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Aliskiren and L-arginine treatments restore depressed
baroreflex sensitivity and decrease oxidative stress in
renovascular hypertension rats

Vinicius Mengal1, Paulo HM Silva1, Renata V Tiradentes1, Cintia H Santuzzi1, Simone A de Almeida1,
Gabriela C Sena1, Nazare S Bissoli1, Glaucia R Abreu1 and Sonia A Gouvea1,2

Renovascular hypertension is characterized by increased angiotensin II and oxidative stress, and by endothelial dysfunction. The

purpose of this study was to test whether the administration of aliskiren (ALSK) and L-arginine (L-ARG) would restore impaired

baroreflex sensitivity and reduce oxidative stress in a rat renovascular hypertension model. Hypertension was induced by clipping

the left renal artery, and the following five groups were created: SHAM; two-kidney, 1-clip (2K1C); 2K1C plus ALSK (ALSK);

2K1C plus L-ARG (L-ARG); and 2K1C plus ALSK+L-ARG (ALSK+L-ARG). After 21 days of treatment, only the ALSK+L-ARG group

was effective in normalizing the arterial pressure (108.8±2.8 mm Hg). The L-ARG and ALSK+L-ARG groups did not show

hypertrophy of the left ventricle. All the treatments restored the depressed baroreflex sensitivity to values found in the SHAM

group. Acute administration of TEMPOL restored the depressed baroreflex sensitivity in the 2K1C group to values that resembled

those presented by the other groups. All treatments were effective for an increase in the antioxidant pathway and reduction in

the oxidative pathway. In conclusion, the treatment with ALSK or L-ARG reduced oxidative stress and restored reduced baroreflex

sensitivity in renovascular hypertension. In addition, the treatments were able to normalize blood pressure and reverse left

ventricular hypertrophy when used in combination.
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INTRODUCTION

One of the key mechanisms in controlling blood pressure in health
and disease is the baroreflex. In pathological conditions, such as
hypertension, there is an impairment of the autonomic control of
blood pressure, resulting in changes in the baroreflex sensitivity.1,2

Indeed, compelling evidence has shown that the baroreflex
modulation of heart rate is impaired in animals and patients with
renovascular hypertension.3–5

Importantly, in the two-kidney, one-clip (2K1C) model of
renovascular hypertension, the renal artery stenosis caused by the clip
reduces perfusion of the clipped kidney, promoting increases in
plasma renin activity and circulating angiotensin II (Ang II) and
increasing systolic blood pressure (SBP) because Ang II causes potent
vasoconstriction, aldosterone secretion and sympathetic activation.6,7

In addition, abundant evidence has suggested that an important
mechanism by which Ang II influences blood pressure is via its ability
to stimulate the production of ROS,8,9 mainly superoxide anion,8,10,11

by the activation of NADPH oxidase. Reactive oxygen species (ROS)
have an important role in the development and maintenance of

cardiovascular diseases, including hypertension,12,13 atherosclerosis,14

cardiac hypertrophy,15,16 heart failure16 and stroke.17 In experimental
models of 2K1C hypertension, increased vascular oxidative stress has
an important role in the pathogenesis of renovascular hypertension
and the enhancement of oxidation-sensitive mechanisms.18 Ang II
receptor blockers and β-blockers with antioxidant effects may inhibit
ROS in the cardiovascular system and exhibit beneficial effects on
oxidative stress.19,20

A previous study reported that oral L-arginine (L-ARG), a substrate
of nitric oxide (NO) production, reduced blood pressure in the 2K1C
hypertension model.21,22 Senbel et al.23 suggested that the protective
effect resulted from the interaction between NO and ROS, and
increased the NO bioavailability, because NO (synthesized from
L-ARG) possibly acted as a superoxide radical scavenger. In addition,
other studies have shown that treatment with aliskiren (ALSK),
a direct renin inhibitor, reduced blood pressure and decreased
oxidative stress.24–26

It is known that Ang II, acting through AT1 receptor, increases the
sympathetic nerve activity, as well as the reduction of baroreflex gain is
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an important hallmark of hypertension, which is closely related to
sympathetic hyperactivity and activation of the circulating and local
renin angiotensin system.4,6 The interplay between NO and different
components of the RAS has been previously reported, including the
effects of autonomic regulation of cardiovascular function.27,28

Therefore, in the present study, we tested the hypothesis that
administration of ALSK or L-ARG would reduce oxidative stress and
restore impaired baroreflex sensitivity in 2K1C hypertension.

