Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery

Abstract

Bariatric surgery is currently the most effective method to promote major, sustained weight loss. Roux-en-Y gastric bypass (RYGB), the most commonly performed bariatric operation, ameliorates virtually all obesity-related comorbid conditions, the most impressive being a dramatic resolution of type 2 diabetes mellitus (T2DM). After RYGB, 84% of patients with T2DM experience complete remission of this disease, and virtually all have improved glycemic control. Increasing evidence indicates that the impact of RYGB on T2DM cannot be explained by the effects of weight loss and reduced energy intake alone. Weight-independent antidiabetic actions of RYGB are apparent because of the very rapid resolution of T2DM (before weight loss occurs), the greater improvement of glucose homeostasis after RYGB than after an equivalent weight loss from other means, and the occasional development of very late-onset, pancreatic β-cell hyperfunction. Several mechanisms probably mediate the direct antidiabetic impact of RYGB, including enhanced nutrient stimulation of L-cell peptides (for example, GLP-1) from the lower intestine, intriguing but still uncharacterized phenomena related to exclusion of the upper intestine from contact with ingested nutrients, compromised ghrelin secretion, and very probably other effects that have yet to be discovered. Research designed to prioritize these mechanisms and identify potential additional mechanisms promises to help optimize surgical design and might also reveal novel pharmaceutical targets for diabetes treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 2004; 351: 2683–2693.

    Article  PubMed  Google Scholar 

  2. Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B, Wedel H et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007; 357: 741–752.

    Article  PubMed  Google Scholar 

  3. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 2004; 292: 1724–1737.

    Article  CAS  PubMed  Google Scholar 

  4. Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg 1995; 222: 339–350; discussion 350–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg 2003; 238: 467–484; discussion 484–485.

    PubMed  PubMed Central  Google Scholar 

  6. Cummings DE, Flum DR . Gastrointestinal surgery as a treatment for diabetes. JAMA 2008; 299: 341–343.

    CAS  PubMed  Google Scholar 

  7. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 2002; 346: 1623–1630.

    Article  PubMed  Google Scholar 

  8. Cummings DE, Overduin J, Foster-Schubert KE . Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab 2004; 89: 2608–2615.

    Article  CAS  PubMed  Google Scholar 

  9. Cummings DE, Overduin J, Foster-Schubert KE, Carlson MJ . Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg Obes Relat Dis 2007; 3: 109–115.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cummings DE, Overduin J, Shannon MH, Foster-Schubert KE . Hormonal mechanisms of weight loss and diabetes resolution after bariatric surgery. Surg Obes Relat Dis 2005; 1: 358–368.

    Article  PubMed  Google Scholar 

  11. Cummings DE . Gastric bypass and nesidioblastosis—too much of a good thing for islets? N Engl J Med 2005; 353: 300–302.

    Article  CAS  PubMed  Google Scholar 

  12. Cummings DE, Shannon MH . Ghrelin and gastric bypass: is there a hormonal contribution to surgical weight loss? J Clin Endocrinol Metab 2003; 88: 2999–3002.

    Article  CAS  PubMed  Google Scholar 

  13. Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 2006; 244: 741–749.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cummings DE, Foster-Schubert KE, Carlson MJ, Shannon MH, Overduin J . Possible hormonal mechanisms mediating the effects of bariatric surgery. In: Pitombo C (ed). Obesity Surgery: Principle and Practice. McGraw-Hill: New York, 2007, pp 137–147.

    Google Scholar 

  15. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD et al. Long-term mortality after gastric bypass surgery. N Engl J Med 2007; 357: 753–761.

    Article  CAS  PubMed  Google Scholar 

  16. Cohen R, Pinheiro JS, Correa JL, Schiavon CA . Laparoscopic Roux-en-Y gastric bypass for BMI<35 kg/m(2): a tailored approach. Surg Obes Relat Dis 2006; 2: 401–404, discussion 404.

    Article  PubMed  Google Scholar 

  17. Lee WJ, Wang W, Lee YC, Huang MT, Ser KH, Chen JC . Effect of laparoscopic mini-gastric bypass for type 2 diabetes mellitus: comparison of BMI>35 and <35 kg/m2. J Gastrointest Surg 2008; 12: 945–952.

    Article  PubMed  Google Scholar 

  18. Rubino F, Zizzari P, Tomasetto C, Bluet-Pajot MT, Forgione A, Vix M et al. The role of the small bowel in the regulation of circulating ghrelin levels and food intake in the obese Zucker rat. Endocrinology 2005; 146: 1745–1751.

    Article  CAS  PubMed  Google Scholar 

  19. Rubino F, Marescaux J . Effect of duodenal–jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg 2004; 239: 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pacheco D, de Luis DA, Romero A, Gonzalez Sagrado M, Conde R, Izaola O et al. The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto–Kakizaki rats. Am J Surg 2007; 194: 221–224.

    Article  CAS  PubMed  Google Scholar 

  21. Wang TT, Hu SY, Gao HD, Zhang GY, Liu CZ, Feng JB et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg 2008; 247: 968–975.

    Article  PubMed  Google Scholar 

  22. Wickremesekera K, Miller G, Naotunne TD, Knowles G, Stubbs RS . Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg 2005; 15: 474–481.

    Article  PubMed  Google Scholar 

  23. Dixon JB, O’Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 2008; 299: 316–323.

    CAS  PubMed  Google Scholar 

  24. Muscelli E, Mingrone G, Camastra S, Manco M, Pereira JA, Pareja JC et al. Differential effect of weight loss on insulin resistance in surgically treated obese patients. Am J Med 2005; 118: 51–57.

