Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pathophysiology of diabetic erectile dysfunction: potential contribution of vasa nervorum and advanced glycation endproducts

Abstract

Erectile dysfunction (ED) due to diabetes mellitus remains difficult to treat medically despite advances in pharmacotherapeutic approaches in the field. This unmet need has resulted in a recent re-focus on the pathophysiology, in order to understand the cellular and molecular mechanisms leading to ED in diabetes. Diabetes-induced ED is often resistant to PDE5 inhibitor treatment, thus there is a need to discover targets that may lead to novel approaches for a successful treatment. The aim of this brief review is to update the reader in some of the latest development on that front, with a particular focus on the role of impaired neuronal blood flow and the formation of advanced glycation endproducts.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1

References

  1. Gratzke C, Angulo J, Chitaley K, Dai YT, Kim NN, Paick JS et al. Anatomy, physiology, and pathophysiology of erectile dysfunction. J Sex Med 2010; 7: 445–475.

    CAS  PubMed  Google Scholar 

  2. Moncada S, Higgs A, Furchgott R . International Union of Pharmacology Nomenclature in Nitric Oxide Research. Pharmacol Rev 1997; 49: 137–142.

    CAS  PubMed  Google Scholar 

  3. Cellek S . Let's make NO mistake!. Int J Impot Res 2005; 17: 388–389.

    CAS  PubMed  Google Scholar 

  4. Hurt KJ, Musicki B, Palese MA, Crone JK, Becker RE, Moriarity JL et al. Akt-dependent phosphorylation of endothelial nitric-oxide synthase mediates penile erection. Proc Natl Acad Sci USA 2002; 99: 4061–4066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cameron NE, Cotter MA . Erectile dysfunction and diabetes mellitus: mechanistic considerations from studies in experimental models. Curr Diab Rev 2007; 3: 149–158.

    CAS  Google Scholar 

  6. Chitaley K, Kupelian V, Subak L, Wessells H . Diabetes, obesity and erectile dysfunction: field overview and research priorities. J Urol 2009; 182: S45–S50.

    PubMed  PubMed Central  Google Scholar 

  7. Vinik AI, Erbas T . Recognizing and treating diabetic autonomic neuropathy. Cleve Clin J Med 2001; 68: 928–944.

    CAS  PubMed  Google Scholar 

  8. Jackson G . Erectile dysfunction: a marker of silent coronary artery disease. Eur Heart J 2006; 27: 2613–2614.

    Article  PubMed  Google Scholar 

  9. Cellek S . Nitrergic-noradrenergic interaction in penile erection: a new insight into erectile dysfunction. Drugs Today (Barc) 2000; 36: 135–146.

    CAS  Google Scholar 

  10. Toda N, Ayajiki K, Okamura T . Nitric oxide and penile erectile function. Pharmacol Ther 2005; 106: 233–266.

    CAS  PubMed  Google Scholar 

  11. Ritchie R, Sullivan M . Endothelins & erectile dysfunction. Pharmacol Res 2011; 63: 496–501.

    CAS  PubMed  Google Scholar 

  12. Zhang XH, Melman A, Disanto ME . Update on corpus cavernosum smooth muscle contractile pathways in erectile function: a role for testosterone? J Sex Med 2011; 8: 1865–1879.

    CAS  PubMed  Google Scholar 

  13. Cellek S, Foxwell NA, Moncada S . Two phases of nitrergic neuropathy in streptozotocin-induced diabetic rats. Diabetes 2003; 52: 2353–2362.

    CAS  PubMed  Google Scholar 

  14. Cellek S, Anderson PN, Foxwell NA . Nitrergic neurodegeneration in cerebral arteries of streptozotocin-induced diabetic rats: a new insight into diabetic stroke. Diabetes 2005; 54: 212–219.

    CAS  PubMed  Google Scholar 

  15. MacKenzie A, Cooper EJ, Dowell FJ . Differential effects of glucose on agonist-induced relaxations in human mesenteric and subcutaneous arteries. Br J Pharmacol 2008; 153: 480–487.

    CAS  PubMed  Google Scholar 

  16. Houben AJ, Schaper NC, de Haan CH, Huvers FC, Slaaf DW, de Leeuw PW et al. Local 24-h hyperglycemia does not affect endothelium-dependent or -independent vasoreactivity in humans. Am J Physiol 1996; 270: H2014–H2020.

