Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dietary determinants of subclinical inflammation, dyslipidemia and components of the metabolic syndrome in overweight children: a review

Abstract

Objective:

To review and summarize the dietary determinants of the metabolic syndrome, subclinical inflammation and dyslipidemia in overweight children.

Design:

Review of the current literature, focusing on pediatric studies.

Participants:

Normal weight, overweight, or obese children and adolescents.

Results:

There is a growing literature on the metabolic effects of excess body fat during childhood. However, few pediatric studies have examined the dietary determinants of obesity-related metabolic disturbances. From the available data, it appears that dietary factors are not only important environmental determinants of adiposity, but also may affect components of the metabolic syndrome and modulate the actions of adipokines. Dietary total fat and saturated fat are associated with insulin resistance and high blood pressure, as well as obesity-related inflammation. In contrast to studies in adults, resistin and adiponectin do not appear to be closely linked to insulin resistance or dyslipidemia in childhood. However, circulating leptin and retinol-binding protein (RBP) 4 correlate well with obesity, central obesity and the metabolic syndrome in children. Intakes of antioxidant vitamins tend to be low in obese children and may be predictors of subclinical inflammation. Higher fructose intake from sweets and sweetened drinks in overweight children has been linked to decreased low-density lipoprotein (LDL) particle size.

Conclusions:

Dietary interventions aimed at reducing intakes of total fat, saturated fat and free fructose, whereas increasing antioxidant vitamin intake may be beneficial in overweight children. More research on the relationships between dietary factors and the metabolic changes of pediatric obesity may help to identify the dietary changes to reduce health risks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zimmermann MB, Gubeli C, Puntener C, Molinari L . Detection of overweight and obesity in a national sample of 6–12-y-old Swiss children: accuracy and validity of reference values for body mass index from the US Centers for Disease Control and Prevention and the International Obesity Task Force. Am J Clin Nutr 2004; 79: 838–843.

    CAS  PubMed  Google Scholar 

  2. Couch SC, Daniels SR . Diet and blood pressure in children. Curr Opin Pediatr 2005; 17: 642–647.

    PubMed  Google Scholar 

  3. Weiss R, Caprio S . The metabolic consequences of childhood obesity. Best Pract Res Clin Endocrinol Metab 2005; 19: 405–419.

    CAS  PubMed  Google Scholar 

  4. Gouni-Berthold I, Giannakidou E, Faust M, Kratzsch J, Berthold HK, Krone W . Resistin gene 3′-untranslated region +62G → a polymorphism is associated with hypertension but not diabetes mellitus type 2 in a German population. J Intern Med 2005; 258: 518–526.

    CAS  PubMed  Google Scholar 

  5. Hirose H, Saito I, Tsujioka M, Mori M, Kawabe H, Saruta T . The obese gene product, leptin: possible role in obesity-related hypertension in adolescents. J Hypertens 1998; 16: 2007–2012.

    CAS  PubMed  Google Scholar 

  6. Mukherjee R, Villarreal D, Reams GP, Freeman RH, Tchoukina I, Spear RM . Leptin as a common link to obesity and hypertension. Drugs Today (Barc) 2005; 41: 687–695.

    CAS  Google Scholar 

  7. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM et al. The hormone resistin links obesity to diabetes. Nature 2001; 409: 307–312.

    CAS  PubMed  Google Scholar 

  8. Gerber M, Boettner A, Seidel B, Lammert A, Bär J, Schuster E et al. Serum resistin levels of obese and lean children and adolescents: biochemical analysis and clinical relevance. J Clin Endocrinol Metab 2005; 90: 4503–4509.

    CAS  PubMed  Google Scholar 

  9. Ong KK, Frystyk J, Flyvbjerg A, Petry CJ, Ness A, Dunger DB . Sex-discordant associations with adiponectin levels and lipid profiles in children. Diabetes 2006; 55: 1337–1341.

    CAS  PubMed  Google Scholar 

  10. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004; 114: 555–576.

  11. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004; 350: 2362–2374.

    CAS  PubMed  Google Scholar 

  12. Bao W, Threefoot SA, Srinivasan SR, Berenson GS . Essential hypertension predicted by tracking of elevated blood pressure from childhood to adulthood: the Bogalusa Heart Study. Am J Hypertens 1995; 8: 657–665.

    CAS  PubMed  Google Scholar 

  13. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM . Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 2006; 47: 296–308.

