Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat

Abstract

Objective:

To assess epicardial fat volume (EFV), myocardial TG content (MTGC) and metabolic profile in severely obese patients, and to determine whether ectopic fat depots are linked to metabolic disorders or myocardial function.

Research design and methods:

Sixty-three subjects with normal LV function and no coronary artery disease, including 33 lean (BMI: 21.4±2.0 kg m−2) and 30 obese (BMI: 41.8±6 kg m−2) patients, underwent 3-T cardiovascular MRI, and anthropometric, biological and visceral abdominal fat (VAT) assessments. EFV was measured by short-axis slice imaging and myocardial (intra-myocellular) TG content was measured by proton magnetic resonance spectroscopy.

Results:

EFV and MTGC were positively correlated (r=0.52, P<0.0001), and were both strongly correlated with age, BMI, waist circumference and VAT, but not with severity of obesity. EFV and MTGC were significantly higher in obese patients than in lean controls (141±18 versus 79±7 ml, P=0.0001; 1.0±0.1 versus 0.6±0.1%, P=0.01, respectively), but some differences were found between the two cardiac depots: EFV was higher in diabetic obese subjects as compared with that in non-diabetic obese subjects (213±34 versus 141±18 ml, P=0.03), and was correlated with parameters of glucose tolerance (fasting plasma glucose, insulin and HOMA-IR), whereas MTGC was not. EFV and MTGC were both associated with parameters of lipid profile or inflammation (TGs, CRP). Remarkably, this was VAT-dependent, as only VAT remained independently associated with metabolic parameters (P<0.01). Concerning myocardial function, MTGC was the only parameter independently associated with stroke volume (β=−0.38, P=0.01), suggesting an impact of cardiac steatosis in cardiac function.

Conclusions:

These data show that VAT dominates the relationship between EFV, MTGC and metabolic measures, and uncover specific partitioning of cardiac ectopic lipid deposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Despres JP, Lemieux I . Abdominal obesity and metabolic syndrome. Nature 2006; 444: 881–887.

    Article  CAS  Google Scholar 

  2. Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 2008; 28: 1039–1049.

    Article  CAS  Google Scholar 

  3. Shimabukuro M . Cardiac adiposity and global cardiometabolic risk: new concept and clinical implication. Circ J 2009; 73: 27–34.

    Article  Google Scholar 

  4. Iacobellis G, Willens HJ . Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr 2009; 22: 1311–1319; quiz 1417-1418.

    Article  Google Scholar 

  5. Karastergiou K, Evans I, Ogston N, Miheisi N, Nair D, Kaski JC et al. Epicardial adipokines in obesity and coronary artery disease induce atherogenic changes in monocytes and endothelial cells. Arterioscler Thromb Vasc Biol 2010; 30: 1340–1346.

    Article  CAS  Google Scholar 

  6. McGavock JM, Victor RG, Unger RH, Szczepaniak LS . Adiposity of the heart, revisited. Ann Intern Med 2006; 144: 517–524.

    Article  CAS  Google Scholar 

  7. Sacks HS, Fain JN . Human epicardial adipose tissue: a review. Am Heart J 2007; 153: 907–917.

    Article  CAS  Google Scholar 

  8. Dutour A, Achard V, Sell H, Naour N, Collart F, Gaborit B et al. Secretory type II phospholipase A2 is produced and secreted by epicardial adipose tissue and overexpressed in patients with coronary artery disease. J Clin Endocrinol Metab 2010; 95: 963–967.

    Article  CAS  Google Scholar 

  9. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003; 108: 2460–2466.

    Article  Google Scholar 

  10. Clement K, Basdevant A, Dutour A . Weight of pericardial fat on coronaropathy. Arterioscler Thromb Vasc Biol 2009; 29: 615–616.

    Article  CAS  Google Scholar 

  11. Gorter PM, de Vos AM, van der Graaf Y, Stella PR, Doevendans PA, Meijs MF et al. Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am J Cardiol 2008; 102: 380–385.

    Article  CAS  Google Scholar 

  12. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC et al. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29: 781–786.

    Article  CAS  Google Scholar 

  13. Iacobellis G, Willens HJ, Barbaro G, Sharma AM . Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity (Silver Spring) 2008; 16: 887–892.