    CAS  PubMed  Google Scholar 

  17. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL . Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991; 87: 2246–2252.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Akbari CM, Saouaf R, Barnhill DF, Newman PA, LoGerfo FW, Veves A . Endothelium-dependent vasodilatation is impaired in both microcirculation and macrocirculation during acute hyperglycemia. J Vasc Surg 1998; 28: 687–694.

    CAS  PubMed  Google Scholar 

  19. Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 1998; 97: 1695–1701.

    CAS  PubMed  Google Scholar 

  20. Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T et al. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol 1999; 34: 146–154.

    CAS  PubMed  Google Scholar 

  21. Title LM, Cummings PM, Giddens K, Nassar BA . Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol 2000; 36: 2185–2191.

    CAS  PubMed  Google Scholar 

  22. Tesfamariam B, Brown ML, Deykin D, Cohen RA . Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest 1990; 85: 929–932.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tesfamariam B, Brown ML, Cohen RA . Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest 1991; 87: 1643–1648.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Way KJ, Reid JJ . Effect of diabetes and elevated glucose on nitric oxide-mediated neurotransmission in rat anococcygeus muscle. Br J Pharmacol 1995; 115: 409–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Utkan T, Yildiz F, Utkan NZ, Gacar N, Gocmez SS, Ulak G et al. Effects of diabetes and elevated glucose on nitrergic relaxations in the isolated duodenum of the rat. Acta Diabetol 2009; 46: 295–301.

    CAS  PubMed  Google Scholar 

  26. Cellek S . Point of NO return for nitrergic nerves in diabetes: a new insight into diabetic complications. Curr Pharm Des 2004; 10: 3683–3695.

    CAS  PubMed  Google Scholar 

  27. Ari G, Vardi Y, Finberg JP . Nitric oxide and penile erection in streptozotocin-diabetic rats. Clin Sci (Lond) 1999; 96: 365–371.

    CAS  Google Scholar 

  28. Vernet D, Cai L, Garban H, Babbitt ML, Murray FT, Rajfer J et al. Reduction of penile nitric oxide synthase in diabetic BB/WORdp (type I) and BBZ/WORdp (type II) rats with erectile dysfunction. Endocrinology 1995; 136: 5709–5717.

    CAS  PubMed  Google Scholar 

  29. Cameron NE, Cotter MA, Low PA . Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol 1991; 261: E1–E8.

    CAS  PubMed  Google Scholar 

  30. Cameron NE, Eaton SE, Cotter MA, Tesfaye S . Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 2001; 44: 1973–1988.

    CAS  PubMed  Google Scholar 

  31. Coppey LJ, Davidson EP, Dunlap JA, Lund DD, Yorek MA . Slowing of motor nerve conduction velocity in streptozotocin-induced diabetic rats is preceded by impaired vasodilation in arterioles that overlie the sciatic nerve. Int J Exp Diab Res 2000; 1: 131–143.

    CAS  Google Scholar 

  32. Cameron NE, Cotter MA . Diabetes causes an early reduction in autonomic ganglion blood flow in rats. J Diab Complications 2001; 15: 198–202.

    CAS  Google Scholar 

  33. Cameron NE, Cotter MA . Impaired corpus cavernosum responses to cavernous nerve stimulation in diabetic rats: effects of treatment with erythropoietin-delta. Autonom Neurosci 2009; 149: 24–25.

    Google Scholar 

  34. Dail WG . The pelvic plexus: innervation of pelvic and extrapelvic visceral tissues. Microsc Res Tech 1996; 35: 95–106.

    CAS  PubMed  Google Scholar 

  35. Zochodne DW . Nerve and ganglion blood flow in diabetes: an appraisal. Int Rev Neurobiol 2002; 50: 161–202.

    PubMed  Google Scholar 

  36. Appenzeller O, Dhital KK, Cowen T, Burnstock G . The nerves to blood vessels supplying blood to nerves: the innervation of vasa nervorum. Brain Res 1984; 304: 383–386.