METHODS

Animals and treatment
Male normotensive Wistar rats (150–170 g) were used for these studies. The
animals were kept in cages with free access to both water and standard rat chow
(Purina Labina, SP, Brazil) under controlled temperature (22–24 μC), humidity
(60%) and light–dark cycle (12–12 h) conditions. The experiments were
conducted in accordance with the Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health (NIH Publication,
revised 1996), and efforts were undertaken to minimize the animal’s suffering.
All the procedures were approved by the Institutional Ethical Committee for
Animal Care and Use of the Federal University of Espırito Santo under protocol
number 004/2010. The animals were randomly divided into one of the
following groups (n= 8): SHAM (normotensive control, vehicle saline);
2K1C (hypertension control, vehicle saline); ALSK (hypertension treated with
ALSK, dose: 50 mg kg− 1); L-ARG (hypertension treated with L-ARG, dose:
10 mg kg− 1); and ALSK+L-ARG (hypertension treated with ALSK and L-ARG,
doses: 50 and 10 mg kg− 1, respectively). All the treatments were performed by
oral gavage for a total volume of 0.3 ml per day.

Surgical procedures
Renovascular hypertension was induced by the Goldblatt 2K1C method,
as described in our previous reports.21 Under i.p. anesthesia with ketamine
(75 mg kg− 1) and xylazine (10 mg kg− 1), a 0.20-mm internal diameter silver
clip was placed through a flank incision around the left renal artery to induce
renovascular hypertension. The SHAM rats underwent a similar procedure with
manipulation of the left renal artery but without permanent application of
the clip. The SBP of the tail artery was measured before the production of
hypertension and 7 days after surgery in conscious rats using a non-invasive,
computerized tail-cuff system. The criterion for hypertension in the present
study was an SBP4160 mm Hg. Only rats with SBP4160 mm Hg 7 days after
surgery were used in the experiments. The treatments were started 7 days after
surgery and lasted for 3 weeks.

Direct measurements of blood pressure and heart rate recordings
After 4 weeks, the rats were anesthetized with ketamine and xylazine (75 and
10 mg kg1, i.p., respectively), and polyethylene catheters inserted into the left
femoral artery and vein. Both catheters were filled with heparinized saline,
tunneled s.c., exteriorized and sutured to the dorsal surface of the neck.
Twenty-four hours after the surgical procedures, experiments were performed
on conscious rats. The blood pressure and heart rate were recorded using a
pressure transducer connected to a computer running LabChart software
(ADInstruments, Bella Vista, NSW, Australia).

Baroreflex sensitivity test
Following the baseline blood pressure and heart rate recordings, the
baroreflex was activated using classical vasoactive drugs before and after the
administration of phenylephrine (8 μg kg− 1, i.v.) and sodium nitroprusside
(25 μg kg− 1, i.v.) randomly, given as intravenous bolus injections. After 10 min
of stabilization, Tempol was administered (4-hydroxy-TEMPO 97%, Sigma,
USA, 30 mg kg− 1, i.v.), a superoxide dismutase (SOD) mimetic agent, and
15 min later, new infusions of phenylephrine and sodium nitroprusside were
administered. A 10-min interval was allowed between phenylephrine and
sodium nitroprusside injections. Reflex changes in heart rate produced by
vasoactive drug administration were quantified and plotted as changes in heart
rate over changes in mean arterial pressure (ΔHR/ΔMAP), as described by
Braga et al.29 After the experiments, the animals were killed by decapitation.