    Article  Google Scholar 

  14. Konishi M, Sugiyama S, Sugamura K, Nozaki T, Ohba K, Matsubara J et al. Association of pericardial fat accumulation rather than abdominal obesity with coronary atherosclerotic plaque formation in patients with suspected coronary artery disease. Atherosclerosis 2010; 209: 573–578.

    Article  CAS  Google Scholar 

  15. Silaghi A, Piercecchi-Marti MD, Grino M, Leonetti G, Alessi MC, Clement K et al. Epicardial adipose tissue extent: relationship with age, body fat distribution, and coronaropathy. Obesity (Silver Spring) 2008; 16: 2424–2430.

    Article  Google Scholar 

  16. Wang TD, Lee WJ, Shih FY, Huang CH, Chang YC, Chen WJ et al. Relations of epicardial adipose tissue measured by multidetector computed tomography to components of the metabolic syndrome are region-specific and independent of anthropometric indexes and intraabdominal visceral fat. J Clin Endocrinol Metab 2009; 94: 662–669.

    Article  CAS  Google Scholar 

  17. Harmancey R, Wilson CR, Taegtmeyer H . Adaptation and maladaptation of the heart in obesity. Hypertension 2008; 52: 181–187.

    Article  CAS  Google Scholar 

  18. Sell H, Dietze-Schroeder D, Eckel J . The adipocyte–myocyte axis in insulin resistance. Trends Endocrinol Metab 2006; 17: 416–422.

    Article  CAS  Google Scholar 

  19. Szczepaniak LS, Victor RG, Orci L, Unger RH . Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res 2007; 101: 759–767.

    Article  CAS  Google Scholar 

  20. Wende AR, Abel ED . Lipotoxicity in the heart. Biochim Biophys Acta 2010; 1801: 311–319.

    Article  CAS  Google Scholar 

  21. Szendroedi J, Roden M . Mitochondrial fitness and insulin sensitivity in humans. Diabetologia 2008; 51: 2155–2167.

    Article  CAS  Google Scholar 

  22. Szendroedi J, Roden M . Ectopic lipids and organ function. Curr Opin Lipidol 2009; 20: 50–56.

    Article  CAS  Google Scholar 

  23. Zib I, Jacob AN, Lingvay I, Salinas K, McGavock JM, Raskin P et al. Effect of pioglitazone therapy on myocardial and hepatic steatosis in insulin-treated patients with type 2 diabetes. J Invest Med 2007; 55: 230–236.

    Article  CAS  Google Scholar 

  24. Fluchter S, Haghi D, Dinter D, Heberlein W, Kuhl HP, Neff W et al. Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging. Obesity (Silver Spring) 2007; 15: 870–878.

    Article  Google Scholar 

  25. Nelson AJ, Worthley MI, Psaltis PJ, Carbone A, Dundon BK, Duncan RF et al. Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume. J Cardiovasc Magn Reson 2009; 11: 15.

    Article  Google Scholar 

  26. Reingold JS, McGavock JM, Kaka S, Tillery T, Victor RG, Szczepaniak LS . Determination of triglyceride in the human myocardium by magnetic resonance spectroscopy: reproducibility and sensitivity of the method. Am J Physiol Endocrinol Metab 2005; 289: E935–E939.

    Article  CAS  Google Scholar 

  27. Hammer S, Snel M, Lamb HJ, Jazet IM, van der Meer RW, Pijl H et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol 2008; 52: 1006–1012.

    Article  CAS  Google Scholar 

  28. Hammer S, van der Meer RW, Lamb HJ, Schar M, de Roos A, Smit JW et al. Progressive caloric restriction induces dose-dependent changes in myocardial triglyceride content and diastolic function in healthy men. J Clin Endocrinol Metab 2008; 93: 497–503.

    Article  CAS  Google Scholar 

  29. van der Meer RW, Hammer S, Lamb HJ, Frolich M, Diamant M, Rijzewijk LJ et al. Effects of short-term high-fat, high-energy diet on hepatic and myocardial triglyceride content in healthy men. J Clin Endocrinol Metab 2008; 93: 2702–2708.

    Article  CAS  Google Scholar 

  30. van der Meer RW, Hammer S, Smit JW, Frolich M, Bax JJ, Diamant M et al. Short-term caloric restriction induces accumulation of myocardial triglycerides and decreases left ventricular diastolic function in healthy subjects. Diabetes 2007; 56: 2849–2853.