    CAS  PubMed  Google Scholar 

  37. Cellek S, Smith S, Cameron NE, Cotter MA, Muneer A . Nitrergic innervation of vasa nervorum supplying the major pelvic ganglion. J Sex Med 2011; 8: 407.

    Google Scholar 

  38. Muneer A, Cellek S, Dogan A, Kell PD, Ralph DJ, Minhas S . Investigation of cavernosal smooth muscle dysfunction in low flow priapism using an in vitro model. Int J Impot Res 2005; 17: 10–18.

    CAS  PubMed  Google Scholar 

  39. Prabhakar NR, Pieramici SF, Premkumar DR, Kumar GK, Kalaria RN . Activation of nitric oxide synthase gene expression by hypoxia in central and peripheral neurons. Brain Res Mol Brain Res 1996; 43: 341–346.

    CAS  PubMed  Google Scholar 

  40. Prabhakar NR, Rao S, Premkumar D, Pieramici SF, Kumar GK, Kalaria RK . Regulation of neuronal nitric oxide synthase gene expression by hypoxia. Role of nitric oxide in respiratory adaptation to low pO2. Adv Exp Med Biol 1996; 410: 345–348.

    CAS  PubMed  Google Scholar 

  41. Phelan MW, Faller DV . Hypoxia decreases constitutive nitric oxide synthase transcript and protein in cultured endothelial cells. J Cell Physiol 1996; 167: 469–476.

    CAS  PubMed  Google Scholar 

  42. Faller DV . Endothelial cell responses to hypoxic stress. Clin Exp Pharmacol Physiol 1999; 26: 74–84.

    CAS  PubMed  Google Scholar 

  43. Wei IH, Huang CC, Chang HM, Tseng CY, Tu HC, Wen CY et al. Neuronal NADPH-d/NOS expression in the nodose ganglion of severe hypoxic rats with or without mild hypoxic preconditioning. J Chem Neuroanat 2005; 29: 149–156.

    CAS  PubMed  Google Scholar 

  44. Serrano J, Encinas JM, Fernandez AP, Rodrigo J, Martinez A . Effects of acute hypobaric hypoxia on the nitric oxide system of the rat cerebral cortex: protective role of nitric oxide inhibitors. Neuroscience 2006; 142: 799–808.

    CAS  PubMed  Google Scholar 

  45. Yamamoto Y, Henrich M, Snipes RL, Kummer W . Altered production of nitric oxide and reactive oxygen species in rat nodose ganglion neurons during acute hypoxia. Brain Res 2003; 961: 1–9.

    CAS  PubMed  Google Scholar 

  46. Mbaku EM, Zhang L, Pearce WJ, Duckles SP, Buchholz J . Chronic hypoxia alters the function of NOS nerves in cerebral arteries of near-term fetal and adult sheep. J Appl Physiol 2003; 94: 724–732.

    PubMed  Google Scholar 

  47. Benesova P, Langmeier M, Betka J, Trojan S . Long-lasting changes in the density of nitrergic neurons following kainic acid administration and chronic hypoxia. Physiol Res 2005; 54: 565–571.

    CAS  PubMed  Google Scholar 

  48. Hu J, Chin CM, Png JC, Ng YK, Ling EA . The effect of chronic bladder outlet obstruction on neuronal nitric oxide synthase expression in the intramural ganglia of the guinea pig bladder. J Urol 2004; 172: 1160–1165.

    CAS  PubMed  Google Scholar 

  49. Prabhakar NR, Peng YJ, Jacono FJ, Kumar GK, Dick TE . Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol 2005; 32: 447–449.

    CAS  PubMed  Google Scholar 

  50. Somjen GG, Aitken PG, Czeh G, Jing J, Young JN . Cellular physiology of hypoxia of the mammalian central nervous system. Res Publ Assoc Res Nerv Ment Dis 1993; 71: 51–65.

    CAS  PubMed  Google Scholar 

  51. Leblond J, Krnjevic K . Hypoxic changes in hippocampal neurons. J Neurophysiol 1989; 62: 1–14.

    CAS  PubMed  Google Scholar 

  52. Schneider U, Quasthoff S, Mitrovic N, Grafe P . Hyperglycaemic hypoxia alters after-potential and fast K+ conductance of rat axons by cytoplasmic acidification. J Physiol 1993; 465: 679–697.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hendriksen PH, Oey PL, Wieneke GH, van Huffelen AC, Gispen WH . Hypoxic neuropathy versus diabetic neuropathy. An electrophysiological study in rats. J Neurol Sci 1992; 110: 99–106.