The heart was excised immediately and the left ventricle was used to determine
weight/body weight ratios. The samples then remained for 24 h in an oven at
100 °C, and the dry weight of the ventricle was quantified (mg).
In another group of rats (n= 6 per group), the heart was excised immediately

and the left ventricle was used to evaluate the assay of advanced oxidation
protein products, western blotting, catalase (CAT) and superoxide dismutase
activity (SOD) and assay and detection of superoxide production so that there
is no interference in the administration of TEMPOL used in baroreflex
sensitivity protocol.

Assay of advanced oxidation protein products
Spectrophotometric determination of plasma and left ventricle advanced
oxidation protein product (AOPP) levels was performed by the modification
of Witko− Sarsat’s method.30 Samples were prepared in the following manner:
40 μl of the supernatant fraction of the homogenate or plasma was diluted 1:5
in PBS, and 10 μl of 1.16 M potassium iodide was then added, followed by the
addition of 20 μl of acetic acid 2 min later. The absorbance of the reaction
mixture was immediately read at 340 nm against a blank containing 200 μl of
PBS, 10 μl of KI and 20 μl of acetic acid. The chloramine-T absorbance at
340 nm was linear within the range of 5–100 μmol l− 1. AOPP concentrations
were expressed as micromoles per litre of chloramine-T equivalents (μmol l− 1

chloramine-T).

Western blotting analyses
The left ventricles were homogenized in lysis buffer containing (mmol l− 1) 150
NaCl, 50 Tris-HCl, 5 EDTA.2Na and 1 MgCl2 plus protease inhibitor. The
protein concentration was determined by the Lowry method and bovine serum
albumin was used as the standard. Equal amounts of protein (50 μg) were
separated by 10% SDS–PAGE. Proteins were transferred to polyvinylidene
difluoride membranes incubated with mouse anti-rat monoclonal antibodies
for CAT (1:2000), SOD-2 (1:1000), Gp91phox (1:1000) and rabbit anti-rat
polyclonal antibodies for GAPDH (1:1000). After washing, the membranes
were incubated with either an alkaline phosphatase-conjugated anti-mouse IgG
(1:3000) or an anti-rabbit antibody (1:7000). The bands were visualized using a
NBT/BCIP system (Invitrogen Corporation, Carlsbad, CA, USA) and were
quantified using ImageJ software (National Institute of Health, NIH, Bethesda,
MD, USA). The results were calculated using ratio of the density of specific
proteins to the corresponding GAPDH.

Catalase and superoxide dismutase activity assay
CAT activity was measured in the supernatants, as described by Nelson and
Kiesow.31 In a cuvette, 2 ml of phosphate buffer (50 mM, pH 7.0) and 0.06 ml
of homogenate of the left ventricle were mixed. The reaction was started by
adding a substrate (250 μl of H2O2, 3 M), and the decrease in optical density
was recorded at a wavelength of 240 nm every 15 s for 1 min. Experiments were
performed in duplicate. CAT activity was expressed as ΔE min− 1 mg− 1 protein
(ΔE representing the change in enzyme activity for 1 min).
SOD activity was determined in cardiac tissue using the method of Misra and

Fradovich.32 The reaction mixture consisted of 1.0 ml of carbonate buffer
(0.2 M, pH 10.2), 0.8 ml of KCl (0.015 M), 0.1 ml of tissue and water for a final
volume of 3.0 ml. The reaction was started by adding 0.2 ml of epinephrine
(0.025 M). The change in absorbance was recorded at 480 nm at 15-s intervals
for 1 min at 25 °C. A suitable control lacking enzyme preparation was run
simultaneously. One unit of enzyme activity was defined as the amount of
enzyme causing 50% inhibition of the auto-oxidation of epinephrine.

