Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic subtype differences in neural circuitry of food motivation in Prader-Willi syndrome

Abstract

Background:

Differences in behavioral phenotypes between the two most common subtypes of Prader-Willi syndrome (PWS) (chromosome 15q deletions and maternal uniparental disomy 15 (UPD) indicate that distinct neural networks may be affected. Though both subtypes display hyperphagia, the deletion subgroup shows reduced behavioral inhibition around food, whereas those with UPD are generally more able to maintain cognitive control over food intake impulses.

Objective:

To examine the neural basis of phenotypic differences to better understand relationships between genetic subtypes and behavioral outcomes. We predicted greater food motivation circuitry activity in the deletion subtype and greater activity in higher order cognitive regions in the UPD group, especially after eating.

Design and participants:

Nine individuals with PWS due to UPD and nine individuals with PWS due to (type 2) deletion, matched for age, gender and body mass index, underwent functional magnetic resonance imaging (fMRI) while viewing food images during two food motivation states: one before (pre-meal) and one after (post-meal) eating a standardized 500 kcal meal.

Results:

Both PWS subgroups showed greater activity in response to food pre- and post-meal compared with the healthy-weight group. Compared with UPD, the deletion subtype showed increased food motivation network activation both pre- and post-meal, especially in the medial prefrontal cortex (mPFC) and amygdala. In contrast, the UPD group showed greater activation than the deletion subtype post-meal in the dorsolateral prefrontal cortex (DLPFC) and parahippocampal gyrus (PHG).

Conclusion:

These preliminary findings are the first functional neuroimaging findings to support divergent neural mechanisms associated with behavioral phenotypes in genetic subtypes of PWS. Results are discussed within the framework of genetic mechanisms such as haploinsufficiency and gene dosage effects and their differential influence on deletion and UPD subtypes, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Whittington JE, Holland AJ, Webb T, Butler J, Clarke D, Boer H . Population prevalence and estimated birth incidence and mortality rate for people with Prader-Willi syndrome in one UK Health Region. J Med Genet 2001; 38: 792–798.

    Article  CAS  Google Scholar 

  2. Butler MG . Prader-Willi Syndrome: current understanding of cause and diagnosis. Am J Med Genet 1990; 35: 319–332.

    Article  CAS  Google Scholar 

  3. Bittel DC, Butler MG . Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med 2005; 7: 1–20.

    Article  Google Scholar 

  4. Clarke DJ, Boer H . Problem behaviors associated with deletion Prader-Willi, Smith-Magenis, and cri du chat syndromes. Am J Ment Retard 1998; 103: 264–271.

    Article  CAS  Google Scholar 

  5. Holm VA, Pipes PL . Food and children with Prader-Willi syndrome. Am J Dis Child 1976; 130: 1063–1067.

    CAS  PubMed  Google Scholar 

  6. Zipf WB, Bernston GG . Characteristics of abnormal food-intake patterns in children with Prader-Willi syndrome and study of effects of naloxone. Am J Clin Nutr 1987; 46: 277–281.

    Article  CAS  Google Scholar 

  7. Stevenson DA, Heinemann J, Angulo M, Butler MG, Loker J, Rupe N et al. Gastric rupture and necrosis in Prader-Willi syndrome. J Pediatr Gastroenterol Nutr 2007; 45: 272–274.

    Article  Google Scholar 

  8. Butler MG . Management of obesity in Prader-Willi syndrome. Nat Clin Pract Endocrinol Metab 2006; 2: 592–593.

    Article  Google Scholar 

  9. Butler MG, Jacobsen D, Smith BK, Donnelly JE . Genetics and obesity: Prader-Willi syndrome, an illustrative example. In: Ling PR (ed). Focus on Obesity Research. Nova Science Publishers, Inc.: Hauppauge, NY, 2005, pp 51–88.

    Google Scholar 

  10. Bosio L, Beccaria L, Benzi F, Sanzari A, Chiumello G . Body composition during GH treatment in Prader-Labhart-Willi syndrome. J Pediatr Endocrinol Metab 1999; 12: 351–353.

