Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Visceral obesity modulates the impact of apolipoprotein C3 gene variants on liver fat content

Abstract

Objective:

It has not been solved whether subjects carrying the minor alleles of the −455T>C or −482C>T single nucleotide polymorphisms (SNPs) in the apolipoprotein-C3-gene (APOC3) have an increased risk for developing fatty liver and insulin resistance. We investigated the relationships of the SNPs with hepatic APOC3 expression and hypothesized that visceral obesity may modulate the effects of these SNPs on liver fat and insulin sensitivity (IS).

Methods:

APOC3 mRNA expression and triglyceride content were determined in liver biopsies from 50 subjects. In a separate group (N=330) liver fat was measured by 1H-magnetic resonance spectroscopy. IS was estimated during an oral glucose tolerance test (OGTT) and the euglycemic, hyperinsulinemic clamp (N=222).

Results:

APOC3 mRNA correlated positively with triglyceride content in liver biopsies (r=0.29, P=0.036). Carriers of the minor alleles (−455C and −482T) tended to have higher hepatic APOC3 mRNA expression (1.80 (0.45–3.56) vs 0.77 (0.40–1.64), P=0.09), but not higher triglyceride content (P=0.76). In 330 subjects the genotype did not correlate with liver fat (P=0.97) or IS (OGTT: P=0.41; clamp: P=0.99). However, a significant interaction of the genotype with waist circumference in determining liver fat was detected (P=0.02) in which minor allele carriers had higher liver fat only in the lowest tertile of waist circumference (P=0.01). In agreement, during a 9-month lifestyle intervention the minor allele carriers of the SNP −482C>T in the lowest tertile also had less decrease in liver fat (P=0.04).

Conclusions:

APOC3 mRNA expression is increased in fatty liver and is regulated by SNPs in APOC3. The impact of the APOC3 SNPs on fatty liver is small and depends on visceral obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Fabbrini E, Sullivan S, Klein S . Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 2010; 51: 679–689.

    Article  CAS  Google Scholar 

  2. Tilg H, Hotamisligil GS . Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology 2006; 131: 934–945.

    Article  CAS  Google Scholar 

  3. Roden M . Mechanisms of Disease: hepatic steatosis in type 2 diabetes—pathogenesis and clinical relevance. Nat Clin Pract Endocrinol Metab 2006; 2: 335–348.

    Article  CAS  Google Scholar 

  4. Stefan N, Kantartzis K, Haring HU . Causes and metabolic consequences of fatty liver. Endocr Rev 2008; 29: 939–960.

    Article  CAS  Google Scholar 

  5. Stepanova M, Rafiq N, Younossi ZM . Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease: a population-based study. Gut 2010; 59: 1410–1415.

    Article  Google Scholar 

  6. Targher G, Bertolini L, Poli F, Rodella S, Scala L, Tessari R et al. Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients. Diabetes 2005; 54: 3541–3546.

    Article  CAS  Google Scholar 

  7. Kotronen A, Yki-Jarvinen H . Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 2008; 28: 27–38.

    Article  CAS  Google Scholar 

  8. Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA 2009; 106: 15430–15435.

    Article  CAS  Google Scholar 

  9. Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med 2008; 168: 1609–1616.

    Article  Google Scholar 

  10. Angulo P . Nonalcoholic fatty liver disease. N Engl J Med 2002; 346: 1221–1231.

    Article  CAS  Google Scholar 

  11. Fassio E, Alvarez E, Dominguez N, Landeira G, Longo C . Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology 2004; 40: 820–826.

    PubMed  Google Scholar 

  12. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005; 129: 113–121.

    Article  Google Scholar 

  13. Stefan N, Schick F, Haring HU . Sex hormone-binding globulin and risk of type 2 diabetes. N Engl J Med 2009; 361: 2675–2676.

    Article  CAS  Google Scholar 

  14. Weikert C, Stefan N, Schulze MB, Pischon T, Berger K, Joost HG et al. Plasma fetuin-a levels and the risk of myocardial infarction and ischemic stroke. Circulation 2008; 118: 2555–2562.

    Article  CAS  Google Scholar 

  15. Kantartzis K, Machann J, Schick F, Fritsche A, Haring HU, Stefan N . The impact of liver fat vs visceral fat in determining categories of prediabetes. Diabetologia 2010; 53: 882–889.

