Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus

Abstract

Objective:

Interleukin-18 (IL-18) has been recently demonstrated to improve experimental hyperphagia and insulin resistance. Paradoxically, concentrations of circulating IL-18 in obese subjects and in patients with type 2 diabetes are increased. The objective of this study is to provide an explanation for this paradox.

Design:

We have hypothesized that cells from obese individuals or from patients with type 2 diabetes mellitus have a diminished response to stimulation with IL-18. IL-18 responsiveness was tested by stimulating blood monocytes of obese or diabetes patients with rIL-18 or microbial components.

Results:

Obese individuals and patients with type 2 diabetes mellitus exhibit increased circulating concentrations of IL-18. More importantly, leukocytes isolated from obese or type 2 diabetes patients respond poorly after stimulation with IL-18, as reflected by defective interferon-γ (IFNγ) production. The defective response to IL-18 stimulation was accompanied by a 50% reduction in the expression of IL-18R α and β chains. In addition, cells of patients with obesity and diabetes displayed an impaired release of IFNγ after challenge with bacterial or fungal pathogens, which was due to defective IL-18-mediated signaling.

Conclusion:

Patients with obesity or type 2 diabetes mellitus are characterized by lower responses after stimulation with IL-18. This IL-18 resistance explains the association of obesity and diabetes with high IL-18 circulating concentrations, similar to hyperinsulinemia and hyperleptinemia. IL-18 resistance may represent an important mechanism of the increased susceptibility of these patients to a number of infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bazan JF, Timans JC, Kastelein RA . A newly defined interleukin-1? Nature 1996; 379: 591.

    Article  CAS  Google Scholar 

  2. Dinarello CA, Novick D, Puren AJ, Fantuzzi G, Shapiro L, Mühl H et al. Overview of interleukin-18: more than an interferon-gamma inducing factor. J Leuk Biol 1998; 63: 658–664.

    Article  CAS  Google Scholar 

  3. Fantuzzi G, Dinarello CA . Interleukin-18 and interleukin-1beta: two cytokine susbstrates for ICE (caspase-1). J Clin Immunol 1999; 19: 1–11.

    Article  CAS  Google Scholar 

  4. Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 1997; 386: 619–623.

    Article  CAS  Google Scholar 

  5. Hung J, McQuillan BM, Chapman CM, Thompson PL, Beilby JP . Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulin resistance. Arterioscler Thromb Vasc Biol 2005; 25: 1268–1273.

    Article  CAS  Google Scholar 

  6. Fischer CP, Perstrup LB, Berntsen A, Eskildsen P, Pedersen BK . Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clin Immunol 2005; 117: 152–160.

    Article  CAS  Google Scholar 

  7. Escobar-Morreale HF, Botella-Carretero JI, Villuendas G, Sancho J, San Millan JL . Serum interleukin-18 concentrations are increased in the plycystic ovary syndrome: relationship to insulin resistance and obesity. J Clin Endocrinol Metab 2004; 89: 806–811.

    Article  CAS  Google Scholar 

  8. Bruun JM, Stallknecht B, Helge JW, Richelsen B . Interleukin-18 in plasma and adipose tissue: effects of obesity, insulin resistance, and weight loss. Eur J Endocrinol 2007; 157: 465–471.

    Article  CAS  Google Scholar 

  9. Leick L, Lindegaard B, Stensvold D, Plomgaard P, Saltin B, Pilegaard H . Adipose tissue interleukin-18 mRNA and plasma interleukin-18: effect of obesity and exercise. Obesity 2007; 15: 356–363.

    Article  CAS  Google Scholar 

  10. Thompson SR, Sanders J, Stephens JW, Miller GJ, Humphries SE . A common interleukin 18 haplotype is associated with higher body mass index in subjects with diabetes and coronary heart disease. Metabolism 2007; 56: 662–669.