    Article  CAS  PubMed  Google Scholar 

  25. Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab 2008; 93: 2479–2485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pattou F, Beraud G, Arnalsteen L, Seguy D, Pigny P, Fermont C et al. Restoration of beta cell function after bariatric surgery in type 2 diabetic patients: a prospective controlled study comparing gastric banding and gastric bypass. Obes Surg 2007; 17: 1041–1043.

    Google Scholar 

  27. le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006; 243: 108–114.

    Article  PubMed  Google Scholar 

  28. Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ . Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 2007; 3: 597–601.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee WJ, Lee YC, Chen JC, Ser KH, Chen SC, Lin CM . A randomized trial comparing laparoscopic sleeve gastrectomy versus gastric bypass for the treatment of type 2 diabetes mellitus: preliminary report. Surg Obes Relat Dis 2008; 4: 290.

    Article  Google Scholar 

  30. Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV . Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med 2005; 353: 249–254.

    Article  CAS  PubMed  Google Scholar 

  31. Patti ME, McMahon G, Mun EC, Bitton A, Holst JJ, Goldsmith J et al. Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy: evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia 2005; 48: 2236–2240.

    Article  CAS  PubMed  Google Scholar 

  32. Clancy TE, Moore Jr FD, Zinner MJ . Post-gastric bypass hyperinsulinism with nesidioblastosis: subtotal or total pancreatectomy may be needed to prevent recurrent hypoglycemia. J Gastrointest Surg 2006; 10: 1116–1119.

    Article  PubMed  Google Scholar 

  33. Bantle JP, Ikramuddin S, Kellogg TA, Buchwald H . Hyperinsulinemic hypoglycemia developing late after gastric bypass. Obes Surg 2007; 17: 592–594.

    Article  PubMed  Google Scholar 

  34. Goldfine AB, Mun EC, Devine E, Bernier R, Baz-Hecht M, Jones DB et al. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. J Clin Endocrinol Metab 2007; 92: 4678–4685.

    Article  CAS  PubMed  Google Scholar 

  35. Z’Graggen K, Guweidhi A, Steffen R, Potoczna N, Biral R, Walther F et al. Severe recurrent hypoglycemia after gastric bypass surgery. Obes Surg 2008; 18: 981–988.

    Article  PubMed  Google Scholar 

  36. Kellogg TA, Bantle JP, Leslie DB, Redmond JB, Slusarek B, Swan T et al. Postgastric bypass hyperinsulinemic hypoglycemia syndrome: characterization and response to a modified diet. Surg Obes Relat Dis 2008; 4: 492–499.

    Article  PubMed  Google Scholar 

  37. Meier JJ, Butler AE, Galasso R, Butler PC . Hyperinsulinemic hypoglycemia after gastric bypass surgery is not accompanied by islet hyperplasia or increased beta-cell turnover. Diabetes Care 2006; 29: 1554–1559.

    Article  PubMed  Google Scholar 

  38. Williams DL, Grill HJ, Cummings DE, Kaplan JM . Vagotomy dissociates short- and long-term controls of circulating ghrelin. Endocrinology 2003; 144: 5184–5187.

    Article  CAS  PubMed  Google Scholar 

  39. Drucker DJ . The role of gut hormones in glucose homeostasis. J Clin Invest 2007; 117: 24–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laferrere B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care 2007; 30: 1709–1716.

    Article  CAS  PubMed  Google Scholar 

  41. Morinigo R, Moize V, Musri M, Lacy AM, Navarro S, Marin JL et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab 2006; 91: 1735–1740.

    Article  CAS  PubMed  Google Scholar 

  42. Strader AD, Vahl TP, Jandacek RJ, Woods SC, D’Alessio DA, Seeley RJ . Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab 2005; 288: E447–E453.

    Article  CAS  PubMed  Google Scholar 

  43. Patriti A, Facchiano E, Annetti C, Aisa MC, Galli J, Fanelli C et al. Early improvement of glucose tolerance after ileal transpositition in a non-obese type 2 diabetes rat model. Obes Surg 2005; 15: 1258–1264.

    Article  PubMed  Google Scholar 

  44. Patriti A, Aisa MC, Annetti C, Sidoni A, Galli F, Ferri I et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto–kakizaki rats through an enhanced proglucagon gene expression and L-cell number. Surgery 2007; 142: 74–85.

    Article  PubMed  Google Scholar 

  45. de Paula AL, Macedo AL, Prudente AS, Queiroz L, Schraibman V, Pinus J . Laparoscopic sleeve gastrectomy with ileal interposition (‘neuroendocrine brake’)—pilot study of a new operation. Surg Obes Relat Dis 2006; 2: 464–467.

    Article  PubMed  Google Scholar 

  46. Cohen RV, Schiavon CA, Pinheiro JS, Correa JL, Rubino F . Duodenal–jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22–34 kg/m2. Surg Obes Relat Dis 2007; 3: 195–197.

    Article  PubMed  Google Scholar 

  47. Rodriguez-Grunert L, Galvao Neto MP, Alamo M, Ramos AC, Baez PB et al. First human experience with endoscopically delivered and retrieved duodenal–jejunal bypass sleeve. Surg Obes Relat Dis 2008; 4: 55–59.

    Article  PubMed  Google Scholar 

  48. Tarnoff M, Sorli C, Rodriguez L, Ramos AC, Galvao M, Reyes E et al. Interim report of a prospective, randomized sham-controlled trial investigating a completely endoscopic duodenal–jejunal bypass sleeve for the treatment of type 2 diabetes. Diabetes 2008; 57 (Suppl A): A32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D E Cummings.

Additional information

Conflict of interest

The author has declared no financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cummings, D. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes 33 (Suppl 1), S33–S40 (2009). https://doi.org/10.1038/ijo.2009.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.15

Keywords

This article is cited by

Search

Quick links