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Mineralocorticoid receptor as a therapeutic target
in chronic kidney disease and hypertension

Shigeru Shibata1,2, Kenichi Ishizawa1 and Shunya Uchida1

The kidney has a central role in long-term control of blood pressure, and decreased kidney function is a common but

difficult-to-treat cause of hypertension. Conversely, elevated blood pressure contributes to the progression of chronic kidney

disease. Steroid hormone aldosterone and its receptor mineralocorticoid receptor (MR) contribute to hypertension by increasing

renal salt reabsorption and promote kidney dysfunction through direct effects on renal parenchymal cells. Accumulating data

indicate that various mechanisms affect aldosterone-MR signaling. Using a genetically engineered mouse model, we identified

crosstalk between small GTPase Rac1 and MR. This crosstalk pathway promotes glomerular podocyte injury, and is also involved

in the pathogenesis of hypertension. Notably, salt loading increases renal Rac1 activity in several models of salt-sensitive

hypertension, which, in the presence of aldosterone, synergistically activates MR signaling, causing hypertension and kidney

injury. There is also a mechanism regulating MR in a cell-selective manner. In the principal cells of the collecting duct,

aldosterone directly binds and activate MR. In neighboring intercalated cells, however, binding of aldosterone to MR is regulated

by phosphorylation at the ligand-binding domain. This mechanism serves as a switch to turn on electrolyte flux pathways in

intercalated cells, allowing aldosterone to exert distinct effects in different physiological contexts. Given the potential benefit of

MR blockade in hypertensive kidney disease, the delineation of these pathways may lead to the identification of alternative

therapeutic targets. In this review, we discuss the roles of MR in mediating kidney disease and hypertension, with a focus on the

crosstalk among related signaling pathways.
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The kidney fluid system is a predominant regulator of blood pressure,
and reduced kidney function constitutes a major cause of
hypertension.1–3 High blood pressure, in turn, contributes to the
progression of kidney dysfunction,4,5 causing a vicious cycle in
hypertensive kidney disease. Mineralocorticoid receptor (MR; encoded
by NR3C2) belongs to the nuclear receptor superfamily and is
abundantly present in the so-called aldosterone-sensitive distal
nephron.6,7 In response to the steroid hormone aldosterone,
MR regulates the transcription of target genes, serving as the master
regulator of Na+, K+ and Cl− flux mechanisms in this segment.8,9

Among the various genes that cause Mendelian forms of blood
pressure variation in humans, mutations in aldosterone synthase,
MR and epithelial Na+ channel (ENaC) can cause both
hypertension and hypotension,3 demonstrating the central role of
the aldosterone-MR system in fluid volume homeostasis.
Besides its role in regulating blood pressure, MR has also been

shown to be involved in the pathogenesis of end-organ damage,
including heart failure and chronic kidney disease (CKD)
progression.10–16 Especially, experimental and clinical studies have

demonstrated that MR blockade effectively reduces proteinuria.14,16–19

It is now accepted that MR is much more widely distributed than
previously thought,20–24 and aberrant MR signaling in nonclassical
targets is likely to be involved in target organ damage associated with
hypertension. Given the wide distribution of MR in various tissues and
organs,20–24 it is plausible that the function of MR is locally modulated
in a context-dependent manner. Accordingly, we identified previously
unrecognized mechanisms that regulate MR function independently of
circulating ligand levels.18,22,25 In this short review, we discuss the roles
of MR in mediating kidney disease and hypertension, with a focus on
the crosstalk among various related signaling pathways.