Detection of superoxide production (dihydroethidium fluorescence)
Unfixed frozen sections from the heart (n= 6 per group) were cut into
8-μm-thick sections and were mounted on gelatine-coated glass slides. The
samples were incubated with oxidative fluorescent dye dihydroethidium
(2 μmol l− 1) in modified Krebs's solution (containing 20 mM HEPES), in a
light-protected humidified chamber at 37 °C for 30 min, to detect superoxide.
The intensity of fluorescence was detected at 585 nm and was quantified in the
tissue sections using a confocal fluorescent microscope by an investigator
blinded to the experimental protocol. Analysis of 15 fields per sample was
performed.
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Statistical analyses
The results are expressed as the means± s.e.m. The data were analyzed by
one-way analysis of variance for repeated measures, followed by Fisher's post
hoc test for multiple comparisons of the means. Po0.05 was considered
statistically significant.

RESULTS

Effects of ALSK and L-ARG treatments on the development of 2K1C
hypertension
The SBP and MAP were increased in the 2K1C group compared with
those in the SHAM group (Table 1). After 21 days of treatment,
only the ALSK+L-ARG group was effective in normalizing SBP and
MAP. In addition, the L-ARG group showed reduced SBP and MAP
compared with the 2K1C group; however, the ALSK group maintained
high SBP and MAP compared with the SHAM group. In contrast, all
the treatments reduced diastolic blood pressure compared with the
2K1C group. The heart rate was not different among the groups,
as illustrated in Table 1.

The effects of ALSK and L-ARG treatments on the left ventricle
2K1C-induced hypertension promoted hypertrophy of the left
ventricle compared with hearts from the SHAM group, and this
difference was found in both of the weights, dry and wet (Table 2). In
contrast, the L-ARG and ALSK+L-ARG groups showed similar values
to the SHAM group, although the ALSK group values were not
different from those of the 2K1C group, as illustrated in Table 2.

Effects of ALSK and L-ARG treatments on baroreflex sensitivity
The 2K1C group presented a reduction in baroreflex sensitivity
after administration of phenylephrine and sodium nitroprusside
(Figure 1a and b) compared with the SHAM group (−0.72± 0.12 vs.
− 1.91± 0.21b.p.m. and − 1.03± 0.17 vs. − 3.14± 0.26 mmHg− 1,

respectively, Po0.05) before the administration of TEMPOL. All the
treatments restored the depressed baroreflex sensitivity to the values
found in the SHAM group (ALSK: − 2.7± 0.17, − 2.85± 0.25;
L-ARG: − 2.07± 0.24, − 2.99± 0.27 and ALSK+L-ARG: − 2.19± 0.13,
− 2.52± 0.17 vs. SHAM: − 1.91± 0.2 b.p.m., − 3.14± 0.26 mmHg− 1,
respectively, Po0.05). Acute administration of TEMPOL,
a well-known antioxidant, restored the depressed baroreflex sensitivity
in the 2K1C group to values that resembled those presented by the
other groups in both administrations (2K1C: − 1.31± 0.25,
−1.92±0.32 vs. SHAM: −1.35±0.17, −2.53±0.33; ALSK:−1.54±0.23,
− 1.75± 0.3; L-ARG: − 1.78± 0.15, − 2.28± 0.44 and ALSK+L-ARG:
-1.38± 0.12 b.p.m. , − 1.81± 0.2 mmHg− 1, respectively, Po0.05),
as shown in Figure 1c and d.

Effects of ALSK and L-ARG treatments on advanced oxidation
product levels
The AOPP levels in the plasma were significantly increased in the
2K1C group compared with those of the SHAM, ALSK and L-ARG
groups (5.79± 0.67 vs. 3.79± 0.41; 3.96± 0.35; 4.26± 0.47 and
3.91± 0.36 μmol l− 1 chloramine-T, respectively, Po0.05). Similar
responses were found in left ventricle, with significant increases in
the 2K1C group compared with the SHAM, ALSK and L-ARG
groups (3.91± 0.36 vs. 1.26± 0.14; 1.21± 0.11; 1.37± 0.03 and
1.23± 0.13 μmol l− 1 chloramine-T, respectively, Po0.05), as shown
in Figure 2.