    CAS  PubMed  Google Scholar 

  54. Tomlinson DR, Mayer JH . Defects of axonal transport in diabetes mellitus--a possible contribution to the aetiology of diabetic neuropathy. J Auton Pharmacol 1984; 4: 59–72.

    CAS  PubMed  Google Scholar 

  55. Thomas PK, King RH, Feng SF . Muddle JR, Workman JM, Gamboa J, et al. Neurological manifestations in chronic mountain sickness: the burning feet-burning hands syndrome. J Neurol Neurosurg Psychiatry 2000; 69: 447–452.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Greene DA, De Jesus PVJ, Winegrad AI . Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 1975; 55: 1326–1336.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Biessels GJ, Stevens EJ, Mahmood SJ, Gispen WH, Tomlinson DR . Insulin partially reverses deficits in peripheral nerve blood flow and conduction in experimental diabetes. J Neurol Sci 1996; 140: 12–20.

    CAS  PubMed  Google Scholar 

  58. Ziegler D, Cicmir I, Mayer P, Wiefels K, Gries FA . The natural course of peripheral and autonomic neural function during the first two years after diagnosis of type 1 diabetes. Klin Wochenschr 1988; 66: 1085–1092.

    CAS  PubMed  Google Scholar 

  59. Ziegler D, Cicmir I, Mayer P, Wiefels K, Gries FA . Somatic and autonomic nerve function during the first year after diagnosis of type 1 (insulin-dependent) diabetes. Diab Res 1988; 7: 123–127.

    CAS  Google Scholar 

  60. Lehtinen JM, Niskanen L, Hyvonen K, Siitonen O, Uusitupa M . Nerve function and its determinants in patients with newly-diagnosed type 2 (non-insulin-dependent) diabetes mellitus and in control subjects--a 5-year follow-up. Diabetologia 1993; 36: 68–72.

    CAS  PubMed  Google Scholar 

  61. Solders Thalme G, Aguirre-Aquino B, Brandt M, Berg L, Persson U . A. Nerve conduction and autonomic nerve function in diabetic children. A 10-year follow-up study. Acta Paediatr 1997; 86: 361–366.

    PubMed  Google Scholar 

  62. King P, Peacock I, Donnelly R . The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol 1999; 48: 643–648.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–986.

    Google Scholar 

  64. Duckworth WC, Abraira C, Moritz TE, Davis SN, Emanuele N, Goldman S et al. The duration of diabetes affects the response to intensive glucose control in type 2 subjects: the VA Diabetes Trial. J Diab Complications 2011; 25: 355–361.

    Google Scholar 

  65. Kent S . Is diabetes a form of accelerated aging? Geriatrics 1976; 31, 140, 145, 149-140, 145, 151.

  66. Del TS, Basta G . An update on advanced glycation endproducts and atherosclerosis. Biofactors 2012.

  67. Nishikawa T, Edelstein D, Brownlee M . The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl 2000; 77: S26–S30.

    CAS  PubMed  Google Scholar 

  68. Brownlee M . The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005; 54: 1615–1625.

    CAS  PubMed  Google Scholar 

  69. Berner AK, Brouwers O, Pringle R, Klaassen I, Colhoun L, McVicar C et al. Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia 2012; 55: 845–854.

    CAS  PubMed  Google Scholar 

  70. Brouwers O, Niessen PM, Ferreira I, Miyata T, Scheffer PG, Teerlink T et al. Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J Biol Chem 2011; 286: 1374–1380.

    CAS  PubMed  Google Scholar 

  71. Brouwers O, Niessen PM, Haenen G, Miyata T, Brownlee M, Stehouwer CD et al. Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia 2010; 53: 989–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Giacco F, Brownlee M . Oxidative stress and diabetic complications. Circ Res 2010; 107: 1058–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramasamy R, Yan SF, Schmidt AM . Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann NY Acad Sci 2011; 1243: 88–102.

