Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetics, physiology and perinatal influences in childhood obesity: view from the Chair

Abstract

The current epidemic of childhood obesity will be a serious threat to population health for at least the next several decades. The biology of childhood obesity was the theme of an international symposium held in November 2007. Speakers discussed monogenic causes of obesity, prenatal epigenetic programing, neurobehavioral aspects of obesity, and hormonal and neuroendocrine abnormalities, and the insights provided by non-murine models for understanding the biology of early-onset obesity. Several new developments have been reported in white and brown adipose tissue biology. They are summarized briefly in this review and include observations about cell lineage of adipocytes, the renewal of adipocytes throughout life and the numerous factors that influence adipocyte fatty acid release. The biological underpinnings of childhood obesity are multiple and complex.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Baker JL, Olsen LW, Sorensen TI . Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med 2007; 357: 2329–2337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bibbins-Domingo K, Coxson P, Pletcher MJ, Lightwood J, Goldman L . Adolescent overweight and future adult coronary heart disease. N Engl J Med 2007; 357: 2371–2379.

    Article  CAS  PubMed  Google Scholar 

  3. Ludwig DS . Childhood obesity—the shape of things to come. N Engl J Med 2007; 357: 2325–2327.

    Article  CAS  PubMed  Google Scholar 

  4. Bartness TJ, Song CK . Thematic review series: adipocyte biology. Sympathetic and sensory innervation of white adipose tissue. J Lipid Res 2007; 48: 1655–1672.

    Article  CAS  PubMed  Google Scholar 

  5. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46: 2347–2355.

    Article  CAS  PubMed  Google Scholar 

  6. Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 2008; 28: 1039–1049.

    Article  CAS  PubMed  Google Scholar 

  7. Rebrin K, Steil GM, Mittelman SD, Bergman RN . Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest 1996; 98: 741–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O et al. Dynamics of fat cell turnover in humans. Nature 2008; 453: 783–787.

    Article  CAS  PubMed  Google Scholar 

  9. Tontonoz P, Spiegelman BM . Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 2008; 77: 289–312.

    Article  CAS  PubMed  Google Scholar 

  10. Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101: 1354–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nedergaard J, Bengtsson T, Cannon B . Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293: E444–E452.

    Article  CAS  PubMed  Google Scholar 

  12. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454: 961–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S . Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 2000; 279: C670–C681.

    Article  CAS  PubMed  Google Scholar 

  14. Arango NA, Szotek PP, Manganaro TF, Oliva E, Donahoe PK, Teixeira J . Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol 2005; 288: 276–283.

    Article  CAS  PubMed  Google Scholar 

  15. Gregor MF, Hotamisligil GS . Thematic review series: adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 2007; 48: 1905–1914.

    Article  CAS  PubMed  Google Scholar 

  16. Hotamisligil GS . Inflammation and metabolic disorders. Nature 2006; 444: 860–867.

    Article  CAS  PubMed  Google Scholar 

  17. Smith SR, Wilson PW . Free fatty acids and atherosclerosis—guilty or innocent? J Clin Endocrinol Metab 2006; 91: 2506–2508.

    Article  CAS  PubMed  Google Scholar 

  18. Pilz S, Scharnagl H, Tiran B, Seelhorst U, Wellnitz B, Boehm BO et al. Free fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease. J Clin Endocrinol Metab 2006; 91: 2542–2547.

    Article  CAS  PubMed  Google Scholar 

  19. Prentki M, Madiraju SR . Glycerolipid metabolism and signaling in health and disease. Endocr Rev 2008; 29: 647–676.

    Article  CAS  PubMed  Google Scholar 

  20. Wymann MP, Schneiter R . Lipid signalling in disease. Nat Rev Mol Cell Biol 2008; 9: 162–176.

    Article  CAS  PubMed  Google Scholar 

  21. Wang S, Soni KG, Semache M, Casavant S, Fortier M, Pan L et al. Lipolysis and the integrated physiology of lipid energy metabolism. Mol Genet Metab 2008; 95: 117–126.

    Article  CAS  PubMed  Google Scholar 

  22. Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Ryden M et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 2005; 54: 3190–3197.

    Article  CAS  PubMed  Google Scholar 

  23. Ryden M, Agustsson T, Laurencikiene J, Britton T, Sjolin E, Isaksson B et al. Lipolysis—not inflammation, cell death, or lipogenesis—is involved in adipose tissue loss in cancer cachexia. Cancer 2008; 113: 1695–1704.

    Article  PubMed  Google Scholar 

  24. Slee DH, Bhat AS, Nguyen TN, Kish M, Lundeen K, Newman MJ et al. Pyrrolopyrazinedione-based inhibitors of human hormone-sensitive lipase. J Med Chem 2003; 46: 1120–1122.

    Article  CAS  PubMed  Google Scholar 

  25. de Jong JC, Sorensen LG, Tornqvist H, Jacobsen P . Carbazates as potent inhibitors of hormone-sensitive lipase. Bioorg Med Chem Lett 2004; 14: 1741–1744.