    CAS  PubMed  Google Scholar 

  14. Simons-Morton DG, Obarzanek E . Diet and blood pressure in children and adolescents. Pediatr Nephrol 1997; 11: 244–249.

    CAS  PubMed  Google Scholar 

  15. Brownell KD, Kelman JH, Stunkard AJ . Treatment of obese children with and without their mothers: changes in weight and blood pressure. Pediatrics 1983; 71: 515–523.

    CAS  PubMed  Google Scholar 

  16. Reinehr T, Andler W . Changes in the atherogenic risk factor profile according to degree of weight loss. Arch Dis Child 2004; 89: 419–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Simons-Morton DG, Hunsberger SA, Van Horn L, Barton BA, Robson AM, McMahon RP et al. Nutrient intake and blood pressure in the Dietary Intervention Study in Children. Hypertension 1997; 29: 930–936.

    CAS  PubMed  Google Scholar 

  18. Stern B, Heyden S, Miller D, Latham G, Klimas A, Pilkington K . Intervention study in high school students with elevated blood pressures. Dietary experiment with polyunsaturated fatty acids. Nutr Metab 1980; 24: 137–147.

    CAS  PubMed  Google Scholar 

  19. Goldberg RJ, Ellison RC, Hosmer Jr DW, Capper AL, Puleo E, Gamble WJ et al. Effects of alterations in fatty acid intake on the blood pressure of adolescents: the Exeter-Andover Project. Am J Clin Nutr 1992; 56: 71–76.

    CAS  PubMed  Google Scholar 

  20. Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD et al. Resistin promotes endothelial cell activation: further evidence of adipokine–endothelial interaction. Circulation 2003; 108: 736–740.

    CAS  PubMed  Google Scholar 

  21. Teng X, Li D, Champion HC, Johns RA . FIZZ1/RELMalpha, a novel hypoxia-induced mitogenic factor in lung with vasoconstrictive and angiogenic properties. Circ Res 2003; 92: 1065–1067.

    CAS  PubMed  Google Scholar 

  22. Ukkola O . Resistin—a mediator of obesity-associated insulin resistance or an innocent bystander? Eur J Endocrinol 2002; 147: 571–574.

    CAS  PubMed  Google Scholar 

  23. McTernan CL, McTernan PG, Harte AL, Levick PL, Barnett AH, Kumar S . Resistin, central obesity, and type 2 diabetes. Lancet 2002; 359: 46–47.

    CAS  PubMed  Google Scholar 

  24. Lee JH, Chan JL, Yiannakouris N, Kontogianni M, Estrada E, Seip R et al. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J Clin Endocrinol Metab 2003; 88: 4848–4856.

    CAS  PubMed  Google Scholar 

  25. Aeberli I, Spinas GA, Lehmann R, l’Allemand D, Molinari L, Zimmermann MB . High intakes of fat and saturated fat predict blood pressure and insulin resistance, but not resistin, adiponectin or leptin concentrations, Swiss children. Int J Vit Nutr Res 2008 (in press).

  26. Punthakee Z, Delvin EE, O’Loughlin J, Paradis G, Levy E, Platt RW et al. Adiponectin, adiposity, and insulin resistance in children and adolescents. J Clin Endocrinol Metab 2006; 91: 2119–2125.

    CAS  PubMed  Google Scholar 

  27. Kolaczynski JW, Ohannesian JP, Considine RV, Marco CC, Caro JF . Response of leptin to short-term and prolonged overfeeding in humans. J Clin Endocrinol Metab 1996; 81: 4162–4165.

    CAS  PubMed  Google Scholar 

  28. Dubuc GR, Phinney SD, Stern JS, Havel PJ . Changes of serum leptin and endocrine and metabolic parameters after 7 days of energy restriction in men and women. Metabolism 1998; 47: 429–434.

    CAS  PubMed  Google Scholar 

  29. Fung TT, Rimm EB, Spiegelman D, Rifai N, Tofler GH, Willett WC et al. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr 2001; 73: 61–67.

    CAS  PubMed  Google Scholar 

  30. Havel PJ, Townsend R, Chaump L, Teff K . High-fat meals reduce 24-h circulating leptin concentrations in women. Diabetes 1999; 48: 334–341.

    CAS  PubMed  Google Scholar 

  31. Yannakoulia M, Yiannakouris N, Bluher S, Matalas AL, Klimis-Zacas D, Mantzoros CS . Body fat mass and macronutrient intake in relation to circulating soluble leptin receptor, free leptin index, adiponectin, and resistin concentrations in healthy humans. J Clin Endocrinol Metab 2003; 88: 1730–1736.

