008; 16: 2187–2189.

    CAS  Article  Google Scholar 

  61. Ng MC, Park KS, Oh B, Tam CH, Cho YM, Shin HD et al. Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 2008; 57: 2226–2233.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Omori S, Tanaka Y, Takahashi A, Hirose H, Kashiwagi A, Kaku K et al. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 2008; 57: 791–795.

    CAS  Article  PubMed  Google Scholar 

  63. Tan JT, Dorajoo R, Seielstad M, Sim XL, Ong RT, Chia KS et al. FTO variants are associated with obesity in the Chinese and Malay populations in Singapore. Diabetes 2008; 57: 2851–2857.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Wing MR, Ziegler J, Langefeld CD, Ng MC, Haffner SM, Norris JM et al. Analysis of FTO gene variants with measures of obesity and glucose homeostasis in the IRAS Family Study. Hum Genet 2009; 125: 615–626.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hennig BJ, Fulford AJ, Sirugo G, Rayco-Solon P, Hattersley AT, Frayling TM et al. FTO gene variation and measures of body mass in an African population. BMC Med Genet 2009; 10: 21.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ohashi J, Naka I, Kimura R, Natsuhara K, Yamauchi T, Furusawa T et al. FTO polymorphisms in oceanic populations. J Hum Genet 2007; 52: 1031–1035.

    Article  PubMed  Google Scholar 

  67. Grant SF, Bradfield JP, Zhang H, Wang K, Kim CE, Annaiah K et al. Investigation of the locus near MC4R with childhood obesity in Americans of European and African ancestry. Obesity (Silver Spring) 2009; 17: 1461–1465.

    Google Scholar 

  68. Elks CE, Loos RJ, Sharp SJ, Langenberg C, Ring SM, Timpson NJ et al. Genetic markers of adult obesity risk are associated with greater early infancy weight gain and growth. PLoS Med 2010; 7: e1000284.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhao J, Bradfield JP, Li M, Wang K, Zhang H, Kim CE et al. The role of obesity-associated loci identified in genome-wide association studies in the determination of pediatric BMI. Obesity (Silver Spring) 2009; 17: 2254–2257.

    Article  Google Scholar 

  70. Bogardus C . Missing heritability and GWAS utility. Obesity (Silver Spring) 2009; 17: 209–210.

    Article  Google Scholar 

  71. Maher B . Personal genomes: the case of the missing heritability. Nature 2008; 456: 18–21.

    CAS  Article  PubMed  Google Scholar 

  72. Hofker M, Wijmenga C . A supersized list of obesity genes. Nat Genet 2009; 41: 139–140.

    CAS  Article  PubMed  Google Scholar 

  73. Ma S, Yang L, Romero R, Cui Y . Varying coefficient model for gene-environment interaction: a non-linear look. Bioinformatics 2011; 27: 2119–2126.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Mi X, Eskridge KM, George V, Wang D . Structural equation modeling of gene-environment interactions in coronary heart disease. Ann Hum Genet 2011; 75: 255–265.

    PubMed  Google Scholar 

  75. de los CG, Gianola D, Allison DB . Predicting genetic predisposition in humans: the promise of whole-genome markers. Nat Rev Genet 2010; 11: 880–886.

    Article  Google Scholar 

  76. Bansal V, Libiger O, Torkamani A, Schork NJ . Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 2010; 11: 773–785.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Walley AJ, Asher JE, Froguel P . The genetic contribution to non-syndromic human obesity. Nat Rev Genet 2009; 10: 431–442.

    CAS  Article  PubMed  Google Scholar 

  78. Hinney A, Nguyen TT, Scherag A, Friedel S, Brönner G, Müller TD et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS ONE 2007; 2: e1361.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Scherag A, Dina C, Hinney A, Vatin V, Scherag S, Vogel CI et al. Two new loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and german study groups. PLoS Genet 2010; 6: e1000916.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been funded in part by NIH Grants R01-DK067426 and T32HL007457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Fernandez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernandez, J., Klimentidis, Y., Dulin-Keita, A. et al. Genetic influences in childhood obesity: recent progress and recommendations for experimental designs. Int J Obes 36, 479–484 (2012). https://doi.org/10.1038/ijo.2011.236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.236

Keywords

  • childhood obesity
  • genes
  • admixture
  • statistics
  • body composition

Further reading

Search

Quick links