    CAS  PubMed  Google Scholar 

  74. Dhar A, Dhar I, Desai KM, Wu L . Methylglyoxal scavengers attenuate endothelial dysfunction induced by methylglyoxal and high concentrations of glucose. Br J Pharmacol 2010; 161: 1843–1856.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dhar I, Dhar A, Wu L, Desai K . D-arginine attenuates methylglyoxal- and high glucose-induced endothelial dysfunction and oxidative stress by an eNOS-independent mechanism. J Pharmacol Exp Ther 2012.

  76. Seals DR, Jablonski KL, Donato AJ . Aging and vascular endothelial function in humans. Clin Sci (Lond) 2011; 120: 357–375.

    CAS  Google Scholar 

  77. Seftel AD, Vaziri ND, Ni Z, Razmjouei K, Fogarty J, Hampel N et al. Advanced glycation end products in human penis: elevation in diabetic tissue, site of deposition, and possible effect through iNOS or eNOS. Urology 1997; 50: 1016–1026.

    CAS  PubMed  Google Scholar 

  78. Cartledge JJ, Eardley I, Morrison JF . Advanced glycation end-products are responsible for the impairment of corpus cavernosal smooth muscle relaxation seen in diabetes. BJU Int 2001; 87: 402–407.

    CAS  PubMed  Google Scholar 

  79. Cellek S, Qu W, Schmidt AM, Moncada S . Synergistic action of advanced glycation end products and endogenous nitric oxide leads to neuronal apoptosis in vitro: a new insight into selective nitrergic neuropathy in diabetes. Diabetologia 2004; 47: 331–339.

    CAS  PubMed  Google Scholar 

  80. Ramasamy R, Schmidt AM . Receptor for advanced glycation end products (RAGE) and implications for the pathophysiology of heart failure. Curr Heart Fail Rep 2012; 9: 107–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ma L, Carter RJ, Morton AJ, Nicholson LF . RAGE is expressed in pyramidal cells of the hippocampus following moderate hypoxic-ischemic brain injury in rats. Brain Res 2003; 966: 167–174.

    CAS  PubMed  Google Scholar 

  82. Cameron NE, Cotter MA, Robertson S . Rapid reversal of a motor nerve conduction deficit in streptozotocin-diabetic rats by the angiotensin converting enzyme inhibitor lisinopril. Acta Diabetol 1993; 30: 46–48.

    CAS  PubMed  Google Scholar 

  83. Archibald V, Cotter MA, Keegan A, Cameron NE . Contraction and relaxation of aortas from diabetic rats: effects of chronic anti-oxidant and aminoguanidine treatments. Naunyn Schmiedebergs Arch Pharmacol 1996; 353: 584–591.

    CAS  PubMed  Google Scholar 

  84. Usta MF, Bivalacqua TJ, Yang DY, Ramanitharan A, Sell DR, Viswanathan A et al. The protective effect of aminoguanidine on erectile function in streptozotocin diabetic rats. J Urol 2003; 170: 1437–1442.

    CAS  PubMed  Google Scholar 

  85. Usta MF, Kendirci M, Gur S, Foxwell NA, Bivalacqua TJ, Cellek S et al. The breakdown of preformed advanced glycation end products reverses erectile dysfunction in streptozotocin-induced diabetic rats: preventive versus curative treatment. J Sex Med 2006; 3: 242–250.

    CAS  PubMed  Google Scholar 

  86. Sell DR, Monnier VM . Molecular basis of arterial stiffening: role of glycation. Gerontology 2012; 58: 227–237.

    CAS  PubMed  Google Scholar 

  87. Hackett G . PDE5 inhibitors in diabetic peripheral neuropathy. Int J Clin Pract 2006; 60: 1123–1126.

    CAS  PubMed  Google Scholar 

  88. Miclescu A, Gordh T . Nitric oxide and pain: 'Something old, something new'. Acta Anaesthesiol Scand 2009; 53: 1107–1120.

    CAS  PubMed  Google Scholar 

  89. Gacci M, Corona G, Salvi M, Vignozzi L, McVary KT, Kaplan SA et al. A systematic review and meta-analysis on the use of phosphodiesterase 5 inhibitors alone or in combination with alpha-blockers for lower urinary tract symptoms due to benign prostatic hyperplasia. Eur Urol 2012; 61: 994–1003.