    Article  CAS  Google Scholar 

  11. Vilarrasa N, Vendrell J, Sanchez-Santos R, Broch M, Megia A, Masdevall C et al. Effect of weight loss induced by gastric bypass on proinflammatory interleukin-18, soluble tumour necrosis factor-alpha receptors, C-reactive protein and adiponectin in morbidly obese patients. Clin Endocrinol 2007; 67: 679–686.

    Article  CAS  Google Scholar 

  12. Netea MG, Joosten LA, Lewis E, Jensen DR, Voshol PJ, Kullberg BJ et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med 2006; 12: 650–656.

    Article  CAS  Google Scholar 

  13. Zorrilla EP, Sanchez-Alavez M, Sugama S, Brennan M, Fernandez R, Bartfai T et al. Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc Natl Acad Sci USA 2007; 104: 11097–11102.

    Article  CAS  Google Scholar 

  14. Joshi N, Caputo GM, Weitekamp MR, Karchmer AW . Infections in patients with diabetes mellitus. N Engl J Med 1999; 341: 1906–1912.

    Article  CAS  Google Scholar 

  15. Falagas ME, Kompoti M . Obesity and infection. Lancet Infect Dis 2006; 6: 438–446.

    Article  Google Scholar 

  16. Hopkins PN, Hunt SC, Wu LL, Williams GH, Williams RR . Hypertension, dyslipidemia and insulin resistance: links in a chain or spokes on a wheel ? Curr Opin Lipidol 1996; 7: 241–253.

    Article  CAS  Google Scholar 

  17. Root HF . The association of diabetes and tuberculosis. N Engl J Med 1934; 210: 1–13.

    Article  Google Scholar 

  18. Alisjahbana B, van Crevel R, Sahiratmadja E, den Heijer M, Maya A, Istriana E et al. Diabetes mellitus is strongly associated with tuberculosis in Indonesia. Int J Tuberc Lung Dis 2006; 10: 696–700.

    CAS  PubMed  Google Scholar 

  19. Valerius NH, Eff C, Hansen NE, Karle H, Nerup J, Søeberg B et al. Neutrophil and lymphocyte function in patients with diabetes mellitus. Acta Med Scand 1982; 211: 463–467.

    Article  CAS  Google Scholar 

  20. Delamaire M, Maugendre D, Moreno M, Le Goff M-C, Allanic H, Genetet B . Impaired leukocyte functions in diabetic patients. Diabetic Med 1997; 14: 29–34.

    Article  CAS  Google Scholar 

  21. Gallacher SJ, Thomson G, Fraser WD, Fisher BM, Gemmell CG, MacCuish AC . Neutrophil bactericidal function in diabetes mellitus: evidence for association with blood glucose control. Diabet Med 1995; 12: 916–920.

    Article  CAS  Google Scholar 

  22. Tsiavou A, Hatziagelaki E, Chaidaroglou A, Koniavitou K, Degiannis D, Raptis SA . Correlation between intracellular interferon-gamma (IFN-gamma) production by CD4+ and CD8+ lymphocytes and IFN-gamma gene polymorphism in patients with type 2 diabetes mellitus and latent autoimmune diabetes of adults (LADA). Cytokine 2005; 31: 135–141.

    Article  CAS  Google Scholar 

  23. Murray HW . Interferon-gamma and host antimicrobial defense: current and future clinical applications. Am J Med 1994; 97: 459–467.

    Article  CAS  Google Scholar 

  24. Fontana L, Eagon JC, Colonna M, Klein S . Impaired mononuclear cell immune function in extreme obesity is corrected by weight loss. Rejuvenation Res 2007; 10: 41–46.

    Article  Google Scholar 

  25. Tsiavou A, Degiannis D, Hatziagelaki E, Koniavitou K, Raptis S . Flow cytometric detection of intracellular IL-12 release: in vitro effect of widely used immunosuppressants. Int Immunopharmacol 2002; 2: 1713–1720.

    Article  CAS  Google Scholar 

  26. Tsukaguchi K, Okamura H, Ikuno M, Kobayashi A, Fukuoka A, Takenaka H et al. [The relation between diabetes mellitus and IFN-gamma, IL-12 and IL-10 productions by CD4+ alpha beta T cells and monocytes in patients with pulmonary tuberculosis]. Kekkaku 1997; 72: 617–622.