    Article  CAS  Google Scholar 

  16. Harrison SA, Day CP . Benefits of lifestyle modification in NAFLD. Gut 2007; 56: 1760–1769.

    Article  CAS  Google Scholar 

  17. Kantartzis K, Thamer C, Peter A, Machann J, Schick F, Schraml C et al. High cardiorespiratory fitness is an independent predictor of the reduction in liver fat during a lifestyle intervention in non-alcoholic fatty liver disease. Gut 2009; 58: 1281–1288.

    Article  CAS  Google Scholar 

  18. Tilg H, Moschen A . Update on nonalcoholic fatty liver disease: genes involved in nonalcoholic fatty liver disease and associated inflammation. Curr Opin Clin Nutr Metab Care 2010; 13: 391–396.

    Article  CAS  Google Scholar 

  19. Dongiovanni P, Valenti L, Rametta R, Daly AK, Nobili V, Mozzi E et al. Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease. Gut 2010; 59: 267–273.

    Article  CAS  Google Scholar 

  20. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461–1465.

    Article  CAS  Google Scholar 

  21. Kantartzis K, Peter A, Machicao F, Machann J, Wagner S, Konigsrainer I et al. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes 2009; 58: 2616–2623.

    Article  CAS  Google Scholar 

  22. Kotronen A, Johansson LE, Johansson LM, Roos C, Westerbacka J, Hamsten A et al. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia 2009; 52: 1056–1060.

    Article  CAS  Google Scholar 

  23. Aalto-Setala K, Fisher EA, Chen X, Chajek-Shaul T, Hayek T, Zechner R et al. Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest 1992; 90: 1889–1900.

    Article  CAS  Google Scholar 

  24. de Silva HV, Lauer SJ, Wang J, Simonet WS, Weisgraber KH, Mahley RW et al. Overexpression of human apolipoprotein C-III in transgenic mice results in an accumulation of apolipoprotein B48 remnants that is corrected by excess apolipoprotein E. J Biol Chem 1994; 269: 2324–2335.

    CAS  PubMed  Google Scholar 

  25. Zheng C, Khoo C, Ikewaki K, Sacks FM . Rapid turnover of apolipoprotein C-III-containing triglyceride-rich lipoproteins contributing to the formation of LDL subfractions. J Lipid Res 2007; 48: 1190–1203.

    Article  CAS  Google Scholar 

  26. Olivieri O, Bassi A, Stranieri C, Trabetti E, Martinelli N, Pizzolo F et al. Apolipoprotein C-III, metabolic syndrome, and risk of coronary artery disease. J Lipid Res 2003; 44: 2374–2381.

    Article  CAS  Google Scholar 

  27. Li WW, Dammerman MM, Smith JD, Metzger S, Breslow JL, Leff T . Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J Clin Invest 1995; 96: 2601–2605.

    Article  CAS  Google Scholar 

  28. Olivieri O, Stranieri C, Bassi A, Zaia B, Girelli D, Pizzolo F et al. ApoC-III gene polymorphisms and risk of coronary artery disease. J Lipid Res 2002; 43: 1450–1457.

    Article  CAS  Google Scholar 

  29. Tilly P, Sass C, Vincent-Viry M, Aguillon D, Siest G, Visvikis S . Biological and genetic determinants of serum apoC-III concentration: reference limits from the Stanislas Cohort. J Lipid Res 2003; 44: 430–436.

    Article  CAS  Google Scholar 

  30. Ferns GA, Stocks J, Ritchie C, Galton DJ . Genetic polymorphisms of apolipoprotein C-III and insulin in survivors of myocardial infarction. Lancet 1985; 2: 300–303.

    Article  CAS  Google Scholar 

  31. Petersen KF, Dufour S, Hariri A, Nelson-Williams C, Foo JN, Zhang XM et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med 2010; 362: 1082–1089.

    Article  CAS  Google Scholar 

  32. Kozlitina J, Boerwinkle E, Cohen JC, Hobbs HH . Dissociation between APOC3 variants, hepatic triglyceride content and insulin resistance. Hepatology 2011; 53: 467–474.

    Article  CAS  Google Scholar 

  33. Diehl AM . Genetic susceptibility to hepatic steatosis. N Engl J Med 2010; 362: 1142–1143.

    Article  CAS  Google Scholar 

  34. Ruiz-Narvaez EA, Sacks FM, Campos H . Abdominal obesity and hyperglycemia mask the effect of a common APOC3 haplotype on the risk of myocardial infarction. Am J Clin Nutr 2008; 87: 1932–1938.