    Article  CAS  PubMed  Google Scholar 

  26. Claus TH, Lowe DB, Liang Y, Salhanick AI, Lubeski CK, Yang L et al. Specific inhibition of hormone-sensitive lipase improves lipid profile while reducing plasma glucose. J Pharmacol Exp Ther 2005; 315: 1396–1402.

    Article  CAS  PubMed  Google Scholar 

  27. Fukao T, Lopaschuk GD, Mitchell GA . Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 2004; 70: 243–251.

    Article  CAS  PubMed  Google Scholar 

  28. Holm C, Osterlund T, Laurell H, Contreras JA . Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 2000; 20: 365–393.

    Article  CAS  PubMed  Google Scholar 

  29. Egan JJ, Greenberg AS, Chang MK, Wek SA, Moos Jr MC, Londos C . Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci USA 1992; 89: 8537–8541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 2002; 277: 4806–4815.

    Article  CAS  PubMed  Google Scholar 

  31. Park SY, Kim HJ, Wang S, Higashimori T, Dong J, Kim YJ et al. Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. Am J Physiol Endocrinol Metab 2005; 289: E30–E39.

    Article  CAS  PubMed  Google Scholar 

  32. Kraemer FB, Shen WJ . Hormone-sensitive lipase knockouts. Nutr Metab (Lond) 2006; 3: 12.

    Article  Google Scholar 

  33. Fortier M, Wang SP, Mauriege P, Semache M, Mfuma L, Li H et al. Hormone-sensitive lipase-independent adipocyte lipolysis during beta-adrenergic stimulation, fasting, and dietary fat loading. Am J Physiol Endocrinol Metab 2004; 287: E282–E288.

    Article  CAS  PubMed  Google Scholar 

  34. Jimenez M, Leger B, Canola K, Lehr L, Arboit P, Seydoux J et al. Beta(1)/beta(2)/beta(3)-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett 2002; 530: 37–40.

    Article  CAS  PubMed  Google Scholar 

  35. Kraemer FB, Shen WJ . Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res 2002; 43: 1585–1594.

    Article  CAS  PubMed  Google Scholar 

  36. Strom K, Hansson O, Lucas S, Nevsten P, Fernandez C, Klint C et al. Attainment of brown adipocyte features in white adipocytes of hormone-sensitive lipase null mice. PLoS ONE 2008; 3: e1793.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mulder H, Holst LS, Svensson H, Degerman E, Sundler F, Ahrén B et al. Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active in beta-cells. Diabetes 1999; 48: 228–232.

    Article  CAS  PubMed  Google Scholar 

  38. Chung S, Wang SP, Pan L, Mitchell GA, Trasler J, Hermo L . Infertility and testicular defects in hormone-sensitive lipase-deficient mice. Endocrinology 2001; 142: 4272–4281.

    Article  CAS  PubMed  Google Scholar 

  39. Li H, Brochu M, Wang SP, Rochdi L, Côté M, Mitchell G et al. Hormone-sensitive lipase deficiency in mice causes lipid storage in the adrenal cortex and impaired corticosterone response to corticotropin stimulation. Endocrinology 2002; 143: 3333–3340.

    Article  CAS  PubMed  Google Scholar 

  40. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306: 1383–1386.

    Article  CAS  PubMed  Google Scholar 

  41. Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 2006; 281: 40236–40241.

    Article  CAS  PubMed  Google Scholar 

  42. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 2006; 312: 734–737.

    Article  CAS  PubMed  Google Scholar 

  43. Ghosh AK, Ramakrishnan G, Chandramohan C, Rajasekharan R . CGI-58, the causative gene for Chanarin-Dorfman Syndrome, mediates acylation of lysophosphatidic acid. J Biol Chem 2008; 283: 24525–24533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab 2006; 3: 309–319.

    Article  CAS  PubMed  Google Scholar 

  45. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J et al. Defective lipolysis and ATGL mice DUPL 3484. Science 2006; 312: 734–737.

    Article  CAS  PubMed  Google Scholar 

  46. Fischer J, Lefevre C, Morava E, Mussini JM, Laforet P, Negre-Salvayre A et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet 2007; 39: 28–30.

    Article  CAS  PubMed  Google Scholar 

  47. Akiyama M, Sakai K, Ogawa M, McMillan JR, Sawamura D, Shimizu H . Novel duplication mutation in the patatin domain of adipose triglyceride lipase (PNPLA2) in neutral lipid storage disease with severe myopathy. Muscle Nerve 2007; 36: 856–859.

    Article  CAS  PubMed  Google Scholar 

  48. Ryden M, Jocken J, van Harmelen V, Dicker A, Hoffstedt J, Wiren M et al. Comparative studies of the role of hormone-sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis. Am J Physiol Endocrinol Metab 2007; 292: E1847–E1855.

    Article  CAS  PubMed  Google Scholar 

  49. Arner P . Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab 2005; 19: 471–482.

    Article  CAS  PubMed  Google Scholar 

  50. Rosenbaum M, Malbon CC, Hirsch J, Leibel RL . Lack of beta 3-adrenergic effect on lipolysis in human subcutaneous adipose tissue. J Clin Endocrinol Metab 1993; 77: 352–355.

