Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interference of pollutants with PPARs: endocrine disruption meets metabolism

Abstract

The concept of endocrine disruption emerged over a decade ago with the observation that several natural or industrial compounds can interfere with estrogen and androgen signaling, and thereby affect both male and female reproductive functions. Since then, many endocrine-disrupting chemicals (EDCs) have been identified and the concept has been broadened to receptors regulating other aspects of endocrine pathways. In that context, interference of EDCs with receptors regulating metabolism has been proposed as a factor that could contribute to metabolic diseases such as obesity and diabetes. We review recent studies showing that several pollutants, including phthalates and organotins, interfere with PPAR (peroxisome proliferator-activated receptors) nuclear receptors and may thereby affect metabolic homeostasis. Particular emphasis is given on the mechanisms of action of these compounds. However, unlike what has been suspected, we provide evidence from mouse models suggesting that in utero exposure to the phthalate ester di-ethyl-hexyl-phthalate most likely does not predispose to obesity. Collectively, these studies define a subclass of EDCs that perturb metabolic signaling and that we propose to define as metabolic disruptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Waring RH, Harris RM . Endocrine disrupters: a human risk? Mol Cell Endocrinol 2005; 244: 2–9.

    Article  CAS  PubMed  Google Scholar 

  2. Tabb MM, Blumberg B . New modes of action for endocrine-disrupting chemicals. Mol Endocrinol 2006; 20: 475–482.

    Article  CAS  PubMed  Google Scholar 

  3. Markey CM, Rubin BS, Soto AM, Sonnenschein C . Endocrine disruptors: from Wingspread to environmental developmental biology. J Steroid Biochem Mol Biol 2002; 83: 235–244.

    Article  CAS  PubMed  Google Scholar 

  4. Inoshita H, Masuyama H, Hiramatsu Y . The different effects of endocrine-disrupting chemicals on estrogen receptor-mediated transcription through interaction with coactivator TRAP220 in uterine tissue. J Mol Endocrinol 2003; 31: 551–561.

    Article  CAS  PubMed  Google Scholar 

  5. Lonard DM, Tsai SY, O'Malley BW . Selective estrogen receptor modulators 4-hydroxytamoxifen and raloxifene impact the stability and function of SRC-1 and SRC-3 coactivator proteins. Mol Cell Biol 2004; 24: 14–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henley DV, Korach KS . Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function. Endocrinology 2006; 147: S25–S32.

    Article  CAS  PubMed  Google Scholar 

  7. Heindel JJ . Endocrine disruptors and the obesity epidemic. Toxicol Sci 2003; 76: 247–249.

    Article  CAS  PubMed  Google Scholar 

  8. Baillie-Hamilton PF . Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med 2002; 8: 185–192.

    Article  PubMed  Google Scholar 

  9. Grun F, Blumberg B . Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev Endocr Metab Disord 2007; 8: 161–171.

    Article  PubMed  Google Scholar 

  10. Newbold RR, Padilla-Banks E, Jefferson WN, Heindel JJ . Effects of endocrine disruptors on obesity. Int J Androl 2008; 31: 201–208.

    Article  CAS  PubMed  Google Scholar 

  11. Toschke AM, Koletzko B, Slikker Jr W, Hermann M, von Kries R . Childhood obesity is associated with maternal smoking in pregnancy. Eur J Pediatr 2002; 161: 445–448.

    Article  CAS  PubMed  Google Scholar 

  12. Montgomery SM, Ekbom A . Smoking during pregnancy and diabetes mellitus in a British longitudinal birth cohort. BMJ 2002; 324: 26–27.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grün F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol 2006; 20: 2141–2155.

    Article  PubMed  Google Scholar 

  14. Barker DJ . Fetal origins of coronary heart disease. BMJ 1995; 311: 171–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN . Developmental exposure to estrogenic compounds and obesity. Birth Defects Res A Clin Mol Teratol 2005; 73: 478–480.