    PubMed  Google Scholar 

  11. Carrel AL, Myers SE, Whitman BY, Allen DB . Growth hormone improves body composition, fat utilization, physical strength and agility, and growth in Prader-Willi syndrome: a controlled study. J Pediatr 1999; 134: 215–221.

    Article  CAS  Google Scholar 

  12. Mewborn SK, Milley NL, Fantes JA, Brown RL, Butler MG, Christian SL et al. Break point junction fragments in Prader-Willi and Angelman syndrome (PWS/AS) deletion patients reveal variable breakpoints within large duplicons. Am J Hum Genet 2002; 71: A298.

    Google Scholar 

  13. Nicholls RD, Knepper JL . Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genom Hum Genet 2001; 2: 153–175.

    Article  CAS  Google Scholar 

  14. Ungaro P, Christian SL, Fantes JA, Mutirangura A, Black S, Reynolds J et al. Molecular characterization of four cases of intrachromosomal triplication of chromosome 15q11–q14. Am J Med Genet 2001; 38: 26–34.

    Article  CAS  Google Scholar 

  15. Butler MG, Fischer W, Kibiryeva N, Bittel DC . Array comparative genomic hybridization (aCGH) analysis in Prader-Willi Syndrome. Am J Med Genet 2008; 146: 854–860.

    Article  Google Scholar 

  16. Cassidy SB, Forsythe M, Heeger S, Nicholls RD, Schork N, Benn P et al. Comparison of phenotype between patients with Prader-Willi syndrome due to deletion 15q and uniparental disomy 15. Am J Med Genet 1997; 68: 433–440.

    Article  CAS  Google Scholar 

  17. Gillessen-Kaesbach G, Robinson W, Lohmann D, Kaya-Westerloh S, Passarge E, Horsthemke B . Genotype-phenotype correlation in a series of 167 deletion and non-deletion patients with Prader-Willi syndrome. Hum Genet 1995; 96: 638–643.

    Article  CAS  Google Scholar 

  18. Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T . Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 2004; 113: 565–573.

    Article  Google Scholar 

  19. Hartley SL, MacLean WE, Butler MG, Zarcone J, Thompson T . Maladaptive behaviors and risk factors among the genetic subtypes of Prader-Willi syndrome. Am J Med Genet 2005; 136: 140–145.

    Article  Google Scholar 

  20. Webb T, Whittington J, Clarke D, Boer H, Butler J, Holland A . A study of the influence of different genotypes on the physical and behavioral phenotypes of children and adults ascertained clinically as having PWS. Clin Genet 2002; 62: 273–281.

    Article  CAS  Google Scholar 

  21. Fox R, Yang GS, Feurer ID, Butler MG, Thompson T . Kinetic form discrimination in Prader-Willi syndrome. J Intell Disabil Res 2001; 45: 317–325.

    Article  CAS  Google Scholar 

  22. Roof E, Stone W, MacLean W, Feurer ID, Thompson T, Butler MG . Intellectual characteristics of Prader-Willi syndrome: comparison of genetic subtypes. J Intellect Disabil Res 2000; 44: 25–30.

    Article  Google Scholar 

  23. Torrado M, Araoz V, Baialardo E, Abraldes K, Mazza C, Krochik G et al. Clinical-etiologic correlation in children with Prader-Willi syndrome (PWS): an intradisciplinary study. Am J Med Genet 2007; 143A: 460–468.

    Article  Google Scholar 

  24. Vogels A, De Her M, Descheemaeker MJ, Govers V, Devriendt K, Legius E et al. Psychotic disorders in Prader-Willi syndrome. Am J Med Genet 2004; 127A: 238–243.

    Article  CAS  Google Scholar 

  25. Zarcone J, Napolitano D, Peterson C, Breidbord J, Ferraioli S, Caruso-Anderson M et al. The relationship between compulsive behaviour and academic achievement across the three genetic subtypes of Prader-Willi syndrome. J Intellect Disabil Res 2007; 51: 478–487.

    Article  CAS  Google Scholar 

  26. Shapira NA, Lessig MC, He AG, James GA, Driscoll DJ, Liu Y . Satiety dysfunction in Prader-Willi syndrome demonstrated by fMRI. J Neurol Neurosurg Psychiatry 2005; 76: 260–262.