POTENTIATION OF MR SIGNALING BY THE SMALL GTPASE

RAC1 AND GLOMERULAR EPITHELIAL CELL DAMAGE

The Rho family of small G proteins, which includes RhoA, Rac1 and
Cdc42, controls cell shape, polarity and migration through actin
reorganization.26 When activated, Rho family GTPases dissociate from
the negative regulators, Rho GDP dissociation inhibitors (RhoGDIs),
translocate to the cell membrane, and are converted to the active,
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GTP-bound form though interaction with guanine nucleotide-
exchange factors. They are then converted to the inactive
GDP-bound form by GTPase-activating proteins and bound to
RhoGDIs. Interestingly, mice lacking RhoGDI-α (Arhgdia−/−) exhibit
heavy proteinuria and progressive kidney failure,27 highlighting the
critical role of this protein in kidney function. Using this mice model,
we analyzed the mechanisms of the kidney injury in detail, and
unexpectedly found that the activity of Rac1 but not that of RhoA was
elevated,18 and pharmacological manipulation of Rac1 activity in the
kidney revealed its pathological importance in glomerular podocyte
injury and proteinuria.
In addition to its well-described role in actin cytoskeletal

reorganization, Rac1 is also capable of regulating the nuclear
accumulation and transcriptional activity of nuclear transcription
factors.28,29 In an effort to clarify the signaling pathways that cause
kidney dysfunction in the Arhgdia−/− model, we found that Rac1
facilitates MR signaling independently of the ligand
aldosterone levels.18 Indeed, Arhgdia−/− mice showed MR accumula-
tion in the nuclear fraction and increased expression of MR target
genes in the absence of hyperaldosteronism. Furthermore, these
changes, in addition to heavy proteinuria and kidney dysfunction,
were almost completely reversed by the selective MR antagonist
eplerenone, demonstrating the central role of aberrant MR signaling.
Thus, in this model, Rac1 activity in the kidney is increased by
deletion of RhoGDIα, which in turn induces MR signaling by
facilitating receptor function, thereby causing kidney dysfunction.
Interestingly, recent studies have identified and characterized a type

of congenital nephrotic syndrome caused by mutations in RhoGDIα in
humans.30,31 Consistent with our data, the study showed that
mutations in ARHGDIA (R120X, G173V) result in the activation of
Rac1 but not that of RhoA. In addition, the nephrotic phenotype
recapitulated in RhoGDIα-deficient zebrafish is ameliorated by Rac1
inhibitors and MR antagonists.30

ROLE OF THE RAC1-MR PATHWAY IN THE PATHOPHYSIOLOGY

OF CKD ASSOCIATED WITH HYPERTENSION

The pressor response to high salt intake (termed ‘salt sensitivity’)
varies among individuals;32 however, the related mechanisms have
not been completely elucidated. Dahl salt-sensitive (Dahl-S) and
salt-resistant (Dahl-R) strains have long been used to evaluate the
factors influencing salt sensitivity. In these models, previous studies
have reported that plasma aldosterone levels are rather low in Dahl-S
rats compared with those in Dahl-R rats.33 Moreover, salt loading

decreases aldosterone secretion similarly in Dahl-S and Dahl-R rats,22

excluding the possibility of autonomic aldosterone secretion in these
models. Interestingly, however, previous data indicate that serum- and
glucocorticoid-induced kinase 1 (SGK1) and ENaC, the main down-
stream targets of aldosterone-MR signaling, are paradoxically elevated
in salt-loaded Dahl-S rats,34 despite suppression of aldosterone.
Consistent with this, we observed increased SGK1 protein and nuclear
MR contents in salt-loaded Dahl-S rats. Furthermore, we also found
that the selective MR antagonist eplerenone ameliorated high blood
pressure and glomerular injury in this model.22 In contrast, salt-loaded
Dahl-R rats showed decreased nuclear MR and SGK1 along
with reduced plasma aldosterone, indicating that MR signaling is
appropriately reduced.
In our previous work, we evaluated the contribution of Rac1