Expression of SOD-2, CAT and GP91phox in the heart
SOD-2 expression in the left ventricle was significantly decreased in
the 2K1C group compared with that in the SHAM group and was
increased in the ALSK, L-ARG and ALSK+L-ARG groups compared
with that in the 2K1C group (Figure 3a). The CAT expression in the
left ventricle was significantly decreased in the 2K1C group compared
with that in the SHAM group and was increased in the ALSK, L-ARG
and ALSK+L-ARG groups compared with that in the 2K1C and
SHAM groups (Figure 3b). The gp91phox in the left ventricle was
significantly increased in the 2K1C, ALSK, L-ARG and ALSK+L-ARG
groups; however, the L-ARG and ALSK+L-ARG groups had
significantly decreased gp91phox compared with the 2K1C and ALSK
groups (Figure 3c).

CAT and SOD activities
CAT and SOD enzyme activities were significantly decreased in the left
ventricles of the 2K1C group compared with those of the SHAM
group. After treatment with ALSK+L-ARG, the enzyme activity of SOD
was significantly increased. In addition, the enzyme activity of CAT
increased in the ALSK, L-ARG and ALSK+L-ARG groups after
treatment, as shown in Figure 4.

Table 1 Effects of ALSK, L-ARG or ALSK+L-ARG treatment on the blood pressure and heart rate in 2K1C rats

SBP (mm Hg) DPB (mm Hg) MAP (mm Hg) HR (b.p.m.)

SHAM 112.09±3.18 81.06±1.6 105.62±2.68 380.48±13.72

2K1C 200.5±5.36a 130.19±7.15a 167.26±5.85a 373.78±26.02

ALSK 195.05±9.03a 105.61±9.68b 160.24±10.26a 403.02±23.05

L-ARG 152.19±5.36a,b 103.62±3.2b 135.23±3.34a,b,c 357.4±11.4

ALSK+L-ARG 123.9±1.68b,c,d 87.29±5.52b 108.87±2.88b,c,d 372.48±9.81

Abbreviations: 2K1C, two-kidney, one-clip; ALSK, aliskiren; ALSK+L-ARG, aliskiren plus L-arginine; DPB, diastolic blood pressure; HR, heart rate; L-ARG, L-arginine; MAP, mean arterial pressure;
SPB, systolic blood pressure.
aPo0.05, when compared with SHAM.
bPo0.05, when compared with 2K1C.
cPo0.05, when compared with ALSK.
dPo0.05, when compared with L-ARG.
Data are expressed as mean± s.e.m.

Table 2 Effects of ALSK, L-ARG or ALSK+L-ARG treatment on the left

ventricle weight (mg g−1) in 2K1C rats

Dry weight (mg g−1) Wet weight (mg g−1)

SHAM 2.23±0.04 0.49±0.08

2K1C 3.32±0.16a,b,c 0.71±0.06a,b

ALSK 3.26±0.31a,b,c 0.64±0.03a,b

L-ARG 2.47±0.09 0.43±0.01

ALSK+L-ARG 2.22±0.15 0.59±0.04

Abbreviations: 2K1C, two-kidney, one-clip; ALSK, aliskiren; ALSK+L-ARG, aliskiren plus
L-arginine; L-ARG, L-arginine.
aPo0.05, when compared with SHAM.
bPo0.05, when compared with 2K1C.
cPo0.05, when compared with ALSK.
Data are expressed as mean± s.e.m.
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Analysis of oxidative stress by dihydroethidium fluorescence
Analysis of superoxide formation showed a significant increase
in the fluorescence of the 2K1C, ALSK and L-ARG groups

compared with that of the SHAM group. However, treatment
with ALSK and L-ARG decreased these values compared with
those of the 2K1C group. In addition, the ALSK+L-ARG

Figure 1 Effects of aliskiren (ALSK), L-arginine (L-ARG) or aliskiren plus L-arginine (ALSK+L-ARG) treatment on the parasympathetic and sympathetic
components of the baroreflex before and after administration of TEMPOL in two-kidney, one-clip (2K1C) rats. Values for baroreflex sensitivity (b.p.m. and
mm Hg-1) determined by the modified Oxford method using intravenous injection of Sodium Nitroprusside (NPS) before administration of TEMPOL (a) and
after administration of TEMPOL (b), and of Phe before administration of TEMPOL (c) and after administration of TEMPOL (d) of all the groups. *Po0.05,
when compared with the SHAM group and #Po0.05, when compared with the 2K1C group. Data are presented as mean± s.e.m.