    CAS  PubMed  Google Scholar 

  32. Hakanen M, Ronnemaa T, Talvia S, Rask-Nissilä L, Koulu M, Viikari J et al. Serum leptin concentration poorly reflects growth and energy and nutrient intake in young children. Pediatrics 2004; 113: 1273–1278.

    PubMed  Google Scholar 

  33. Gutin B, Ramsey L, Barbeau P, Cannady W, Ferguson M, Litaker M et al. Plasma leptin concentrations in obese children: changes during 4-mo periods with and without physical training. Am J Clin Nutr 1999; 69: 388–394.

    CAS  PubMed  Google Scholar 

  34. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI . Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest 1997; 100: 270–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lembo G, Vecchione C, Fratta L, Marino G, Trimarco V, d’Amati G et al. Leptin induces direct vasodilation through distinct endothelial mechanisms. Diabetes 2000; 49: 293–297.

    CAS  PubMed  Google Scholar 

  36. Kokot F, Adamczak M, Wiecek A, Cieplok J . Does leptin play a role in the pathogenesis of essential hypertension? Kidney Blood Press Res 1999; 22: 154–160.

    CAS  PubMed  Google Scholar 

  37. Chu NF, Wang DJ, Shieh SM . Obesity, leptin and blood pressure among children in Taiwan: the Taipei Children′s Heart Study. Am J Hypertens 2001; 14: 135–140.

    CAS  PubMed  Google Scholar 

  38. Meigs JB, D’Agostino Sr RB, Wilson PW, Cupples LA, Nathan DM, Singer DE . Risk variable clustering in the insulin resistance syndrome. The Framingham Offspring Study. Diabetes 1997; 46: 1594–1600.

    CAS  PubMed  Google Scholar 

  39. Gupta AK, Clark RV, Kirchner KA . Effects of insulin on renal sodium excretion. Hypertension 1992; 19: I78–I82.

    CAS  PubMed  Google Scholar 

  40. Landsberg L . Hyperinsulinemia: possible role in obesity-induced hypertension. Hypertension 1992; 19: I61–I66.

    CAS  PubMed  Google Scholar 

  41. Stout RW, Bierman EL, Ross R . Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circ Res 1975; 36: 319–327.

    CAS  PubMed  Google Scholar 

  42. Jiang X, Srinivasan SR, Bao W, Berenson GS . Association of fasting insulin with blood pressure in young individuals. The Bogalusa Heart Study. Arch Intern Med 1993; 153: 323–328.

    CAS  PubMed  Google Scholar 

  43. Sinaiko AR, Steinberger J, Moran A, Prineas RJ, Jacobs Jr DR . Relation of insulin resistance to blood pressure in childhood. J Hypertens 2002; 20: 509–517.

    CAS  PubMed  Google Scholar 

  44. Marshall JA, Bessesen DH, Hamman RF . High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Luis Valley Diabetes Study. Diabetologia 1997; 40: 430–438.

    CAS  PubMed  Google Scholar 

  45. Vessby B . Dietary fat and insulin action in humans. Br J Nutr 2000; 83 (Suppl 1): S91–S96.

    CAS  PubMed  Google Scholar 

  46. Cruz ML, Shaibi GQ, Weigensberg MJ, Spruijt-Metz D, Ball GD, Goran MI . Pediatric obesity and insulin resistance: chronic disease risk and implications for treatment and prevention beyond body weight modification. Annu Rev Nutr 2005; 25: 435–468.

    CAS  PubMed  Google Scholar 

  47. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997; 82: 4196–4200.

    CAS  PubMed  Google Scholar 

  48. Wellen KE, Hotamisligil GS . Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 2003; 112: 1785–1788.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cook DG, Mendall MA, Whincup PH, Carey IM, Ballam L, Morris JE et al. C-reactive protein concentration in children: relationship to adiposity and other cardiovascular risk factors. Atherosclerosis 2000; 149: 139–150.

    CAS  PubMed  Google Scholar 

  50. Lambert M, Delvin EE, Paradis G, O’Loughlin J, Hanley JA, Levy E . C-reactive protein and features of the metabolic syndrome in a population-based sample of children and adolescents. Clin Chem 2004; 50: 1762–1768.