    Article  CAS  PubMed  Google Scholar 

  16. Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN . Perinatal exposure to environmental estrogens and the development of obesity. Mol Nutr Food Res 2007; 51: 912–917.

    Article  CAS  PubMed  Google Scholar 

  17. Frederiksen H, Skakkebaek NE, Andersson AM . Metabolism of phthalates in humans. Mol Nutr Food Res 2007; 51: 899–911.

    Article  CAS  PubMed  Google Scholar 

  18. Huber WW, Grasl-Kraupp B, Schulte-Hermann R . Hepatocarcinogenic potential of di(2-ethylhexyl)phthalate in rodents and its implications on human risk. Crit Rev Toxicol 1996; 26: 365–481.

    Article  CAS  PubMed  Google Scholar 

  19. Heudorf U, Mersch-Sundermann V, Angerer J . Phthalates: toxicology and exposure. Int J Hyg Environ Health 2007; 210: 623–634.

    Article  CAS  PubMed  Google Scholar 

  20. Gayathri NS, Dhanya CR, Indu AR, Kurup PA . Changes in some hormones by low doses of di (2-ethyl hexyl) phthalate (DEHP), a commonly used plasticizer in PVC blood storage bags & medical tubing. Indian J Med Res 2004; 119: 139–144.

    CAS  PubMed  Google Scholar 

  21. Stahlhut RW, van Wijngaarden E, Dye TD, Cook S, Swan SH . Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult US males. Environ Health Perspect 2007; 115: 876–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Willson TM, Moore JT . Genomics versus orphan nuclear receptors—a half-time report. Mol Endocrinol 2002; 16: 1135–1144.

    CAS  PubMed  Google Scholar 

  23. Guan HP, Ishizuka T, Chui PC, Lehrke M, Lazar MA . Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes. Genes Dev 2005; 19: 453–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bainy AC . Nuclear receptors and susceptibility to chemical exposure in aquatic organisms. Environ Int 2007; 33: 571–575.

    Article  CAS  PubMed  Google Scholar 

  25. Harvey CB, Williams GR . Mechanism of thyroid hormone action. Thyroid 2002; 12: 441–446.

    Article  CAS  PubMed  Google Scholar 

  26. Lin HK, Altuwaijri S, Lin WJ, Kan PY, Collins LL, Chang C . Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J Biol Chem 2002; 277: 36570–36576.

    Article  CAS  PubMed  Google Scholar 

  27. Wijayaratne AL, McDonnell DP . The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 2001; 276: 35684–35692.

    Article  CAS  PubMed  Google Scholar 

  28. Masuyama H, Inoshita H, Hiramatsu Y, Kudo T . Ligands have various potential effects on the degradation of pregnane X receptor by proteasome. Endocrinology 2002; 143: 55–61.

    Article  CAS  PubMed  Google Scholar 

  29. Anway MD, Cupp AS, Uzumcu M, Skinner MK . Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308: 1466–1469.

    Article  CAS  PubMed  Google Scholar 

  30. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W . From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 2006; 45: 120–159.

    Article  CAS  PubMed  Google Scholar 

  31. Desvergne B, Wahli W . Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999; 20: 649–688.

    CAS  PubMed  Google Scholar 

  32. Qi C, Zhu Y, Reddy JK . Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys 2000; 32 Spring: 187–204.

    Article  CAS  PubMed  Google Scholar 

  33. Auwerx J . PPARgamma, the ultimate thrifty gene. Diabetologia 1999; 42: 1033–1049.

    Article  CAS  PubMed  Google Scholar 

  34. Escher P, Wahli W . Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 2000; 448: 121–138.

    Article  CAS  PubMed  Google Scholar 

  35. Heneka MT, Landreth GE . PPARs in the brain. Biochim Biophys Acta 2007; 1771: 1031–1045.

    Article  CAS  PubMed  Google Scholar 

  36. Michalik L, Wahli W . Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. Biochim Biophys Acta 2007; 1771: 991–998.

