Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Daidzein supplementation prevents non-alcoholic fatty liver disease through alternation of hepatic gene expression profiles and adipocyte metabolism

Abstract

Introduction:

Globally, non-alcoholic fatty liver disease (NAFLD) continues to rise and isoflavones exert antisteatotic effects by the regulation of hepatic lipogenesis/insulin resistance or adiposity/a variety of adipocytokines are related to hepatic steatosis. However, there is very little information regarding the potential effects of daidzein, the secondary abundant isoflavone, on NAFLD. Here, we have assessed the hepatic global transcription profiles, adipocytokines and adiposity in mice with high fat-induced NAFLD and their alteration by daidzein supplementation.

Methods:

C57BL/6J mice were fed with normal fat (16% fat of total energy), high fat (HF; 36% fat of total energy) and HF supplemented with daidzein (0.1, 0.5, 1 and 2 g per kg diet) for 12 weeks.

Results:

Daidzein supplementation (0.5 g per kg diet) reduced hepatic lipid concentrations and alleviated hepatic steatosis. The hepatic microarray showed that daidzein supplementation (1 g per kg diet) downregulated carbohydrate responsive element binding protein, a determinant of de novo lipogenesis, its upstream gene liver X receptor β and its target genes encoding for lipogenic enzymes, thereby preventing hepatic steatosis and insulin resistance. These results were confirmed by lower insulin and blood glucose levels as well as homeostasis model assessment insulin resistance scores. In addition, daidzein supplementation inhibited adiposity by the upregulation of genes involved in fatty acid β-oxidation and the antiadipogeneis, and moreover augmented antisteatohepatitic leptin and adiponectin mRNA levels, whereas it reduced the mRNA or concentration of steatotic tumor necrosis factor α and ghrelin.

Conclusions:

These findings show that daidzein might alleviate NAFLD through the direct regulation of hepatic de novo lipogenesis and insulin signaling, and the indirect control of adiposity and adipocytokines by the alteration of adipocyte metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005; 129: 113–121.

    Article  PubMed  Google Scholar 

  2. Franzese A, Vajro P, Argenziano A, Puzziello A, Iannucci MP, Saviano MC et al. Liver involvement in obese children. Ultrasonography and liver enzyme levels at diagnosis and during follow-up in an Italian population. Dig Dis Sci 1997; 42: 1428–1432.

    Article  CAS  PubMed  Google Scholar 

  3. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001; 120: 1183–1192.

    Article  CAS  PubMed  Google Scholar 

  4. Targher G, Bertolini L, Scala L, Zoppini G, Zenari L, Falezza G . Non-alcoholic hepatic steatosis and its relation to increased plasma biomarkers of inflammation and endothelial dysfunction in non-diabetic men. Role of visceral adipose tissue. Diabet Med 2005; 22: 1354–1358.

    Article  CAS  PubMed  Google Scholar 

  5. Ikejima K, Okumura K, Kon K, Takei Y, Sato N . Role of adipocytokines in hepatic fibrogenesis. J Gastroenterol Hepatol 2007; 22 (Suppl 1): S87–S92.

    Article  CAS  PubMed  Google Scholar 

  6. Uyeda K, Yamashita H, Kawaguchi T . Carbohydrate responsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage. Biochem Pharmacol 2002; 63: 2075–2080.

    Article  CAS  PubMed  Google Scholar 

  7. Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck JR et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 2006; 55: 2159–2170.

    Article  CAS  PubMed  Google Scholar 

  8. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang HH, Halbleib M, Ahmad F, Manganiello VC, Greenberg AS . Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 2002; 51: 2929–2935.

    Article  CAS  PubMed  Google Scholar 

  10. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005; 11: 183–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee YM, Choi JS, Kim MH, Jung MH, Lee YS, Song J . Effects of dietary genistein on hepatic lipid metabolism and mitochondrial function in mice fed high-fat diets. Nutrition 2006; 22: 956–964.

    Article  CAS  PubMed  Google Scholar 

  12. Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Lowik CW . Peroxisome proliferator-activated receptor gamma (PPARgamma) as a molecular target for the soy phytoestrogen genistein. J Biol Chem 2003; 278: 962–967.

    Article  CAS  PubMed  Google Scholar 

  13. Naaz A, Yellayi S, Zakroczymski MA, Bunick D, Doerge DR, Lubahn DB et al. The soy isoflavone genistein decreases adipose deposition in mice. Endocrinology 2003; 144: 3315–3320.

    Article  CAS  PubMed  Google Scholar 

  14. Shutt D, Braden A . The significance of equol in relation to the oestrogenic responses in sheep ingesting clover with a high formononetin content. Aust J Agric Res 1968; 19: 545–553.

    Article  CAS  Google Scholar 

  15. Arora A, Nair MG, Strasburg GM . Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch Biochem Biophys 1998; 356: 133–141.