    CAS  PubMed  Google Scholar 

  51. Helmersson J, Vessby B, Larsson A, Basu S . Association of type 2 diabetes with cyclooxygenase-mediated inflammation and oxidative stress in an elderly population. Circulation 2004; 109: 1729–1734.

    CAS  PubMed  Google Scholar 

  52. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114: 1752–1761.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hartel C, Strunk T, Bucsky P, Schultz C . Effects of vitamin C on intracytoplasmic cytokine production in human whole blood monocytes and lymphocytes. Cytokine 2004; 27: 101–106.

    CAS  PubMed  Google Scholar 

  54. Molnar D, Livingstone B . Physical activity in relation to overweight and obesity in children and adolescents. Eur J Pediatr 2000; 159 (Suppl 1): S45–S55.

    PubMed  Google Scholar 

  55. Strauss RS . Comparison of serum concentrations of alpha-tocopherol and beta-carotene in a cross-sectional sample of obese and nonobese children (NHANES III). National Health and Nutrition Examination Survey. J Pediatr 1999; 134: 160–165.

    CAS  PubMed  Google Scholar 

  56. Aeberli I, Molinari L, Spinas G, Lehmann R, L’Allemand D, Zimmermann MB . Dietary intakes of fat and antioxidant vitamins are predictors of subclinical inflammation in overweight Swiss children. Am J Clin Nutr 2006; 84: 748–755.

    CAS  PubMed  Google Scholar 

  57. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB . Low-grade inflammation in overweight children. Pediatrics 2001; 107: E13–E18.

    CAS  PubMed  Google Scholar 

  58. Halle M, Korsten-Reck U, Wolfarth B, Berg A . Low-grade systemic inflammation in overweight children: impact of physical fitness. Exerc Immunol Rev 2004; 10: 66–74.

    PubMed  Google Scholar 

  59. Reinehr T, Stoffel-Wagner B, Roth CL, Andler W . High-sensitive C-reactive protein, tumor necrosis factor alpha, and cardiovascular risk factors before and after weight loss in obese children. Metabolism 2005; 54: 1155–1161.

    CAS  PubMed  Google Scholar 

  60. Gupta A, Ten S, Anhalt H . Serum levels of soluble tumor necrosis factor-alpha receptor 2 are linked to insulin resistance and glucose intolerance in children. J Pediatr Endocrinol Metab 2005; 18: 75–82.

    CAS  PubMed  Google Scholar 

  61. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G . Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001; 280: E745–E751.

    CAS  PubMed  Google Scholar 

  62. Xu H, Uysal KT, Becherer JD, Arner P, Hotamisligil GS . Altered tumor necrosis factor-alpha (TNF-alpha) processing in adipocytes and increased expression of transmembrane TNF-alpha in obesity. Diabetes 2002; 51: 1876–1883.

    CAS  PubMed  Google Scholar 

  63. Gidding SS, Dennison BA, Birch LL, Daniels SR, Gillman MW, Lichtenstein AH et al. Dietary recommendations for children and adolescents: a guide for practitioners: consensus statement from the American Heart Association. Circulation 2005; 112: 2061–2075.

    CAS  PubMed  Google Scholar 

  64. Steinbeck K . Childhood obesity. Treatment options. Best Pract Res Clin Endocrinol Metab 2005; 19: 455–469.

    PubMed  Google Scholar 

  65. Bray GA, Lovejoy JC, Smith SR, DeLany JP, Lefevre M, Hwang D et al. The influence of different fats and fatty acids on obesity, insulin resistance and inflammation. J Nutr 2002; 132: 2488–2491.

    CAS  PubMed  Google Scholar 

  66. Browning LM, Jebb SA . Nutritional influences on inflammation and type 2 diabetes risk. Diabetes Technol Ther 2006; 8: 45–54.

    CAS  PubMed  Google Scholar 

  67. Cunningham-Rundles S, McNeeley DF, Moon A . Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 2005; 115: 1119–1128.

    CAS  PubMed  Google Scholar 

  68. Kelley DS . Modulation of human immune and inflammatory responses by dietary fatty acids. Nutrition 2001; 17: 669–673.

    CAS  PubMed  Google Scholar 

  69. McGarry JD . Dysregulation of the fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51: 7–18.

    CAS  PubMed  Google Scholar 

  70. Ajuwon KM, Spurlock ME . Palmitate activates the NF-kappaB transcription factor and induces IL-6 and TNFalpha expression in 3T3-L1 adipocytes. J Nutr 2005; 135: 1841–1846.