    Article  CAS  Google Scholar 

  27. Holsen LM, Zarcone JR, Brooks WM, Butler MG, Thompson TI, Ahluwalia JS et al. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. Obesity 2006; 14: 1028–1037.

    Article  Google Scholar 

  28. Hinton EC, Holland AJ, Gellatly MSN, Soni S, Patterson M, Ghatei MA et al. Neural representations of hunger and satiety in Prader-Willi syndrome. Int J Obesity 2006; 30: 313–321.

    Article  CAS  Google Scholar 

  29. Miller JL, James GJ, Goldstone AP, Couch JA, He G, Driscoll D et al. Enhanced activation of reward mediating prefrontal regions in response to food stimuli in Prader-Willi syndrome. J Neurol Neurosurg Psychiatry 2007; 78: 615–619.

    Article  Google Scholar 

  30. Dimitropoulos A, Schultz RT . Food-related neural circuitry in Prader-Willi syndrome: response to high- versus low-calorie foods. J Autism Dev Disord 2008; 38: 1642–1653.

    Article  Google Scholar 

  31. Kim SE, Jin D-K, Choo SS, Kim J-H, Hong SD, Paik KH et al. Regional cerebral glucose metabolic abnormality in Prader-Willi syndrome: a 18F-FDG PET study under sedation. J Nucl Med 2006; 47: 1088–1092.

    PubMed  Google Scholar 

  32. Lucignani G, Panzacchi A, Bosio L, Moresco RM, Ravasi L, Coppa I et al. GABAA receptor abnormalities in Prader-Willi syndrome assessed with positron emission tomography and [11C]flumazenil. Neuroimage 2004; 22: 22–28.

    Article  Google Scholar 

  33. Goldstone AP . Prader-Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol Metab 2004; 15: 12–20.

    Article  CAS  Google Scholar 

  34. Stunkard AJ, Messick S . The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 1985; 29: 71–83.

    Article  CAS  Google Scholar 

  35. Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP et al. MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 1999; 210: 759–767.

    Article  CAS  Google Scholar 

  36. LaBar KS, Gitelman DR, Parrish TB, Kim Y, Nobre AC, Mesulam MM . Hunger selectivity modulates corticolimbic activation to food stimuli in humans. Behav Neurosci 2001; 115: 493–500.

    Article  CAS  Google Scholar 

  37. Talairach J, Tournoux P . Co-Planar Stereotaxic Atlas of the Human Brain. Thieme Medical Publishing: New York, 1988.

    Google Scholar 

  38. Friston KJ, Holmes AP, Worsley JJ . Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapping 1995; 2: 189–210.

    Article  Google Scholar 

  39. Holsen LM, Zarcone JR, Thompson TI, Brooks WM, Anderson MF, Ahluwalia JS et al. Neural mechanisms underlying food motivation in children and adolescents. Neuroimage 2005; 27: 669–676.

    Article  Google Scholar 

  40. Bittel DC, Kibiryeva N, Butler MG . Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. Pediatrics 2006; 118: 1276–1283.

    Article  Google Scholar 

  41. Bittel DC, Kibiryeva N, Sell SM, Strong TV, Butler MG . Whole genome microarray analysis of gene expression in Prader-Willi syndrome. Am J Med Genet 2007; 143: 488–492.

    Google Scholar 

  42. Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M et al. Differential brain responses to satiation in obese and lean men. Diabetes 2000; 49: 838–846.

    Article  CAS  Google Scholar 

  43. Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 2007; 37: 410–421.

    Article  Google Scholar 

  44. Ongur D, Price JL . The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000; 10: 206–219.

    Article  CAS  Google Scholar 

  45. Ongur D, Ferry AT, Price JL . Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 2003; 460: 425–449.

    Article  Google Scholar 

  46. Hinton EC, Holland AJ, Gellatly MSN, Soni S, Owen AM . An investigation into food preferences and the neural basis of food-related incentive motivation in Prader-Willi syndrome. J Intellect Disabil Res 2006; 50: 633–642.

