Abstract
Introduction
Different outcomes of the effect of green tea on weight loss (WL) and weight maintenance (WM) have been reported in studies with subjects differing in ethnicity and habitual caffeine intake.
Purpose
To elucidate by meta-analysis whether green tea indeed has a function in body weight regulation.
Methods
English-language studies about WL and WM after green tea supplementation were identified through PubMed and based on the references from retrieved articles. Out of the 49 studies initially identified, a total of 11 articles fitted the inclusion criteria and provided useful information for the meta-analysis. Effect sizes (mean weight change in treatment versus control group) were computed and aggregated based on a random-effects model. The influence of several moderators on the effect sizes was examined.
Results
Catechins significantly decreased body weight and significantly maintained body weight after a period of WL (μ̂=−1.31 kg; P<0.001). Inhibition of this effect by high habitual caffeine intake (>300 mg per day) failed to reach significance (μ̂=−0.27 kg for high and μ̂=−1.60 kg for low habitual caffeine intake; P=0.09). Also, the seemingly smaller effect of catechins in Caucasian (μ̂=−0.82 kg) subjects compared with Asians (μ̂=–1.51 kg; P=0.37) did not reach significance. Interaction of ethnicity and caffeine intake was a significant moderator (P=0.04).
Conclusions
Catechins or an epigallocatechin gallate (EGCG)–caffeine mixture have a small positive effect on WL and WM. The results suggest that habitual caffeine intake and ethnicity may be moderators, as they may influence the effect of catechins.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Shixian Q, VanCrey B, Shi J, Kakuda Y, Jiang Y . Green tea extract thermogenesis-induced weight loss by epigallocatechin gallate inhibition of catechol-O-methyltransferase. J Med Food 2006; 9: 451–458.
Wolfram S, Wang Y, Thielecke F . Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 2006; 50: 176–187.
Krul C, Luiten-Schuite A, Tenfelde A, van Ommen B, Verhagen H, Havenaar R . Antimutagenic activity of green tea and black tea extracts studied in a dynamic in vitro gastrointestinal model. Mutat Res 2001; 474: 71–85.
Langley-Evans SC . Antioxidant potential of green and black tea determined using the ferric reducing power (FRAP) assay. Int J Food Sci Nutr 2000; 51: 181–188.
Serafini M, Ghiselli A, Ferro-Luzzi A . In vivo antioxidant effect of green and black tea in man. Eur J Clin Nutr 1996; 50: 28–32.
Westerterp-Plantenga M, Diepvens K, Joosen AM, Berube-Parent S, Tremblay A . Metabolic effects of spices, teas, and caffeine. Physiol Behav 2006; 89: 85–91.
Diepvens K, Westerterp KR, Westerterp-Plantenga MS . Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am J Physiol Regul Integr Comp Physiol 2007; 292: R77–R85.
Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 1999; 70: 1040–1045.
Berube-Parent S, Pelletier C, Dore J, Tremblay A . Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men. Br J Nutr 2005; 94: 432–436.
Kozuma K, Chikama A, Hishino E, Kataoka K, Mori K, Hase T et al. Effect of intake of a beverage containing 540 mg catechins on the body composition of obese women and men. Prog Med 2005; 25: 185–197.
Tsuchida T, Itakura H, Nakamura H . Reduction of body fat in humans by long-term ingestion of catechins. Prog Med 2002; 22: 2189–2203.
Nagao T, Meguro S, Soga S, Otsuka A, Hase T, Tanaka Y et al. Tea catechins suppress accumulation of body fat in humans. J Oleo Sci 2001; 50: 717–728.
Nagao T, Hase T, Tokimitsu I . A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity (Silver Spring) 2007; 15: 1473–1483.
Hase T, Komine Y, Meguro S, Takeda Y, Takahashi H, Matsui Y et al. Anti-obesity effects of tea catechins in humans. J Oleo Sci 2001; 50: 599–605.
Auvichayapat P, Prapochanung M, Tunkamnerdthai O, Sripanidkulchai BO, Auvichayapat N, Thinkhamrop B et al. Effectiveness of green tea on weight reduction in obese Thais: a randomized, controlled trial. Physiol Behav 2008; 93: 486–491.
Hsu CH, Tsai TH, Kao YH, Hwang KC, Tseng TY, Chou P . Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 2008; 27: 363–370.
Wang M, Wen Y, Du Y, Yan X, Wei Guo H, Rycroft J et al. The effects of 90 days consumption of a high-catechin green tea beverage on body weight. Eur J Clin Nutr 2009. (Submitted).
Diepvens K, Kovacs EM, Nijs IM, Vogels N, Westerterp-Plantenga MS . Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females. Br J Nutr 2005; 94: 1026–1034.
Kovacs EM, Lejeune MP, Nijs I, Westerterp-Plantenga MS . Effects of green tea on weight maintenance after body-weight loss. Br J Nutr 2004; 91: 431–437.
Westerterp-Plantenga MS, Lejeune MP, Kovacs EM . Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation. Obes Res 2005; 13: 1195–1204.
Viechtbauer W . Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat 2005; 30: 261–293.
Grigg D . The worlds of tea and coffee: patterns of consumption. GeoJournal 2002; 57: 283–294.
Cornelis MC, El-Sohemy A, Campos H . Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am J Clin Nutr 2007; 86: 240–244.
Hodgson JM, Puddey IB, Burke V, Croft KD . Is reversal of endothelial dysfunction by tea related to flavonoid metabolism? Br J Nutr 2006; 95: 14–17.
Palmatier MA, Kang AM, Kidd KK . Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol Psychiatry 1999; 46: 557–567.
Acknowledgements
RH and MSW-P designed the study. RH collected and prepared the data. WV analyzed the data. RH and WV wrote the manuscript and MSW-P contributed to the interpretation of the data and reviewed the manuscript. The study was executed under the supervision of MSW-P.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hursel, R., Viechtbauer, W. & Westerterp-Plantenga, M. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes 33, 956–961 (2009). https://doi.org/10.1038/ijo.2009.135
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ijo.2009.135
Keywords
This article is cited by
-
Factorial design-assisted spectrophotometric methods for the determination of total catechins in green tea extract via reaction with MBTH. Application to commercial tablet
Monatshefte für Chemie - Chemical Monthly (2024)
-
Integrated traditional herbal medicine in the treatment of gastrointestinal disorder: the pattern of use and the knowledge of safety among the Eastern Region Saudi population
BMC Complementary Medicine and Therapies (2023)
-
The interaction effect of green tea consumption and exercise training on fat oxidation, body composition and blood lipids in humans: a review of the literature
Sport Sciences for Health (2023)
-
Position statement on nutrition therapy for overweight and obesity: nutrition department of the Brazilian association for the study of obesity and metabolic syndrome (ABESO—2022)
Diabetology & Metabolic Syndrome (2023)
-
Green tea and cancer and cardiometabolic diseases: a review of the current epidemiological evidence
European Journal of Clinical Nutrition (2021)