    CAS  PubMed  Google Scholar 

  71. Jove M, Planavila A, Laguna JC, Vazquez-Carrera M . Palmitate-induced interleukin 6 production is mediated by protein kinase C and nuclear-factor kappaB activation and leads to glucose transporter 4 down-regulation in skeletal muscle cells. Endocrinology 2005; 146: 3087–3095.

    CAS  PubMed  Google Scholar 

  72. Staiger H, Staiger K, Stefan N, Wahl HG, Machicao F, Kellerer M et al. Palmitate-induced interleukin-6 expression in human coronary artery endothelial cells. Diabetes 2004; 53: 3209–3216.

    CAS  PubMed  Google Scholar 

  73. Chung S, Brown JM, Provo JN, Hopkins R, McIntosh MK . Conjugated linoleic acid promotes human adipocyte insulin resistance through NFkappaB-dependent cytokine production. J Biol Chem 2005; 280: 38445–38456.

    CAS  PubMed  Google Scholar 

  74. Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, van der Meer JW et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 1989; 320: 265–271.

    CAS  PubMed  Google Scholar 

  75. Kremer JM, Lawrence DA, Jubiz W, DiGiacomo R, Rynes R, Bartholomew LE et al. Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis. Clinical and immunologic effects. Arthritis Rheum 1990; 33: 810–820.

    CAS  PubMed  Google Scholar 

  76. Trebble T, Arden NK, Stroud MA, Wootton SA, Burdge GC, Miles EA et al. Inhibition of tumour necrosis factor- and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation. Br J Nutr 2003; 90: 405–412.

    CAS  PubMed  Google Scholar 

  77. Zhao G, Etherton TD, Martin KR, Vanden Heuvel JP, Gillies PJ, West SG et al. Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem Biophys Res Commun 2005; 336: 909–917.

    CAS  PubMed  Google Scholar 

  78. Bemelmans WJ, Lefrandt JD, Feskens EJ, van Haelst PL, Broer J, Meyboom-de Jong B et al. Increased alpha-linolenic acid intake lowers C-reactive protein, but has no effect on markers of atherosclerosis. Eur J Clin Nutr 2004; 58: 1083–1089.

    CAS  PubMed  Google Scholar 

  79. Mantzioris E, Cleland LG, Gibson RA, Neumann MA, Demasi M, James MJ . Biochemical effects of a diet containing foods enriched with n-3 fatty acids. Am J Clin Nutr 2000; 72: 42–48.

    CAS  PubMed  Google Scholar 

  80. Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM . Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr 2004; 134: 2991–2997.

    CAS  PubMed  Google Scholar 

  81. Rallidis LS, Paschos G, Liakos GK, Velissaridou AH, Anastasiadis G, Zampelas A . Dietary alpha-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients. Atherosclerosis 2003; 167: 237–242.

    CAS  PubMed  Google Scholar 

  82. Klein-Platat C, Drai J, Oujaa M, Schlienger JL, Simon C . Plasma fatty acid composition is associated with the metabolic syndrome and low-grade inflammation in overweight adolescents. Am J Clin Nutr 2005; 82: 1178–1184.

    CAS  PubMed  Google Scholar 

  83. Phinney SD . Fatty acids, inflammation, and the metabolic syndrome. Am J Clin Nutr 2005; 82: 1151–1152.

    CAS  PubMed  Google Scholar 

  84. Brownlee M . Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813–820.

    CAS  PubMed  Google Scholar 

  85. Urakawa H, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Morioka K et al. Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 2003; 88: 4673–4676.

    CAS  PubMed  Google Scholar 

  86. Keaney Jr JF, Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al., Framingham Study. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol 2003; 23: 434–439.

    CAS  PubMed  Google Scholar 

  87. Olusi SO . Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotectic enzymes in humans. Int J Obes Relat Metab Disord 2002; 26: 1159–1164.

    CAS  PubMed  Google Scholar 

  88. Davi G, Guagnano MT, Ciabattoni G, Basili S, Falco A, Marinopiccoli M et al. Platelet activation in obese women: role of inflammation and oxidant stress. Jama 2002; 288: 2008–2014.

    CAS  PubMed  Google Scholar 

  89. Vogel S, Contois JH, Tucker KL, Wilson PW, Schaefer EJ, Lammi-Keefe CJ . Plasma retinol and plasma and lipoprotein tocopherol and carotenoid concentrations in healthy elderly participants of the Framingham Heart Study. Am J Clin Nutr 1997; 66: 950–958.