    Article  CAS  PubMed  Google Scholar 

  37. Barish GD, Narkar VA, Evans RM . PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest 2006; 116: 590–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bility MT, Thompson JT, McKee RH, David RM, Butala JH, Vanden Heuvel JP et al. Activation of mouse and human peroxisome proliferator-activated receptors (PPARs) by phthalate monoesters. Toxicol Sci 2004; 82: 170–182.

    Article  CAS  PubMed  Google Scholar 

  39. Hurst CH, Waxman DJ . Activation of PPARalpha and PPARgamma by environmental phthalate monoesters. Toxicol Sci 2003; 74: 297–308.

    Article  CAS  PubMed  Google Scholar 

  40. Lapinskas PJ, Brown S, Leesnitzer LM, Blanchard S, Swanson C, Cattley RC et al. Role of PPARalpha in mediating the effects of phthalates and metabolites in the liver. Toxicology 2005; 207: 149–163.

    Article  CAS  PubMed  Google Scholar 

  41. Shipley JM, Hurst CH, Tanaka SS, DeRoos FL, Butenhoff JL, Seacat AM et al. trans-activation of PPARalpha and induction of PPARalpha target genes by perfluorooctane-based chemicals. Toxicol Sci 2004; 80: 151–160.

    Article  CAS  PubMed  Google Scholar 

  42. Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ . Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci 2006; 92: 476–489.

    Article  CAS  PubMed  Google Scholar 

  43. Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa J . Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor gamma/retinoid X receptor pathway. Mol Pharmacol 2005; 67: 766–774.

    Article  CAS  PubMed  Google Scholar 

  44. Takeuchi S, Matsuda T, Kobayashi S, Takahashi T, Kojima H . In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma and quantitative analysis of in vivo induction pathway. Toxicol Appl Pharmacol 2006; 217: 235–244.

    Article  CAS  PubMed  Google Scholar 

  45. Upham J, Acott PD, O'regan P, Sinal CJ, Crocker JF, Geldenhuys L et al. The pesticide adjuvant, Toximul, alters hepatic metabolism through effects on downstream targets of PPARalpha. Biochim Biophys Acta 2007; 1772: 1057–1064.

    Article  CAS  PubMed  Google Scholar 

  46. Reddy JK, Azarnoff DL, Hignite CE . Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 1980; 283: 397–398.

    Article  CAS  PubMed  Google Scholar 

  47. Berger J, Moller DE . The mechanisms of action of PPARs. Annu Rev Med 2002; 53: 409–435.

    Article  CAS  PubMed  Google Scholar 

  48. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL et al. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 1995; 15: 3012–3022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Corton JC, Lapinskas PJ . Peroxisome proliferator-activated receptors: mediators of phthalate ester-induced effects in the male reproductive tract? Toxicol Sci 2005; 83: 4–17.

    Article  CAS  PubMed  Google Scholar 

  50. Ward JM, Peters JM, Perella CM, Gonzalez FJ . Receptor and nonreceptor-mediated organ-specific toxicity of di(2-ethylhexyl)phthalate (DEHP) in peroxisome proliferator-activated receptor alpha-null mice. Toxicol Pathol 1998; 26: 240–246.

    Article  CAS  PubMed  Google Scholar 

  51. Feige JN, Gelman L, Rossi D, Zoete V, Métivier R, Tudor C et al. The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis. J Biol Chem 2007; 282: 19152–19166.

    Article  CAS  PubMed  Google Scholar 

  52. Gelman L, Feige JN, Desvergne B . Molecular basis of selective PPARgamma modulation for the treatment of Type 2 diabetes. Biochim Biophys Acta 2007; 1771: 1094–1107.

    Article  CAS  PubMed  Google Scholar 

  53. Cronet P, Petersen JF, Folmer R, Blomberg N, Sjöblom K, Karlsson U et al. Structure of the PPARalpha and -gamma ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. Structure 2001; 9: 699–706.

    Article  CAS  PubMed  Google Scholar 

  54. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 1998; 395: 137–143.