    CAS  PubMed  Google Scholar 

  90. Cameron N, Cotter M, Inkster M, Nangle M . Looking to the future: diabetic neuropathy and effects of rosuvastatin on neurovascular function in diabetes models. Diab Res Clin Pract 2003; 61 (Suppl 1): S35–S39.

    CAS  Google Scholar 

  91. Ii M, Nishimura H, Kusano KF, Qin G, Yoon YS, Wecker A et al. Neuronal nitric oxide synthase mediates statin-induced restoration of vasa nervorum and reversal of diabetic neuropathy. Circulation 2005; 112: 93–102.

    CAS  PubMed  Google Scholar 

  92. Cameron NE, Cotter MA, Ferguson K, Robertson S, Radcliffe MA . Effects of chronic alpha-adrenergic receptor blockade on peripheral nerve conduction, hypoxic resistance, polyols, Na(+)-K(+)-ATPase activity, and vascular supply in STZ-D rats. Diabetes 1991; 40: 1652–1658.

    CAS  PubMed  Google Scholar 

  93. Cotter MA, Cameron NE . Correction of neurovascular deficits in diabetic rats by beta2-adrenoceptor agonist and alpha1-adrenoceptor antagonist treatment: interactions with the nitric oxide system. Eur J Pharmacol 1998; 343: 217–223.

    CAS  PubMed  Google Scholar 

  94. Reja A, Tesfaye S, Harris ND, Ward JD, Is ACE . inhibition with lisinopril helpful in diabetic neuropathy? Diabet Med 1995; 12: 307–309.

    CAS  PubMed  Google Scholar 

  95. Malik RA . Can diabetic neuropathy be prevented by angiotensin-converting enzyme inhibitors? Ann Med 2000; 32: 1–5.

    CAS  PubMed  Google Scholar 

  96. Malik RA, Williamson S, Abbott C, Carrington AL, Iqbal J, Schady W et al. Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: randomised double-blind controlled trial. Lancet 1998; 352: 1978–1981.

    CAS  PubMed  Google Scholar 

  97. Oltman CL, Davidson EP, Coppey LJ, Kleinschmidt TL, Lund DD, Yorek MA . Attenuation of vascular/neural dysfunction in Zucker rats treated with enalapril or rosuvastatin. Obesity (Silver Spring) 2008; 16: 82–89.

    CAS  Google Scholar 

  98. Maxfield EK, Love A, Cotter MA, Cameron NE . Nerve function and regeneration in diabetic rats: effects of ZD-7155, an AT1 receptor antagonist. Am J Physiol 1995; 269: E530–E537.

    CAS  PubMed  Google Scholar 

  99. Oltman CL, Davidson EP, Coppey LJ, Kleinschmidt TL, Dake B, Yorek MA . Role of the effect of inhibition of neutral endopeptidase on vascular and neural complications in streptozotocin-induced diabetic rats. Eur J Pharmacol 2011; 650: 556–562.

    CAS  PubMed  Google Scholar 

  100. Ropper AH, Gorson KC, Gooch CL, Weinberg DH, Pieczek A, Ware JH et al. Vascular endothelial growth factor gene transfer for diabetic polyneuropathy: a randomized, double-blinded trial. Ann Neurol 2009; 65: 386–393.

    PubMed  PubMed Central  Google Scholar 

  101. Schratzberger P, Walter DH, Rittig K, Bahlmann FH, Pola R, Curry C et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 2001; 107: 1083–1092.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Obrosova IG . Diabetes and the peripheral nerve. Biochim Biophys Acta 2009; 1792: 931–940.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the European Society for Sexual Medicine (ESSM) for continuing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Cellek.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cellek, S., Cameron, N., Cotter, M. et al. Pathophysiology of diabetic erectile dysfunction: potential contribution of vasa nervorum and advanced glycation endproducts. Int J Impot Res 25, 1–6 (2013). https://doi.org/10.1038/ijir.2012.30

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijir.2012.30

Keywords

  • advanced glycation endproducts
  • diabetes mellitus
  • erectile dysfunction
  • hypoxia
  • microvessel
  • nitric oxide
  • vasa nervorum

This article is cited by

Search

Quick links