    CAS  PubMed  Google Scholar 

  27. Grebenchtchikov N, van der Ven-Jongekrijg J, Pesman GJ, Geurts-Moespot A, van der Meer JW, Sweep FC . Development of a sensitive ELISA for the quantification of human tumour necrosis factor-alpha using 4 polyclonal antibodies. Eur Cytokine Netw 2005; 16: 215–222.

    CAS  PubMed  Google Scholar 

  28. Yoshimoto T, Takeda K, Tanaka T, Ohkusu K, Kashiwamura S, Okamura H et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. J Immunol 1998; 161: 3400–3407.

    CAS  PubMed  Google Scholar 

  29. Draznin B . Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 2006; 55: 2392–2397.

    Article  CAS  Google Scholar 

  30. Karlsson HK, Zierath JR . Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys 2007; 48: 103–113.

    Article  CAS  Google Scholar 

  31. Inoue H, Ogawa W, Ozaki M, Haga S, Matsumoto M, Furukawa K et al. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nature Med 2004; 10: 168–174.

    Article  CAS  Google Scholar 

  32. Netea MG, Joosten LAB, Lewis E, Jensen DR, Voshol PJ, Kullberg BJ et al. Deficiency of interleukin-18 in mice leads to obesity, insulin resistance, and hyperglycemia, through defective STAT3-mediated signaling. Nature Med 2006; 12: 650–656.

    Article  CAS  Google Scholar 

  33. Kalina U, Kauschat D, Koyama N, Nuernberger H, Ballas K, Koschmieder S et al. IL-18 activates STAT3 in the Natural Killer cell line 92, augments cytotoxic activity, and mediates IFN production by the stress kinase p38 and by the extracellular regulated kinases p44/erk-1 and p42/erk-21. J Immunol 2000; 165: 1307–1313.

    Article  CAS  Google Scholar 

  34. Sugimoto N, Nakahira M, Ahn HJ, Micallef M, Hamaoka T, Kurimoto M et al. Differential requirements for JAK2 and TYK2 in T cell proliferation and IFN-gamma production induced by IL-12 alone or together with IL-18. Eur J Immunol 2003; 33: 243–251.

    Article  CAS  Google Scholar 

  35. Kojima H, Takeuchi M, Ohta T, Nishida Y, Arai N, Ikeda M et al. Interleukin-18 activates the IRAK-TRAF6 pathway in mouse EL-4 cells. Biochem Biophys Res Commun 1998; 244: 183–186.

    Article  CAS  Google Scholar 

  36. Kumar A, Takada Y, Boriek AM, Aggarwal BB . Nuclear factor-kappaB: its role in health and disease. J Mol Med 2004; 82: 434–448.

    Article  CAS  Google Scholar 

  37. Koziel H, Koziel MJ . Pulmonary complications of diabetes mellitus: pneumonia. Infect Dis Clin North Am 1995; 9: 65–96.

    CAS  PubMed  Google Scholar 

  38. Vellenga E, Uyl-de Groot CA, de Wit R, Keizer HJ, Löwenberg B, ten Haaft MA et al. Randomized placebo-controlled trial of granulocyte-macrophage colony-stimulating factor in patients with chemotherapy-related febrile neutropenia. J Clin Oncol 1996; 14: 619–627.

    Article  CAS  Google Scholar 

  39. Sentochnik DE . Deep soft-tissue infections in diabetic patients. Infect Dis Clin North Am 1995; 9: 53–64.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MGN was supported by a Vidi-grant of the Netherlands Organization for Scientific Research. The research in this paper was partly funded by a grant from the Dutch Diabetes Research Foundation. CJT was partly funded by NIDDK, DK069881.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M G Netea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilverschoon, G., Tack, C., Joosten, L. et al. Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus. Int J Obes 32, 1407–1414 (2008). https://doi.org/10.1038/ijo.2008.109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.109

Keywords

This article is cited by

Search

Quick links