Figure 2 Effects of aliskiren (ALSK), L-arginine (L-ARG) or aliskiren plus L-arginine (ALSK+L-ARG) treatment on the advanced oxidation protein products
(AOPP) levels in plasma (a) and left ventricle (b) in two-kidney, one-clip (2K1C) rats. *Po0.05, when compared with the SHAM group and #Po0.05, when
compared with the 2K1C group. Data are presented as mean± s.e.m.
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group showed similar values to the SHAM group, as shown in
Figure 5.

DISCUSSION

The main findings of the present study were that treatment with ALSK
or L-ARG reduced oxidative stress and restored reduced baroreflex
sensitivity in renovascular hypertension. In addition, the treatments

were able to normalize blood pressure and reverse left ventricular
hypertrophy when used in combination.
Renovascular hypertension is caused by increased generation of

Ang II owing to increased renal renin release. Therefore, excess Ang II
production via several different effector pathways is at least partially
responsible for the establishment and development of hypertension
and left ventricular hypertrophy,9,15 and for reduced baroreflex

Figure 3 Effects of aliskiren (ALSK), L-arginine (L-ARG) or aliskiren plus L-arginine (ALSK+L-ARG) treatment on the densitometric analyses of western blots
for superoxide dismutase (SOD)-2 (a), catalase (CAT) (b) and gp91phox (c) in two-kidney, one-clip (2K1C) rats. *Po0.05, when compared with the SHAM
group and #Po0.05, when compared with the 2K1C group. Data are presented as mean± s.e.m.

Figure 4 Effects of aliskiren (ALSK), L-arginine (L-ARG) or aliskiren plus L-arginine (ALSK+L-ARG) treatment on the enzymatic activity of catalase (CAT)
(a) and superoxide dismutase (SOD) (b) in the left ventricle in two-kidney, one-clip (2K1C) rats. *Po0.05, when compared with the SHAM group and
#Po0.05, when compared with the 2K1C group. Data are presented as mean± s.e.m.

Aliskiren and L-arg restore baroreflex sensitivity
V Mengal et al

773

Hypertension Research



sensitivity.3 The inhibition of renin with ALSK could therefore
contribute to reducing the blood pressure levels in the rat model
used in our study. However, we found that ALSK monotherapy did
not reduce SBP or MAP. This result must be considered carefully
because studies using the same dose found reductions in blood
pressure only after 4 weeks of treatment,26 and with lower hyperten-
sion level than in the present work. In contrast, treatment with higher
doses showed that ALSK reduced heart rate and blood pressure.33

Moreover, monotherapy with L-ARG was able to reduce, but not
normalize SBP, as observed in this study and in previous studies from
our laboratory.21 However, the combination of these therapies
normalized the blood pressure of hypertensive rats. The ALSK,
L-ARG and ALSK+L-ARG treatments were able to reduce diastolic
blood pressure after 21 days, demonstrating the importance of these
therapies for controlling blood pressure.
Renovascular hypertension promoted left ventricular hypertrophy

in the 2K1C group, which could be explained by an increase in Ang II,
which in turn exerted an inotropic effect and promoted the
proliferation and hypertrophy of cardiac fibroblasts, leading to
myocyte hypertrophy.34,35 ALSK treatment did not reduce cardiac
hypertrophy. Other studies have suggested an explanation that direct
blocking of renin reduces the ability to degrade angiotensinogen and
to produce Ang I but does not inhibit the pro-fibrosis signal induced
by the renin/pro-renin receptor.24,36 In contrast, higher doses of
ALSK, than those used in this study, could reduce myocyte apoptosis,
revealing effective cardioprotection by ALSK.33 In the heart, gp91phox
has a key role. It has been previously demonstrated that the activation
of AT1 receptor induces an enhancement in superoxide production by
NADPH oxidase, causing hypertrophy by a mechanism dependent
on Akt and Rac-1 in conjunction with gp91phox activation,37,38

contributing to the permanence of hypertrophy in the ALSK group.
However, the groups treated with L-ARG did not show left ventricular
hypertrophy, suggesting that the progression of cardiac damage caused
by renovascular hypertension was prevented.