    CAS  PubMed  Google Scholar 

  90. Decsi T, Molnar D, Koletzko B . Lipid corrected plasma alpha-tocopherol values are inversely related to fasting insulinaemia in obese children. Int J Obes Relat Metab Disord 1996; 20: 970–972.

    CAS  PubMed  Google Scholar 

  91. Kuno T, Hozumi M, Morinobu T, Murata T, Mingci Z, Tamai H . Antioxidant vitamin levels in plasma and low density lipoprotein of obese girls. Free Radic Res 1998; 28: 81–86.

    CAS  PubMed  Google Scholar 

  92. Molnar D, Decsi T, Koletzko B . Reduced antioxidant status in obese children with multimetabolic syndrome. Int J Obes Relat Metab Disord 2004; 28: 1197–1202.

    CAS  PubMed  Google Scholar 

  93. Mohn A, Catino M, Capanna R, Giannini C, Marcovecchio M, Chiarelli F . Increased oxidative stress in prepubertal severely obese children: effect of a dietary restriction-weight loss program. J Clin Endocrinol Metab 2005; 90: 2653–2658.

    CAS  PubMed  Google Scholar 

  94. Festa A, D’Agostino Jr R, Howard G, Mykkanen L, Tracy RP, Haffner SM . Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102: 42–47.

    CAS  PubMed  Google Scholar 

  95. Lemieux I, Pascot A, Prud’homme D, Alméras N, Bogaty P, Nadeau A et al. Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol 2001; 21: 961–967.

    CAS  PubMed  Google Scholar 

  96. Pradhan AD, Cook NR, Buring JE, Manson JE, Ridker PM . C-reactive protein is independently associated with fasting insulin in nondiabetic women. Arterioscler Thromb Vasc Biol 2003; 23: 650–655.

    CAS  PubMed  Google Scholar 

  97. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW . C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999; 19: 972–978.

    CAS  PubMed  Google Scholar 

  98. Ford ES . C-reactive protein concentration and cardiovascular disease risk factors in children: findings from the National Health and Nutrition Examination Survey 1999-2000. Circulation 2003; 108: 1053–1058.

    CAS  PubMed  Google Scholar 

  99. Festa A, D'Agostino Jr R, Williams K, Karter AJ, Mayer-Davis EJ, Tracy RP et al. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord 2001; 25: 1407–1415.

    CAS  PubMed  Google Scholar 

  100. Wu DM, Chu NF, Shen MH, Chang JB . Plasma C-reactive protein levels and their relationship to anthropometric and lipid characteristics among children. J Clin Epidemiol 2003; 56: 94–100.

    PubMed  Google Scholar 

  101. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436: 356–362.

    CAS  PubMed  Google Scholar 

  102. Cho YM, Youn BS, Lee H, Lee N, Min SS, Kwak SH et al. Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes. Diabetes Care 2006; 29: 2457–2461.

    CAS  PubMed  Google Scholar 

  103. Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 2006; 354: 2552–2563.

    CAS  PubMed  Google Scholar 

  104. Janke J, Engeli S, Boschmann M, Adams F, Böhnke J, Luft FC et al. Retinol-binding protein 4 in human obesity. Diabetes 2006; 55: 2805–2810.

    CAS  PubMed  Google Scholar 

  105. Blaner WS . Retinol-binding protein—the serum transport protein for vitamin-A. Endocr Rev 1989; 10: 308–316.

    CAS  PubMed  Google Scholar 

  106. Aeberli I, Biebinger R, Lehmann R, L’Allemand D, Spinas GA, Zimmermann MB . Serum retinol-binding protein 4 concentration and its ratio to serum retinol are associated with obesity and metabolic syndrome components in children. J Clin Endocrinol Metab 2007; 92: 4359–4365.

    CAS  PubMed  Google Scholar 

  107. Graham TE, Smith U, Kahn BB . Retinol-binding protein 4 and insulin resistance—reply. N Engl J Med 2006; 355: 1394–1395.

    Google Scholar 

  108. Haider GD, Schindler K, Prager G, Bohdjalian A, Luger A, Wolzt M et al. Serum retinol-binding protein-4 is reduced after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 2002; 92: 1168–1171.

    Google Scholar 

  109. Yoshida A, Matsutani Y, Fukuchi Y, Saito K, Naito M . Analysis of the factors contributing to serum retinol binding protein and transthyretin levels in Japanese adults. J Atheroscler Thromb 2006; 13: 209–215.