    Article  CAS  PubMed  Google Scholar 

  55. Shi GQ, Dropinski JF, Zhang Y, Santini C, Sahoo SP, Berger JP et al. Novel 2,3-dihydrobenzofuran-2-carboxylic acids: highly potent and subtype-selective PPARalpha agonists with potent hypolipidemic activity. J Med Chem 2005; 48: 5589–5599.

    Article  CAS  PubMed  Google Scholar 

  56. Zoete V, Grosdidier A, Michielin O . Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochim Biophys Acta 2007; 1771: 915–925.

    Article  CAS  PubMed  Google Scholar 

  57. Feige JN, Gelman L, Tudor C, Engelborghs Y, Wahli W, Desvergne B . Fluorescence imaging reveals the nuclear behavior of peroxisome proliferator-activated receptor/retinoid X receptor heterodimers in the absence and presence of ligand. J Biol Chem 2005; 280: 17880–17890.

    Article  CAS  PubMed  Google Scholar 

  58. Tudor C, Feige JN, Pingali H, Lohray VB, Wahli W, Desvergne B et al. Association with coregulators is the major determinant governing peroxisome proliferator-activated receptor mobility in living cells. J Biol Chem 2007; 282: 4417–4426.

    Article  CAS  PubMed  Google Scholar 

  59. Gelman L, Feige JN, Tudor C, Engelborghs Y, Wahli W, Desvergne B . Integrating nuclear receptor mobility in models of gene regulation. Nucl Recept Signal 2006; 4: e010.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wallrabe H, Periasamy A . Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 2005; 16: 19–27.

    Article  CAS  PubMed  Google Scholar 

  61. Wouters FS, Verveer PJ, Bastiaens PI . Imaging biochemistry inside cells. Trends Cell Biol 2001; 11: 203–211.

    Article  CAS  PubMed  Google Scholar 

  62. Feige JN, Sage D, Wahli W, Desvergne B, Gelman L . PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc Res Tech 2005; 68: 51–58.

    Article  CAS  PubMed  Google Scholar 

  63. Sekar RB, Periasamy A . Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 2003; 160: 629–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Balint BL, Nagy L . Selective modulators of PPAR activity as new therapeutic tools in metabolic diseases. Endocr Metab Immune Disord Drug Targets 2006; 6: 33–43.

    Article  CAS  PubMed  Google Scholar 

  65. Berger JP, Akiyama TE, Meinke PT . PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 2005; 26: 244–251.

    Article  CAS  PubMed  Google Scholar 

  66. Rusyn I, Peters JM, Cunningham ML . Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit Rev Toxicol 2006; 36: 459–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Howdeshell KL, Furr J, Lambright CR, Rider CV, Wilson VS, Gray Jr LE . Cumulative effects of dibutyl phthalate and diethylhexyl phthalate on male rat reproductive tract development: altered fetal steroid hormones and genes. Toxicol Sci 2007; 99: 190–202.

    Article  CAS  PubMed  Google Scholar 

  68. Mahood IK, Scott HM, Brown R, Hallmark N, Walker M, Sharpe RM . In utero exposure to di(n-butyl) phthalate and testicular dysgenesis: comparison of fetal and adult end points and their dose sensitivity. Environ Health Perspect 2007; 115 (Suppl 1): 55–61.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Main KM, Mortensen GK, Kaleva MM, Boisen KA, Damgaard IN, Chellakooty M et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 2006; 114: 270–276.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Laurent Gelman, Christophe Heligon and Walter Wahli for lively discussion and help. This study was supported by the Swiss National Research Project 50, the Swiss National Science Foundation and the Etat de Vaud.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Desvergne.

Additional information

Conflict of interest

The authors have declared no financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casals-Casas, C., Feige, J. & Desvergne, B. Interference of pollutants with PPARs: endocrine disruption meets metabolism. Int J Obes 32 (Suppl 6), S53–S61 (2008). https://doi.org/10.1038/ijo.2008.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.207

Keywords

This article is cited by

Search

Quick links