The baroreflex is an autonomic reflex designed to buffer
beat-to-beat fluctuations in arterial blood pressure.27 In addition,
Tsyrlin et al.39 suggested that arterial baroreflex is involved in the
long-term control of blood pressure, and another study showed that
the deactivation of carotid body chemoreceptors does decrease blood
pressure.40 Further, the activity of the renal sympathetic nerves
responsible for the regulation of sodium excretion by the kidney
seems to be at least partly modulated by the long-term effects of the
arterial baroreflex. Several studies have shown that the sensitivity of
the baroreflex is diminished in several forms of hypertension.41–43

Previously, Moyses et al.3 demonstrated that with 7 days of the 2K1C
hypertension model, the rats presented with hypertension and
impaired the gain in baroreflex, emphasizing the importance of
both treatments in restoring the damaged baroreflex caused by
hypertension, considering that treatment was initiated after 7 days of
renovascular hypertension. In addition, several studies have shown
that oxidative stress is a possible cause of hypertension, based on a
variety of mechanisms.44–46 According to this study, the administra-
tion of antioxidants had no effect on baroreflex function in
normotensive animals, as observed in other studies,47,48 but improved
the baroreflex in hypertensive rats. These data suggested that
antioxidant therapy in the absence of oxidative stress had no influence
on baroreflex sensitivity. Mutually, the results from the present study
supported the insights that renovascular hypertension promotes
oxidative stress, which reduces baroreflex sensitivity, and that
treatment with ALSK or L-ARG could restore this sensitivity.
Although it is not possible to determine the precise mechanism by

which therapy with ALSK or L-ARG exerted its positive influence on
baroreflex function, recent evidence suggests that the improvement in
baroreflex sensitivity observed in renovascular hypertension rats was
caused by the improvement in autonomic function associated with a
reduction in oxidative stress.41 In addition, evidence from other
animal studies has suggested that diminished baroreflex sensitivity
was caused by endothelial dysfunction.49 In particular, in

Figure 5 Effects of aliskiren (ALSK), L-arginine (L-ARG) or aliskiren plus L-arginine (ALSK+L-ARG) treatment on the superoxide formation in sections of
cardiac tissue by the dihydroethidium fluorescence. Representative images of the SHAM (a), two-kidney, one-clip (2K1C) (b), ALSK (c), L-ARG (d) and ALSK
+L-ARG (e) groups. Data are presented as mean± s.e.m. *Po0.05, when compared with the SHAM group and #Po0.05, when compared with the 2K1C
group. Data are presented as mean± s.e.m. Bar: 50 μm. A full color version of this figure is available at Hypertension Research online.
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experimentally induced endothelial dysfunction, a decrease in
prostacyclin and increase in thromboxane concentrations were
associated with reduced baroreflex impulses from the carotid
artery.47 Moreover, experimental evidence has strongly suggested a
direct suppressive influence of ROS on baroreceptors (that is,
a peripheral site of action).50

Our previous results demonstrated that oral administration of ALSK
and L-ARG normalized renal sympathetic nerve activity and SBP,
suggesting that the Ang II and NO are involved in the enhanced
sympathetic afferent reflex in renovascular hypertensive rats.51 In
addition, in a previous study we suggested that treatment with ALSK
+L-arg was effective in releasing an endothelium-derived relaxation
factor. Thus, the combination of drugs appeared to restore the
endothelial dysfunction induced by the 2K1C model.52 We already
concluded that this new treatment proposal could reduce blood
pressure levels, in addition to improving renal and cardiac function
and sympathetic activity, and preventing endothelial dysfunction.51,52