    CAS  PubMed  Google Scholar 

  110. Erikstrup C, Mortensen OH, Pedersen BK . Retinol-binding protein 4 and insulin resistance. N Engl J Med (letter) 2006; 355: 1393–1394.

    CAS  Google Scholar 

  111. Takashima N, Tomoike H, Iwai N . Retinol-binding protein 4 and insulin resistance. N Engl J Med (letter) 2006; 355: 1392.

    CAS  Google Scholar 

  112. Abahusain MA, Wright J, Dickerson JWT, de Vol EB . Retinol, alpha-tocopherol and carotenoids in diabetes. Eur J Clin Nutr 1999; 53: 630–635.

    CAS  PubMed  Google Scholar 

  113. Basu TK, Basualdo C . Vitamin A homeostasis and diabetes mellitus. Nutrition 1997; 13: 804–806.

    CAS  PubMed  Google Scholar 

  114. Sasaki H, Iwasaki T, Kato S, Tada N . High retinol retinol-binding protein ratio in noninsulin-dependent diabetes-mellitus. Am J Med Sci 1995; 310: 177–182.

    CAS  PubMed  Google Scholar 

  115. Lee DC, Lee JW, Im JA . Association of serum retinol binding protein 4 and insulin resistance in apparently healthy adolescents. Metab Clin Exp 2007; 56: 327–331.

    CAS  PubMed  Google Scholar 

  116. Balagopal P, Graham TE, Kahn BB, Altomare A, Funanage V, George D . Reduction o elevated serum retinol binding protein (RBP4) in obese children by lifestyle intervention: association with sub-clinical inflammation. J Clin Endocrinol Metab 2007; 92: 1971–1974.

    CAS  PubMed  Google Scholar 

  117. Milland J, Tsykin A, Thomas T, Aldred AR, Cole T, Schreiber G . Gene-expression in regenerating and acute-phase rat-liver. Am J Physiol 1990; 259: G340–G347.

    CAS  PubMed  Google Scholar 

  118. Thurnham DI, McCabe GP, Northrop-Clewes CA, Nestel P . Effects of subclinical infection on plasma retinol concentrations and assessment of prevalence of vitamin A deficiency: meta-analysis. Lancet 2003; 362: 2052–2058.

    CAS  PubMed  Google Scholar 

  119. Monaco HL, Rizzi M, Coda A . Structure of a complex of 2 plasma-proteins—transthyretin and retinol-binding protein. Science 1995; 268: 1039–1041.

    CAS  PubMed  Google Scholar 

  120. Soprano DR, Blaner WS . Plasma retinol-binding protein. In: Sporn MB, Poberts AB, Goodman DS (eds). The Retinoids, Biology, Chemistry and Medicine. Raven Press: New York, 1994, pp 257–282.

    Google Scholar 

  121. de Pee S, Dary O . Biochemical indicators of vitamin A deficiency: serum retinol and serum retinol binding protein. J Nutrition 2002; 132: 2895S–2901S.

    CAS  Google Scholar 

  122. Lespine A, Periquet B, Jaconi S, Alexandre MC, Garcia J, Ghisolfi J et al. Decreases in retinol and retinol-binding protein during total parenteral nutrition in rats are not due to a vitamin A deficiency. J Lipid Res 1996; 37: 2492–2501.

    CAS  PubMed  Google Scholar 

  123. Smith FR, Goodman DS . Effects of diseases of liver, thyroid, and kidneys on transport of vitamin-A in Human Plasma. J Clin Invest 1971; 50: 2426–2436.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wagnerberger S, Schafer C, Bode C, Parlesak A . Saturation of retinol-binding protein correlates closely to the severity of alcohol-induced liver disease. Alcohol 2006; 38: 37–43.

    CAS  PubMed  Google Scholar 

  125. Chambon P . A decade of molecular biology of retinoic acid receptors. Faseb J 1996; 10: 940–954.

    CAS  PubMed  Google Scholar 

  126. Marill J, Idres N, Capron CC, Nguyen E, Chabot GG . Retinoic acid metabolism and mechanism of action: a review. Curr Drug Metab 2003; 4: 1–10.

    CAS  PubMed  Google Scholar 

  127. Ferre P . The biology of peroxisome proliferator—activated receptors—relationship with lipid metabolism and insulin sensitivity. Diabetes 2004; 53: S43–S50.

