Abstract
The current epidemic of childhood obesity will be a serious threat to population health for at least the next several decades. The biology of childhood obesity was the theme of an international symposium held in November 2007. Speakers discussed monogenic causes of obesity, prenatal epigenetic programing, neurobehavioral aspects of obesity, and hormonal and neuroendocrine abnormalities, and the insights provided by non-murine models for understanding the biology of early-onset obesity. Several new developments have been reported in white and brown adipose tissue biology. They are summarized briefly in this review and include observations about cell lineage of adipocytes, the renewal of adipocytes throughout life and the numerous factors that influence adipocyte fatty acid release. The biological underpinnings of childhood obesity are multiple and complex.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Comprehensive evaluation of the metabolic effects of porcine CRTC3 overexpression on subcutaneous adipocytes with metabolomic and transcriptomic analyses
Journal of Animal Science and Biotechnology Open Access 03 March 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Baker JL, Olsen LW, Sorensen TI . Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med 2007; 357: 2329–2337.
Bibbins-Domingo K, Coxson P, Pletcher MJ, Lightwood J, Goldman L . Adolescent overweight and future adult coronary heart disease. N Engl J Med 2007; 357: 2371–2379.
Ludwig DS . Childhood obesity—the shape of things to come. N Engl J Med 2007; 357: 2325–2327.
Bartness TJ, Song CK . Thematic review series: adipocyte biology. Sympathetic and sensory innervation of white adipose tissue. J Lipid Res 2007; 48: 1655–1672.
Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46: 2347–2355.
Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 2008; 28: 1039–1049.
Rebrin K, Steil GM, Mittelman SD, Bergman RN . Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest 1996; 98: 741–749.
Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O et al. Dynamics of fat cell turnover in humans. Nature 2008; 453: 783–787.
Tontonoz P, Spiegelman BM . Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 2008; 77: 289–312.
Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101: 1354–1361.
Nedergaard J, Bengtsson T, Cannon B . Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293: E444–E452.
Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454: 961–967.
Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S . Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 2000; 279: C670–C681.
Arango NA, Szotek PP, Manganaro TF, Oliva E, Donahoe PK, Teixeira J . Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol 2005; 288: 276–283.
Gregor MF, Hotamisligil GS . Thematic review series: adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 2007; 48: 1905–1914.
Hotamisligil GS . Inflammation and metabolic disorders. Nature 2006; 444: 860–867.
Smith SR, Wilson PW . Free fatty acids and atherosclerosis—guilty or innocent? J Clin Endocrinol Metab 2006; 91: 2506–2508.
Pilz S, Scharnagl H, Tiran B, Seelhorst U, Wellnitz B, Boehm BO et al. Free fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease. J Clin Endocrinol Metab 2006; 91: 2542–2547.
Prentki M, Madiraju SR . Glycerolipid metabolism and signaling in health and disease. Endocr Rev 2008; 29: 647–676.
Wymann MP, Schneiter R . Lipid signalling in disease. Nat Rev Mol Cell Biol 2008; 9: 162–176.
Wang S, Soni KG, Semache M, Casavant S, Fortier M, Pan L et al. Lipolysis and the integrated physiology of lipid energy metabolism. Mol Genet Metab 2008; 95: 117–126.
Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Ryden M et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 2005; 54: 3190–3197.
Ryden M, Agustsson T, Laurencikiene J, Britton T, Sjolin E, Isaksson B et al. Lipolysis—not inflammation, cell death, or lipogenesis—is involved in adipose tissue loss in cancer cachexia. Cancer 2008; 113: 1695–1704.
Slee DH, Bhat AS, Nguyen TN, Kish M, Lundeen K, Newman MJ et al. Pyrrolopyrazinedione-based inhibitors of human hormone-sensitive lipase. J Med Chem 2003; 46: 1120–1122.
de Jong JC, Sorensen LG, Tornqvist H, Jacobsen P . Carbazates as potent inhibitors of hormone-sensitive lipase. Bioorg Med Chem Lett 2004; 14: 1741–1744.