    Article  CAS  Google Scholar 

  35. Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F . Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol 2009; 51: 433–445.

    Article  Google Scholar 

  36. Matsuda M, DeFronzo RA . Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22: 1462–1470.

    Article  CAS  Google Scholar 

  37. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  38. Stefan N, Machicao F, Staiger H, Machann J, Schick F, Tschritter O et al. Polymorphisms in the gene encoding adiponectin receptor 1 are associated with insulin resistance and high liver fat. Diabetologia 2005; 48: 2282–2291.

    Article  CAS  Google Scholar 

  39. Stefan N, Fritsche A, Weikert C, Boeing H, Joost HG, Haring HU et al. Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes 2008; 57: 2762–2767.

    Article  CAS  Google Scholar 

  40. Stefan N, Hennige AM, Staiger H, Machann J, Schick F, Krober SM et al. Alpha2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 2006; 29: 853–857.

    Article  CAS  Google Scholar 

  41. Jong MC, Hofker MH, Havekes LM . Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 1999; 19: 472–484.

    Article  CAS  Google Scholar 

  42. Ito Y, Azrolan N, O’Connell A, Walsh A, Breslow JL . Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 1990; 249: 790–793.

    Article  CAS  Google Scholar 

  43. Maeda N, Li H, Lee D, Oliver P, Quarfordt SH, Osada J . Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem 1994; 269: 23610–23616.

    CAS  PubMed  Google Scholar 

  44. von Eckardstein A, Holz H, Sandkamp M, Weng W, Funke H, Assmann G . Apolipoprotein C-III(Lys58----Glu). Identification of an apolipoprotein C-III variant in a family with hyperalphalipoproteinemia. J Clin Invest 1991; 87: 1724–1731.

    Article  CAS  Google Scholar 

  45. Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 2008; 322: 1702–1705.

    Article  CAS  Google Scholar 

  46. Kawakami A, Aikawa M, Libby P, Alcaide P, Luscinskas FW, Sacks FM . Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation 2006; 113: 691–700.

    Article  CAS  Google Scholar 

  47. Kawakami A, Aikawa M, Nitta N, Yoshida M, Libby P, Sacks FM . Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation. Arterioscler Thromb Vasc Biol 2007; 27: 219–225.

    Article  CAS  Google Scholar 

  48. Altomonte J, Cong L, Harbaran S, Richter A, Xu J, Meseck M et al. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Invest 2004; 114: 1493–1503.

    Article  CAS  Google Scholar 

  49. van Hoek M, van Herpt TW, Dehghan A, Hofman A, Lieverse AG, van Duijn CM, Witteman JC, Sijbrands EJ . Association of an APOC3 promoter variant with type 2 diabetes risk and need for insulin treatment in lean persons. Diabetologia 2011; 54: 1360–1367.

    Article  CAS  Google Scholar 

  50. Kantartzis K, Machicao F, Machann J, Schick F, Fritsche A, Haring HU et al. The DGAT2 gene is a candidate for the dissociation between fatty liver and insulin resistance in humans. Clin Sci (Lond) 2009; 116: 531–537.

    Article  CAS  Google Scholar 

  51. Amaro A, Fabbrini E, Kars M, Yue P, Schechtman K, Schonfeld G et al. Dissociation between intrahepatic triglyceride content and insulin resistance in familial hypobetalipoproteinemia. Gastroenterology 2010; 139: 149–153.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants for their cooperation and Roman Werner, Melanie Weisser, Alke Guirguis and Mareike Walenta and the phenotyping team for their help in collecting the data. The study was supported by grants from the Deutsche Forschungsgemeinschaft (KFO 114 and a Heisenberg-Grant to NS, STE 1096/1-1), the European Community's FP6 EUGENE2 (LSHM-CT-2004-512013) and the German Federal Ministry of Education and Research (DLR01GI0925).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Stefan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peter, A., Kantartzis, K., Machicao, F. et al. Visceral obesity modulates the impact of apolipoprotein C3 gene variants on liver fat content. Int J Obes 36, 774–782 (2012). https://doi.org/10.1038/ijo.2011.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.154

Keywords

This article is cited by

Search

Quick links