Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Peripheral satiety signals: view from the Chair

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Mayer J . Regulation of energy intake and the body weight: the glucostatic theory and the lipostatic hypothesis. Ann N Y Acad Sci 1955; 63: 15–43.

    Article  CAS  Google Scholar 

  2. Gao Q, Horvath TL . Neuronal control of energy homeostasis. FEBS Lett 2008; 582: 132–141.

    Article  CAS  Google Scholar 

  3. Woods SC, Seeley RJ . Insulin as an adiposity signal. Int J Obes Relat Metab Disord 2001; 25 (Suppl 5): S35–S38.

    Article  CAS  Google Scholar 

  4. Friedman JM . The function of leptin in nutrition, weight, and physiology. Nutr Rev 2002; 60: S1–S14.

    Article  Google Scholar 

  5. Seeley RJ, York DA . Fuel sensing and the central nervous system (CNS): implications for the regulation of energy balance and the treatment for obesity. Obes Rev 2005; 6: 259–265.

    Article  CAS  Google Scholar 

  6. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 2007; 449: 228–232.

    Article  CAS  Google Scholar 

  7. Gibbs J, Young RC, Smith GP . Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 1973; 84: 488–495.

    Article  CAS  Google Scholar 

  8. Murphy KG, Bloom SR . Gut hormones and the regulation of energy homeostasis. Nature 2006; 444: 854–859.

    Article  CAS  Google Scholar 

  9. Wren AM, Bloom SR . Gut hormones and appetite control. Gastroenterology 2007; 132: 2116–2130.

    Article  CAS  Google Scholar 

  10. Rodriguez de Fonseca F, Navarro M, Gomez R, Escuredo L, Nava F, Fu J et al. An anorexic lipid mediator regulated by feeding. Nature 2001; 414: 209–212.

    Article  CAS  Google Scholar 

  11. Moran TH . Gut peptides in the control of food intake. Int J Obes 2009; 33 (Suppl 1): S7–S10.

    Article  CAS  Google Scholar 

  12. Grill HJ, Hayes MR . The nucleus tractus solitarius: a portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake. Int J Obes 2009; 33 (Suppl 1): S11–S15.

    Article  CAS  Google Scholar 

  13. Hoyda T, Smith PM, Ferguson AV . Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs. Int J Obes 2009; 33 (Suppl 1): S16–S21.

    Article  CAS  Google Scholar 

  14. Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM et al. Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J 2004; 18: 439–456.

    Article  CAS  Google Scholar 

  15. Cummings DE . Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol Behav 2006; 89: 71–84.

    Article  CAS  Google Scholar 

  16. Asakawa A, Inui A, Kaga T, Katsuura G, Fujimiya M, Fujino MA et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut 2003; 52: 947–952.

    Article  CAS  Google Scholar 

  17. Esler WP, Rudolph J, Claus TH, Tang W, Barucci N, Brown SE et al. Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss. Endocrinology 2007; 148: 5175–5185.

    Article  CAS  Google Scholar 

  18. Di Marzo V, Matias I . Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005; 8: 585–589.

    Article  CAS  Google Scholar 

  19. Gomez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del A et al. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 2002; 22: 9612–9617.

    Article  CAS  Google Scholar 

  20. Kirkham TC, Williams CM, Fezza F, Di Marzo V . Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 2002; 136: 550–557.

    Article  CAS  Google Scholar 

  21. Schwartz GJ . Integrative capacity of the caudal brainstem in the control of food intake. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1275–1280.

    Article  CAS  Google Scholar 

  22. Burdyga G, Lal S, Varro A, Dimaline R, Thompson DG, Dockray GJ . Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J Neurosci 2004; 24: 2708–2715.

    Article  CAS  Google Scholar 

  23. Burdyga G, Varro A, Dimaline R, Thompson DG, Dockray GJ . Ghrelin receptors in rat and human nodose ganglia: putative role in regulating CB-1 and MCH receptor abundance. Am J Physiol Gastrointest Liver Physiol 2006; 290: G1289–G1297.

    Article  CAS  Google Scholar 

  24. Grill HJ, Kaplan JM . The neuroanatomical axis for control of energy balance. Front Neuroendocrinol 2002; 23: 2–40.

    Article  CAS  Google Scholar 

  25. Berthoud HR . Interactions between the ‘cognitive’ and ‘metabolic’ brain in the control of food intake. Physiol Behav 2007; 91: 486–498.

    Article  CAS  Google Scholar 

  26. Berthoud HR, Sutton GM, Townsend RL, Patterson LM, Zheng H . Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size. Physiol Behav 2006; 89: 517–524.

    Article  CAS  Google Scholar 

  27. Cottrell GT, Ferguson AV . Sensory circumventricular organs: central roles in integrated autonomic regulation. Regul Pept 2004; 117: 11–23.

    Article  CAS  Google Scholar 

  28. Timofeeva E, Baraboi ED, Richard D . Contribution of the vagus nerve and lamina terminalis to brain activation induced by refeeding. Eur J Neurosci 2005; 22: 1489–1501.

    Article  Google Scholar 

  29. Ritter RC, Edwards GL . Area postrema lesions cause overconsumption of palatable foods but not calories. Physiol Behav 1984; 32: 923–927.

    Article  CAS  Google Scholar 

  30. Hyde TM, Miselis RR . Effects of area postrema/caudal medial nucleus of solitary tract lesions on food intake and body weight. Am J Physiol 1983; 244: R577–R587.

    CAS  Google Scholar 

  31. Miselis RR, Hyde TM, Shapiro RE . Area postrema and adjacent solitary nucleus in water and energy balance. Fed Proc 1984; 43: 2969–2971.

    CAS  Google Scholar 

  32. Lutz TA, Senn M, Althaus J, Del PE, Ehrensperger F, Scharrer E . Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides 1998; 19: 309–317.

    Article  CAS  Google Scholar 

  33. Edwards GL, Ladenheim EE, Ritter RC . Dorsomedial hindbrain participation in cholecystokinin-induced satiety. Am J Physiol 1986; 251: R971–R977.

    CAS  Google Scholar 

Download references

Acknowledgements

I thank Adam Chambers for valuable comments on the manuscript. KA Sharkey is an Alberta Heritage Foundation for Medical Research Medical Scientist and the Crohn's and Colitis Foundation of Canada Chair in Inflammatory Bowel Disease Research at the University of Calgary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K A Sharkey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharkey, K. Peripheral satiety signals: view from the Chair. Int J Obes 33 (Suppl 1), S3–S6 (2009). https://doi.org/10.1038/ijo.2009.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.8

Search

Quick links