    CAS  PubMed  Google Scholar 

  51. Djurhuus CB, Gravholt CH, Nielsen S, Pedersen SB, Moller N, Schmitz O . Additive effects of cortisol and growth hormone on regional and systemic lipolysis in humans. Am J Physiol Endocrinol Metab 2004; 286: E488–E494.

    Article  CAS  PubMed  Google Scholar 

  52. Lafontan M, Moro C, Berlan M, Crampes F, Sengenes C, Galitzky J . Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol Metab 2008; 19: 130–137.

    Article  CAS  PubMed  Google Scholar 

  53. Langin D, Arner P . Importance of TNFalpha and neutral lipases in human adipose tissue lipolysis. Trends Endocrinol Metab 2006; 17: 314–320.

    Article  CAS  PubMed  Google Scholar 

  54. Robidoux J, Kumar N, Daniel KW, Moukdar F, Cyr M, Medvedev AV et al. Maximal beta3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation. J Biol Chem 2006; 281: 37794–37802.

    Article  CAS  PubMed  Google Scholar 

  55. Marcus C, Karpe B, Bolme P, Sonnenfeld T, Arner P . Changes in catecholamine-induced lipolysis in isolated human fat cells during the first year of life. J Clin Invest 1987; 79: 1812–1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mauriege P, Imbeault P, Langin D, Lacaille M, Almeras N, Tremblay A et al. Regional and gender variations in adipose tissue lipolysis in response to weight loss. J Lipid Res 1999; 40: 1559–1571.

    CAS  PubMed  Google Scholar 

  57. Taggart AK, Kero J, Gan X, Cai TQ, Cheng K, Ippolito M et al. (D)-beta-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem 2005; 280: 26649–26652.

    Article  CAS  PubMed  Google Scholar 

  58. Marcus C, Ehren H, Bolme P, Arner P . Regulation of lipolysis during the neonatal period. Importance of thyrotropin. J Clin Invest 1988; 82: 1793–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martin S, Parton RG . Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 2006; 7: 373–378.

    Article  CAS  PubMed  Google Scholar 

  60. Soni KG, Lehner R, Metalnikov P, O’Donnell P, Semache M, Gao W et al. Carboxylesterase 3 (EC 3.1.1.1) is a major adipocyte lipase. J Biol Chem 2004; 279: 40683–40689.

    Article  CAS  PubMed  Google Scholar 

  61. Wei E, Gao W, Lehner R . Attenuation of adipocyte triacylglycerol hydrolase activity decreases basal fatty acid efflux. J Biol Chem 2007; 282: 8027–8035.

    Article  CAS  PubMed  Google Scholar 

  62. Okazaki H, Igarashi M, Nishi M, Tajima M, Sekiya M, Okazaki S et al. Identification of a novel member of the carboxylesterase family that hydrolyzes triacylglycerol: a potential role in adipocyte lipolysis. Diabetes 2006; 55: 2091–2097.

    Article  CAS  PubMed  Google Scholar 

  63. Bencharit S, Edwards CC, Morton CL, Howard-Williams EL, Kuhn P, Potter PM et al. Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1. J Mol Biol 2006; 363: 201–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wei E, Alam M, Sun F, Agellon LB, Vance DE, Lehner R . Apolipoprotein B and triacylglycerol secretion in human triacylglycerol hydrolase transgenic mice. J Lipid Res 2007; 48: 2597–2606.

    Article  CAS  PubMed  Google Scholar 

  65. Le Lay S, Ferre P, Dugail I . Adipocyte cholesterol balance in obesity. Biochem Soc Trans 2004; 32: 103–106.

    Article  CAS  PubMed  Google Scholar 

  66. Imbeault P, Chevrier J, Dewailly E, Ayotte P, Despres JP, Tremblay A et al. Increase in plasma pollutant levels in response to weight loss in humans is related to in vitro subcutaneous adipocyte basal lipolysis. Int J Obes Relat Metab Disord 2001; 25: 1585–1591.

    Article  CAS  PubMed  Google Scholar 

  67. Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 2008; 453: 657–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brasaemle DL, Dolios G, Shapiro L, Wang R . Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 2004; 279: 46835–46842.

    Article  CAS  PubMed  Google Scholar 

  69. Ducharme NA, Bickel PE . Lipid droplets in lipogenesis and lipolysis. Endocrinology 2008; 149: 942–949.

    Article  CAS  PubMed  Google Scholar 

  70. Kalderon B, Mayorek N, Berry E, Zevit N, Bar-Tana J . Fatty acid cycling in the fasting rat. Am J Physiol Endocrinol Metab 2000; 279: E221–E227.

    Article  CAS  PubMed  Google Scholar 

  71. Coleman RA . How do I fatten thee? Let me count the ways. Cell Metab 2007; 5: 87–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G A Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, G. Genetics, physiology and perinatal influences in childhood obesity: view from the Chair. Int J Obes 33 (Suppl 1), S41–S47 (2009). https://doi.org/10.1038/ijo.2009.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.16

Keywords

This article is cited by

Search

Quick links