    Article  CAS  Google Scholar 

  47. Miller EK . The prefrontal cortex and cognitive control. Nat Rev Neurosci 2000; 1: 59–65.

    Article  CAS  Google Scholar 

  48. DelParigi A, Chen K, Salbe AD, Hill JO, Wing RR, Reiman EM et al. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes 2007; 31: 440–448.

    Article  CAS  Google Scholar 

  49. Bittel DC, Kibiryeva N, Talebizadeh Z, Butler MG . Microarray analysis of gene/transcript expression in Prader-Willi syndrome: deletion versus UPD. J Med Genet 2003; 40: 568–574.

    Article  CAS  Google Scholar 

  50. Tobet SA, Henderson RG, Whiting PJ, Sieghart W . Special relationship of gamma-aminobutyric acid to the ventromedial nucleus of the hypothalamus during embryonic development. J Comp Neurol 1999; 405: 88–98.

    Article  CAS  Google Scholar 

  51. DeLorey TM, Handforth A, Anagnostaras SG, Homanics GE, Minassian BA, Asatourian A et al. Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci 1998; 18: 8505–8514.

    Article  CAS  Google Scholar 

  52. Homanics GE, DeLorey TM, Firestone LL, Quinlan JJ, Handforth A, Harrison NL et al. Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci USA 1997; 94: 4143–4148.

    Article  CAS  Google Scholar 

  53. Kurita M, Kuwajima T, Nishimura I, Yoshikawa K . Necdin downregulates CDC2 expression to attenuate neuronal apoptosis. J Neurosci 2006; 26: 12003–12013.

    Article  CAS  Google Scholar 

  54. Kuwajima T, Nishimura I, Yoshikawa K . Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins. J Neurosci 2006; 26: 5383–5392.

    Article  CAS  Google Scholar 

  55. Lee S, Walker CL, Wevrick R . Prader-Willi syndrome transcripts are expressed in phenotypically significant regions of the developing mouse brain. Gene Expr Patterns 2003; 3: 599–609.

    Article  CAS  Google Scholar 

  56. Pagliardini S, Ren J, Wevrick R, Greer JJ . Developmental abnormalities of neuronal structure and function in prenatal mice lacking the Prader-Willi syndrome gene necdin. Am J Pathol 2005; 167: 175–191.

    Article  CAS  Google Scholar 

  57. Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M, Cau P et al. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum Mol Genet 2000; 9: 3101–3110.

    Article  CAS  Google Scholar 

  58. Bischof JM, Stewart CL, Wevrick R . Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi Syndrome. Hum Mol Genet 2007; 16: 2713–2719.

    Article  CAS  Google Scholar 

  59. Albrecht U, Sutcliffe JS, Cattanach BM, Beechey CV, Armstrong D, Eichele G et al. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet 1997; 17: 75–78.

    Article  CAS  Google Scholar 

  60. Joseph B, Egli M, Sutcliffe JS, Thompson T . Possible dosage effect of maternally expressed genes on visual recognition memory in Prader-Willi syndrome. Am J Med Genet 2001; 105: 71–75.

    Article  CAS  Google Scholar 

  61. Soni S, Whittington J, Holland AJ, Webb T, Maina E, Boer H et al. The course and outcome of psychiatric illness in people with Prader-Willi syndrome: implications for management and treatment. J Intellect Disabil Res 2007; 51: 32–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health (HD041672), the Hall Family Foundation and the Heartland Genetics and Newborn Screening Collaborative (HRSA U22MC03962-02). Dr Brooks received support from NIH (NS039123, HD050534, AG029615, AG026482, AG026374 and RR015563). Dr Butler is also supported by NIH (RR019478). The Hoglund Brain Imaging Center is supported by the Hoglund Family Foundation. The authors are grateful to Sang-Pil Lee, Allan Schmitt, Muriel Williams and Pat Weber for technical assistance and Stacey Ward, Jean Reeves and Jean Guadagnino for help in project coordination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M Holsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holsen, L., Zarcone, J., Chambers, R. et al. Genetic subtype differences in neural circuitry of food motivation in Prader-Willi syndrome. Int J Obes 33, 273–283 (2009). https://doi.org/10.1038/ijo.2008.255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.255

Keywords

This article is cited by

Search

Quick links