However, this report was the first to document the effectiveness of this
treatment on baroreflex sensitivity in hypertensive rats.
The NO has been suggested to have an important role in autonomic

and baroreflex control in humans and experimental animals.53–55

Because reductions in NO bioavailability might be caused primarily
by oxidative stress, it is possible that reduced bioavailability of NO
might contribute to depressed levels of baroreflex sensitivity in
renovascular hypertensive rats, secondary to increased levels of
oxidative stress. Considering that we did measure NO bioavailability
in the present study, we can only speculate that our treatment with
L-ARG and ALSK might have increased baroreflex sensitivity,
secondary to the increased bioavailability of NO.
We interpret the increased gp91phox expression as a likely

indication that the production of ROS was increased, although
dihydroethidium was increased with 2K1C. It has already been
established that reductions in CAT and SOD promoted increased
ROS; moreover, Ang II also affected antioxidant enzymes, promoting
their reduction. Studies have demonstrated that the increase in
antioxidant enzymes improved baroreflex sensitivity;41,48 thus, we
believe that treatment with L-ARG and ALSK increased the antioxidant
enzymes protecting the endothelium from the action of ROS.
Oxidative stress is defined as an imbalance between pro and

antioxidant systems that favor the former and causes cellular damage
via an increase in ROS formation. NADPH oxidase is one of the main
sources of superoxide production. This complex possesses two
membrane-bound subunits (Gp91phox and p22phox), as well as
more cytosolic subunits, which regulate and organize the complex in
the membrane, thereby enhancing its activity and producing
superoxide.55 Hypertension is associated with increased vascular
oxidative stress; however, debate persists regarding whether oxidative
stress is a cause or a result of arterial hypertension
Considering that Ang II is an important and potent mechanism

leading to the activation of NAD(P)H oxidase, the 2K1C Goldblatt
model in rats, which is an Ang II-dependent model of experimental
hypertension, has been used to investigate the relationships among
Ang II, oxidative stress and hypertension.9,41 Previous reports have
suggested that baroreflex sensitivity is reduced during hypertension,
and the mechanisms underlying its reduction involve ROS.50

The amount of oxidative stress was assessed by measuring the
AOPP levels in plasma and cardiac tissue, and the level of endogenous
antioxidant enzymes (SOD and CAT) and oxidant enzyme
(gp91phox). The present study exhibited a significant increase in the
AOPP levels, accompanied by significant reductions in the activity and
expression of SOD and CAT, as well as increased gp91phox

expression, in the cardiac tissue with 2K1C hypertension, in agreement
with earlier studies.8,9,41 These findings suggested that enhanced ROS
could be one of the mechanisms through which 2K1C hypertension
induced an increase in blood pressure, a reduction in sensitivity
baroreflex and other functional and structural alterations of the target
organs. Treatment with ALSK and L-ARG decreased AOPP levels,
increased SOD expression, and CAT expression and activity. However,
the SOD activity increased in only the group treated with the ALSK
plus L-ARG. ROS production was demonstrably increased in the
2K1C group and decreased after treatment with ALSK or L-ARG,
as demonstrated by dihydroethidium fluorescence. In addition, the
association of treatments was able to normalize the values. We suggest
that treatment with L-ARG was able to reduce the reactive species, and
this route resulted in pressure control, as well as in heart protection,
thus preventing hypertrophy.
In summary, we reported that treatment with ALSK or L-ARG

restored baroreflex sensitivity in renovascular hypertensive rats. In
addition, oxidative stress seemed to have an important role in the
blunted baroreflex sensitivity observed in renovascular hypertension.
The precise site of action where these treatments produced their
beneficial effects of ameliorating baroreflex sensitivity is unknown.
However, the increases in the expression and activity of antioxidant
enzymes, as well as the reduction in the expression of oxidant enzymes
and the decrease in AOPP levels, might have contributed to restoring
the sensitivity baroreflex in renovascular hypertension rats.
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