    Article  CAS  Google Scholar 

  31. Iozzo P, Lautamaki R, Borra R, Lehto HR, Bucci M, Viljanen A et al. Contribution of glucose tolerance and gender to cardiac adiposity. J Clin Endocrinol Metab 2009; 94: 4472–4482.

    Article  CAS  Google Scholar 

  32. Kankaanpaa M, Lehto HR, Parkka JP, Komu M, Viljanen A, Ferrannini E et al. Myocardial triglyceride content and epicardial fat mass in human obesity: relationship to left ventricular function and serum free fatty acid levels. J Clin Endocrinol Metab 2006; 91: 4689–4695.

    Article  CAS  Google Scholar 

  33. Ruberg FL, Chen Z, Hua N, Bigornia S, Guo Z, Hallock K et al. The relationship of ectopic lipid accumulation to cardiac and vascular function in obesity and metabolic syndrome. Obesity (Silver Spring) 2010; 18: 1116–1121.

    Article  CAS  Google Scholar 

  34. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG et al. Obesity and the risk of heart failure. N Engl J Med 2002; 347: 305–313.

    Article  Google Scholar 

  35. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  36. Papavassiliu T, Kuhl HP, Schroder M, Suselbeck T, Bondarenko O, Bohm CK et al. Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology 2005; 236: 57–64.

    Article  Google Scholar 

  37. Fox CS, Gona P, Hoffmann U, Porter SA, Salton CJ, Massaro JM et al. Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation 2009; 119: 1586–1591.

    Article  Google Scholar 

  38. Jonker JT, Lamb HJ, van der Meer RW, Rijzewijk LJ, Menting LJ, Diamant M et al. Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95: 456–460.

    Article  CAS  Google Scholar 

  39. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 2008; 117: 605–613.

    Article  Google Scholar 

  40. Wang CP, Hsu HL, Hung WC, Yu TH, Chen YH, Chiu CA et al. Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clin Endocrinol (Oxf) 2009; 70: 876–882.

    Article  Google Scholar 

  41. Clement K, Langin D . Regulation of inflammation-related genes in human adipose tissue. J Intern Med 2007; 262: 422–430.

    Article  CAS  Google Scholar 

  42. Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res 2003; 11: 304–310.

    Article  Google Scholar 

  43. Perseghin G, Ntali G, De Cobelli F, Lattuada G, Esposito A, Belloni E et al. Abnormal left ventricular energy metabolism in obese men with preserved systolic and diastolic functions is associated with insulin resistance. Diabetes Care 2007; 30: 1520–1526.

    Article  Google Scholar 

  44. Unger RH, Scherer PE . Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab 2010; 21: 345–352.

    Article  CAS  Google Scholar 

  45. Virtue S, Vidal-Puig A . Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochim Biophys Acta 2010; 1801: 338–349.

    Article  CAS  Google Scholar 

  46. Suganami T, Ogawa Y . Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 2010; 88: 33–39.

    Article  CAS  Google Scholar 

  47. Marchington JM, Pond CM . Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes 1990; 14: 1013–1022.

    CAS  PubMed  Google Scholar 

  48. Ouwens DM, Sell H, Greulich S, Eckel J . The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular disease. J Cell Mol Med 2010; 14: 2223–2234.

    Article  Google Scholar 

  49. Ouwens DM, Diamant M, Fodor M, Habets DD, Pelsers MM, El Hasnaoui M et al. Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 2007; 50: 1938–1948.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Frédéric Cohen and Kathia Chaumoitre of the Radiology department at Marseille University hospital for their technical assistance in performing the abdominal computed tomography scan, and Nathalie Lesavre of the Centre d'Investigation Clinique at Marseille North hospital for patients' inclusion. We thank Antonin Flavian for his second measurement of cardiac ectopic depots. We are indebted to Professor Simeoni of the Pediatric department at Marseille University hospital (la Timone) for assistance in healthy volunteers' recruitment. Finally we thank the nurses, the hematology technicians and all the staff of the Endocrinology department for invaluable support. This work was supported by grants from the Assistance-Publique-Hôpitaux-Marseille (Programme Hospitalier de Recherche Clinique). BG is supported by a grant from Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Gaborit.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaborit, B., Kober, F., Jacquier, A. et al. Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat. Int J Obes 36, 422–430 (2012). https://doi.org/10.1038/ijo.2011.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.117

Keywords

This article is cited by

Search

Quick links