    CAS  PubMed  Google Scholar 

  128. Sivitz WI, Desautel SL, Kayano T, Bell GI, Pessin JE . Regulation of glucose transporter messenger-RNA in insulin-deficient states. Nature 1989; 340: 72–74.

    CAS  PubMed  Google Scholar 

  129. Kliewer SA, Xu HE, Lambert MH, Willson TM . Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 2001; 56: 239–263.

    CAS  PubMed  Google Scholar 

  130. Koistinen HA, Remitz A, Gylling H, Miettinen TA, Koivisto VA, Ebeling P . Dyslipidemia and a reversible decrease in insulin sensitivity induced by therapy with 13-cis-retinoic acid. Diabetes Metab Res Rev 2001; 17: 391–395.

    CAS  PubMed  Google Scholar 

  131. Bray GA, Nielsen SJ, Popkin BM . Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 2004; 79: 537–543.

    CAS  PubMed  Google Scholar 

  132. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ . Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 2002; 76: 911–922.

    CAS  PubMed  Google Scholar 

  133. Berneis KK, Krauss RM . Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 2002; 43: 1363–1379.

    CAS  PubMed  Google Scholar 

  134. Aeberli I, Zimmermann MB, Molinari L, Lehmann R, l’Allemand D, Spinas GA et al. Fructose intake is a predictor of LDL particle size in overweight schoolchildren. Am J Clin Nutr 2007; 86: 1174–1178.

    CAS  PubMed  Google Scholar 

  135. Bantle JP, Raatz SK, Thomas W, Georgopoulos A . Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr 2000; 72: 1128–1134.

    CAS  PubMed  Google Scholar 

  136. Jurgens H, Haass W, Castaneda TR, Schürmann A, Koebnick C, Dombrowski F et al. Consuming fructose-sweetened beverages increases body adiposity in mice. Obes Res 2005; 13: 1146–1156.

    PubMed  Google Scholar 

  137. Faeh D, Minehira K, Schwarz JM, Periasami R, Seongsu P, Tappy L . Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 2005; 54: 1907–1913.

    CAS  PubMed  Google Scholar 

  138. Reiser S, Powell AS, Scholfield DJ, Panda P, Ellwood KC, Canary JJ . Blood-Lipids, lipoproteins, apoproteins, and uric-acid in men fed diets containing fructose or high-amylose cornstarch. Am J Clin Nutr 1989; 49: 832–839.

    CAS  PubMed  Google Scholar 

  139. Crapo PA, Kolterman OG . The metabolic effects of 2-week fructose feeding in normal subjects. Am J Clin Nutr 1984; 39: 525–534.

    CAS  PubMed  Google Scholar 

  140. Dreon DM, Fernstrom HA, Miller B, Krauss RM . Low-density-lipoprotein subclass patterns and lipoprotein response to a reduced-fat diet in men. Faseb J 1994; 8: 121–126.

    CAS  PubMed  Google Scholar 

  141. Dreon DM, Fernstrom HA, Williams PT, Krauss RM . A very low-fat diet is not associated with improved lipoprotein profiles in men with a predominance of large, low-density lipoproteins. Am J Clin Nutr 1999; 69: 411–418.

    CAS  PubMed  Google Scholar 

  142. Lofgren IE, Herron KL, West KL, Patalay M, Koo SI, Fernandez ML . Carbohydrate intake is correlated with biomarkers for coronary heart disease in a population of overweight premenopausal women. J Nutr Biochem 2005; 16: 245–250.

    CAS  PubMed  Google Scholar 

  143. Barbagallo CM, Rizzo M, Cefalu AB, Noto D, Scimeca A, Castello A et al. Changes in plasma lipids and low-density lipoprotein peak particle size during and after acute myocardial infarction. Am J Cardiol 2002; 89: 460–462.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the Swiss Diabetes Foundation (Steinhausen, Switzerland), the Swiss National Science Foundation (research grant 3200B0-105258), the Swiss Ministry of Health (Bern, Switzerland) and the ETH Zürich (Zürich, Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M B Zimmermann.

Additional information

Conflict of interest

The authors have declared no financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, M., Aeberli, I. Dietary determinants of subclinical inflammation, dyslipidemia and components of the metabolic syndrome in overweight children: a review. Int J Obes 32 (Suppl 6), S11–S18 (2008). https://doi.org/10.1038/ijo.2008.202

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.202

Keywords

This article is cited by

Search

Quick links