Claus TH, Lowe DB, Liang Y, Salhanick AI, Lubeski CK, Yang L et al. Specific inhibition of hormone-sensitive lipase improves lipid profile while reducing plasma glucose. J Pharmacol Exp Ther 2005; 315: 1396–1402.
Fukao T, Lopaschuk GD, Mitchell GA . Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 2004; 70: 243–251.
Holm C, Osterlund T, Laurell H, Contreras JA . Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 2000; 20: 365–393.
Egan JJ, Greenberg AS, Chang MK, Wek SA, Moos Jr MC, Londos C . Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci USA 1992; 89: 8537–8541.
Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 2002; 277: 4806–4815.
Park SY, Kim HJ, Wang S, Higashimori T, Dong J, Kim YJ et al. Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. Am J Physiol Endocrinol Metab 2005; 289: E30–E39.
Kraemer FB, Shen WJ . Hormone-sensitive lipase knockouts. Nutr Metab (Lond) 2006; 3: 12.
Fortier M, Wang SP, Mauriege P, Semache M, Mfuma L, Li H et al. Hormone-sensitive lipase-independent adipocyte lipolysis during beta-adrenergic stimulation, fasting, and dietary fat loading. Am J Physiol Endocrinol Metab 2004; 287: E282–E288.
Jimenez M, Leger B, Canola K, Lehr L, Arboit P, Seydoux J et al. Beta(1)/beta(2)/beta(3)-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett 2002; 530: 37–40.
Kraemer FB, Shen WJ . Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res 2002; 43: 1585–1594.
Strom K, Hansson O, Lucas S, Nevsten P, Fernandez C, Klint C et al. Attainment of brown adipocyte features in white adipocytes of hormone-sensitive lipase null mice. PLoS ONE 2008; 3: e1793.
Mulder H, Holst LS, Svensson H, Degerman E, Sundler F, Ahrén B et al. Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active in beta-cells. Diabetes 1999; 48: 228–232.
Chung S, Wang SP, Pan L, Mitchell GA, Trasler J, Hermo L . Infertility and testicular defects in hormone-sensitive lipase-deficient mice. Endocrinology 2001; 142: 4272–4281.
Li H, Brochu M, Wang SP, Rochdi L, Côté M, Mitchell G et al. Hormone-sensitive lipase deficiency in mice causes lipid storage in the adrenal cortex and impaired corticosterone response to corticotropin stimulation. Endocrinology 2002; 143: 3333–3340.
Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306: 1383–1386.
Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 2006; 281: 40236–40241.
Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 2006; 312: 734–737.
Ghosh AK, Ramakrishnan G, Chandramohan C, Rajasekharan R . CGI-58, the causative gene for Chanarin-Dorfman Syndrome, mediates acylation of lysophosphatidic acid. J Biol Chem 2008; 283: 24525–24533.
Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab 2006; 3: 309–319.
Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J et al. Defective lipolysis and ATGL mice DUPL 3484. Science 2006; 312: 734–737.
Fischer J, Lefevre C, Morava E, Mussini JM, Laforet P, Negre-Salvayre A et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet 2007; 39: 28–30.
Akiyama M, Sakai K, Ogawa M, McMillan JR, Sawamura D, Shimizu H . Novel duplication mutation in the patatin domain of adipose triglyceride lipase (PNPLA2) in neutral lipid storage disease with severe myopathy. Muscle Nerve 2007; 36: 856–859.
Ryden M, Jocken J, van Harmelen V, Dicker A, Hoffstedt J, Wiren M et al. Comparative studies of the role of hormone-sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis. Am J Physiol Endocrinol Metab 2007; 292: E1847–E1855.
Arner P . Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab 2005; 19: 471–482.
Rosenbaum M, Malbon CC, Hirsch J, Leibel RL . Lack of beta 3-adrenergic effect on lipolysis in human subcutaneous adipose tissue. J Clin Endocrinol Metab 1993; 77: 352–355.