    Article  CAS  PubMed  Google Scholar 

  16. Reeves PG, Nielsen FH, Fahey Jr GC . AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993; 123: 1939–1951.

    Article  CAS  PubMed  Google Scholar 

  17. Frings CS, Fendley TW, Dunn RT, Queen CA . Improved determination of total serum lipids by the sulfo-phospho-vanillin reaction. Clin Chem 1972; 18: 673–674.

    CAS  PubMed  Google Scholar 

  18. Bligh EG, Dyer WJ . A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911–917.

    Article  CAS  PubMed  Google Scholar 

  19. Ashwell M, Priest P, Bondoux M, Sowter C, McPherson CK . Human fat cell sizing--a quick, simple method. J Lipid Res 1976; 17: 190–192.

    CAS  PubMed  Google Scholar 

  20. Bolstad BM, Irizarry RA, Astrand M, Speed TP . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    Article  CAS  PubMed  Google Scholar 

  21. Jain N, Thatte J, Braciale T, Ley K, O’Connell M, Lee JK . Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 2003; 19: 1945–1951.

    Article  CAS  PubMed  Google Scholar 

  22. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  PubMed  Google Scholar 

  23. Thomas BF, Zeisel SH, Busby MG, Hill JM, Mitchell RA, Scheffler NM et al. Quantitative analysis of the principle soy isoflavones genistein, daidzein and glycitein, and their primary conjugated metabolites in human plasma and urine using reversed-phase high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl 2001; 760: 191–205.

    Article  CAS  PubMed  Google Scholar 

  24. Chen G, Liang G, Ou J, Goldstein JL, Brown MS . Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci USA 2004; 101: 11245–11250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K . Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci USA 2001; 98: 13710–13715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck J et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob. Mice Diabetes 2006; 55: 2159–2170.

    Article  CAS  PubMed  Google Scholar 

  27. Chen HW, Yang JJ, Tsai CW, Wu JJ, Sheen LY, Ou CC et al. Dietary fat and garlic oil independently regulate hepatic cytochrome p(450) 2B1 and the placental form of glutathione S-transferase expression in rats. J Nutr 2001; 131: 1438–1443.

    Article  CAS  PubMed  Google Scholar 

  28. Masaki T, Chiba S, Tatsukawa H, Yasuda T, Noguchi H, Seike M et al. Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology 2004; 40: 177–184.

    Article  CAS  PubMed  Google Scholar 

  29. Adlercreutz H, Markkanen H, Watanabe S . Plasma concentrations of phyto-oestrogens in Japanese men. Lancet 1993; 342: 1209–1210.

    Article  CAS  PubMed  Google Scholar 

  30. King RA, Bursill DB . Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am J Clin Nutr 1998; 67: 867–872.

    Article  CAS  PubMed  Google Scholar 

  31. Setchell KD, Zimmer-Nechemias L, Cai J, Heubi JE . Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet 1997; 350: 23–27.

    Article  CAS  PubMed  Google Scholar 

  32. Carmiel-Haggai M, Cederbaum AI, Nieto N . A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. Faseb J 2005; 19: 136–138.

    Article  CAS  PubMed  Google Scholar 

  33. Foufelle F, Ferre P . New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 2002; 366: 377–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS . Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem 2002; 277: 9520–9528.

    Article  CAS  PubMed  Google Scholar 

  35. Denechaud PD, Dentin R, Girard J, Postic C . Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Lett 2008; 582: 68–73.

    Article  CAS  PubMed  Google Scholar 

  36. Cha JY, Repa JJ . The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem 2007; 282: 743–751.

    Article  CAS  PubMed  Google Scholar 

  37. Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K . Mechanism for fatty acid ‘sparing’ effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 2002; 277: 3829–3835.

    Article  CAS  PubMed  Google Scholar 

  38. Burke SJ, Collier JJ, Scott DK . cAMP opposes the glucose-mediated induction of the L-PK gene by preventing the recruitment of a complex containing ChREBP, HNF4alpha, and CBP. FASEB J 2009; 23: 2855–2865.

    Article  CAS  PubMed  Google Scholar 

  39. Saltiel AR, Kahn CR . Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799–806.

    Article  CAS  PubMed  Google Scholar 

  40. Lee YH, Giraud J, Davis RJ, White MF . c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 2003; 278: 2896–2902.

    Article  CAS  PubMed  Google Scholar 

  41. Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 2002; 277: 48115–48121.

    Article  CAS  PubMed  Google Scholar 

  42. Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 1998; 273: 5678–5684.

    Article  CAS  PubMed  Google Scholar 

  43. Hansmannel F, Clemencet MC, Le Jossic-Corcos C, Osumi T, Latruffe N, Nicolas-Frances V . Functional characterization of a peroxisome proliferator response-element located in the intron 3 of rat peroxisomal thiolase B gene. Biochem Biophys Res Commun 2003; 311: 149–155.