Djurhuus CB, Gravholt CH, Nielsen S, Pedersen SB, Moller N, Schmitz O . Additive effects of cortisol and growth hormone on regional and systemic lipolysis in humans. Am J Physiol Endocrinol Metab 2004; 286: E488–E494.
Lafontan M, Moro C, Berlan M, Crampes F, Sengenes C, Galitzky J . Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol Metab 2008; 19: 130–137.
Langin D, Arner P . Importance of TNFalpha and neutral lipases in human adipose tissue lipolysis. Trends Endocrinol Metab 2006; 17: 314–320.
Robidoux J, Kumar N, Daniel KW, Moukdar F, Cyr M, Medvedev AV et al. Maximal beta3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation. J Biol Chem 2006; 281: 37794–37802.
Marcus C, Karpe B, Bolme P, Sonnenfeld T, Arner P . Changes in catecholamine-induced lipolysis in isolated human fat cells during the first year of life. J Clin Invest 1987; 79: 1812–1818.
Mauriege P, Imbeault P, Langin D, Lacaille M, Almeras N, Tremblay A et al. Regional and gender variations in adipose tissue lipolysis in response to weight loss. J Lipid Res 1999; 40: 1559–1571.
Taggart AK, Kero J, Gan X, Cai TQ, Cheng K, Ippolito M et al. (D)-beta-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem 2005; 280: 26649–26652.
Marcus C, Ehren H, Bolme P, Arner P . Regulation of lipolysis during the neonatal period. Importance of thyrotropin. J Clin Invest 1988; 82: 1793–1797.
Martin S, Parton RG . Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 2006; 7: 373–378.
Soni KG, Lehner R, Metalnikov P, O’Donnell P, Semache M, Gao W et al. Carboxylesterase 3 (EC 3.1.1.1) is a major adipocyte lipase. J Biol Chem 2004; 279: 40683–40689.
Wei E, Gao W, Lehner R . Attenuation of adipocyte triacylglycerol hydrolase activity decreases basal fatty acid efflux. J Biol Chem 2007; 282: 8027–8035.
Okazaki H, Igarashi M, Nishi M, Tajima M, Sekiya M, Okazaki S et al. Identification of a novel member of the carboxylesterase family that hydrolyzes triacylglycerol: a potential role in adipocyte lipolysis. Diabetes 2006; 55: 2091–2097.
Bencharit S, Edwards CC, Morton CL, Howard-Williams EL, Kuhn P, Potter PM et al. Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1. J Mol Biol 2006; 363: 201–214.
Wei E, Alam M, Sun F, Agellon LB, Vance DE, Lehner R . Apolipoprotein B and triacylglycerol secretion in human triacylglycerol hydrolase transgenic mice. J Lipid Res 2007; 48: 2597–2606.
Le Lay S, Ferre P, Dugail I . Adipocyte cholesterol balance in obesity. Biochem Soc Trans 2004; 32: 103–106.
Imbeault P, Chevrier J, Dewailly E, Ayotte P, Despres JP, Tremblay A et al. Increase in plasma pollutant levels in response to weight loss in humans is related to in vitro subcutaneous adipocyte basal lipolysis. Int J Obes Relat Metab Disord 2001; 25: 1585–1591.
Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 2008; 453: 657–661.
Brasaemle DL, Dolios G, Shapiro L, Wang R . Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 2004; 279: 46835–46842.
Ducharme NA, Bickel PE . Lipid droplets in lipogenesis and lipolysis. Endocrinology 2008; 149: 942–949.
Kalderon B, Mayorek N, Berry E, Zevit N, Bar-Tana J . Fatty acid cycling in the fasting rat. Am J Physiol Endocrinol Metab 2000; 279: E221–E227.
Coleman RA . How do I fatten thee? Let me count the ways. Cell Metab 2007; 5: 87–89.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
This article is cited by
-
Comprehensive evaluation of the metabolic effects of porcine CRTC3 overexpression on subcutaneous adipocytes with metabolomic and transcriptomic analyses
Journal of Animal Science and Biotechnology (2021)