    Article  CAS  PubMed  Google Scholar 

  44. Louet JF, Chatelain F, Decaux JF, Park EA, Kohl C, Pineau T et al. Long-chain fatty acids regulate liver carnitine palmitoyltransferase I gene (L-CPT I) expression through a peroxisome-proliferator-activated receptor alpha (PPARalpha)-independent pathway. Biochem J 2001; 354: 189–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reddy JK, Hashimoto T . Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr 2001; 21: 193–230.

    Article  CAS  PubMed  Google Scholar 

  46. Schoonjans K, Watanabe M, Suzuki H, Mahfoudi A, Krey G, Wahli W et al. Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. J Biol Chem 1995; 270: 19269–19276.

    Article  CAS  PubMed  Google Scholar 

  47. Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S . The mouse peroxisome proliferator activated receptor recognizes a response element in the 5′ flanking sequence of the rat acyl CoA oxidase gene. Embo J 1992; 11: 433–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim S, Sohn I, Lee YS, Lee YS . Hepatic gene expression profiles are altered by genistein supplementation in mice with diet-induced obesity. J Nutr 2005; 135: 33–41.

    Article  CAS  PubMed  Google Scholar 

  49. Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ . The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 2003; 112: 91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kamada Y, Tamura S, Kiso S, Matsumoto H, Saji Y, Yoshida Y et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 2003; 125: 1796–1807.

    Article  CAS  PubMed  Google Scholar 

  51. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  52. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000; 102: 1296–1301.

    Article  CAS  PubMed  Google Scholar 

  53. Huang W, Dedousis N, Bandi A, Lopaschuk GD, O’Doherty RM . Liver triglyceride secretion and lipid oxidative metabolism are rapidly altered by leptin in vivo. Endocrinology 2006; 147: 1480–1487.

    Article  CAS  PubMed  Google Scholar 

  54. Gallardo N, Bonzon-Kulichenko E, Fernandez-Agullo T, Molto E, Gomez-Alonso S, Blanco P et al. Tissue-specific effects of central leptin on the expression of genes involved in lipid metabolism in liver and white adipose tissue. Endocrinology 2007; 148: 5604–5610.

    Article  CAS  PubMed  Google Scholar 

  55. Guebre-Xabier M, Yang S, Lin HZ, Schwenk R, Krzych U, Diehl AM . Altered hepatic lymphocyte subpopulations in obesity-related murine fatty livers: potential mechanism for sensitization to liver damage. Hepatology 2000; 31: 633–640.

    Article  CAS  PubMed  Google Scholar 

  56. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL et al. Inhibition of adipogenesis by Wnt signaling. Science 2000; 289: 950–953.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao J, Yue W, Zhu MJ, Sreejayan N, Du M . AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of beta-catenin at Ser 552. Biochem Biophys Res Commun 2010; 395: 146–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Broglio F, Arvat E, Benso A, Gottero C, Muccioli G, Papotti M et al. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab 2001; 86: 5083–5086.

    Article  CAS  PubMed  Google Scholar 

  59. Egido EM, Rodriguez-Gallardo J, Silvestre RA, Marco J . Inhibitory effect of ghrelin on insulin and pancreatic somatostatin secretion. Eur J Endocrinol 2002; 146: 241–244.

    Article  CAS  PubMed  Google Scholar 

  60. Choi I, Kim Y, Park Y, Seog H, Choi H . Anti-obesity activities of fermented soygerm isoflavones by Bifidobacterium breve. Biofactors 2007; 29: 105–112.

    Article  CAS  PubMed  Google Scholar 

  61. Mills E, Kuhn CM, Feinglos MN, Surwit R . Hypertension in CB57BL/6J mouse model of non-insulin-dependent diabetes mellitus. Am J Physiol 1993; 264: R73–R78.

    CAS  PubMed  Google Scholar 

  62. Surwit RS, Feinglos MN, Rodin J, Sutherland A, Petro AE, Opara EC et al. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 1995; 44: 645–651.

    Article  CAS  PubMed  Google Scholar 

  63. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN . Diet-induced type II diabetes in C57BL/6J mice. Diabetes 1988; 37: 1163–1167.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST, No. 2010-0020265) and by the Research Fund from the Research Institute of Human Ecology of Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K-S Kang or Y-S Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MH., Park, JS., Jung, JW. et al. Daidzein supplementation prevents non-alcoholic fatty liver disease through alternation of hepatic gene expression profiles and adipocyte metabolism. Int J Obes 35, 1019–1030 (2011). https://doi.org/10.1038/ijo.2010.256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.256

Keywords

This article is cited by

Search

Quick links