GTPase to the mechanism of this paradoxical MR signaling in
salt-loaded Dahl-S rats.22 Interestingly, high salt loading increased
Rac1 activity in the kidneys of Dahl-S rats. In contrast, renal Rac1 was
reduced by high salt in Dahl-R rats. Pharmacological manipulation of
Rac1 by Nsc23766 in Dahl-S rats abrogated hypertension and kidney
injury along with reduction in nuclear MR and SGK1 contents,
demonstrating the pathological roles of Rac1 overactivity. Thus, these
data indicate that salt loading increases Rac1 activity, which in turn
causes salt-dependent hypertension via facilitating MR signaling even
when circulating aldosterone is reduced (Figure 1).
Notably, adrenalectomy in Dahl-S rats prevented Rac1 activation,

which was restored by exogenous aldosterone supplementation. These
data indicate that the Rac1-MR and aldosterone-MR axes are
interdependent. They also exclude the possibility that MR is activated
by ligands other than aldosterone in this model. Thus, high salt
loading suppresses aldosterone but activates MR signaling via Rac1 in
the context of salt-sensitive hypertension, contributing to blood
pressure elevation and kidney disease progression. Our data indicate
that, besides hyperaldosteronism, dysregulation of MR significantly
contributes to the pathogenesis of hypertension. Similarly, MR
blockade can confer organ protection in kidney diseases associated
with pathological MR activity, highlighting the potential usefulness of
MR antagonists.
The first-line treatment for proteinuric CKD is angiotensin-

converting enzyme inhibitors (ACEIs) and angiotensin II receptor
blockers (ARBs).35 Large-scale interventional studies have established
that inhibitors of the renin-angiotensin system reduce proteinuria and
block CKD progression.36–39 Importantly, however, the renoprotective
effects of ACEIs and ARBs are less clear in patients with high salt
intake than in those with low to normal salt intake.40 Given our
experimental data, high salt status can be associated with enhanced
MR signaling via Rac1, which may not be effectively abrogated by
ACEIs or ARBs.
The EVALUATE (Eplerenone Combination vs. Conventional

Agents to Lower Blood Pressure on Urinary Anti-albuminuric
Treatment Effect) study investigated the effects of long-term,
low-dose eplerenone (50 mg per day) added to ACEIs, ARBs or both,
on the urinary albumin-to-creatinine ratio in hypertensive patients
with nondiabetic CKD (with an estimated glomerular filtration rate of
at least 50 ml min− 1 1.73 m− 2).14 In this randomized, placebo-
controlled trial, the authors showed that eplerenone significantly
reduced albuminuria and blood pressure in patients with nondiabetic
CKD who were already on ACEIs or ARBs. Although serum potassium
concentrations were modestly higher in the eplerenone group than the
placebo group, none of the participants had hyperkalemia as defined
by serum K+ levels higher than 5.5 mmol l− 1, indicating that low-dose
eplerenone was tolerable in this population. Most interestingly,

Figure 1 Rac1 response to high salt loading and salt sensitivity. In
salt-resistant phenotype, salt loading decreases plasma aldosterone and also
renal Rac1 activity. This results in reduced mineralocorticoid receptor (MR)
signaling and natriuresis. In contrast, a subgroup of salt-sensitive
hypertension shows increased Rac1 activity by salt loading. The aberrant
Rac1 signaling causes MR overactivity in the presence of aldosterone.
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in post hoc analyses stratified by urinary sodium excretion, the
renoprotective effects of eplerenone were prominent in those with
high urinary sodium excretion (160 mmol per day or greater). In
contrast, there were no significant differences in the percent change in
urinary albumin-to-creatinine ratio from baseline between the
eplerenone group and placebo group in participants with low urinary
sodium excretion (o 160 mmol per day). Furthermore, there was no
significant correlation between the percent decrease in urinary
albumin-to-creatinine ratio and baseline aldosterone levels. These
data indicate the strong association between salt intake and MR
signaling in humans, and are consistent with the experimental data
showing that salt loading enhances MR signaling without increasing
circulating aldosterone. Also, this study clearly demonstrates that MR
antagonists have different property to ACEIs or ARBs, and that their
use on top of ACEI or ARB may be beneficial at least in a subgroup of
CKD patients as far as serum K+ levels are appropriately controlled.

CELL-SELECTIVE REGULATION OF MR BY PHOSPHORYLATION

In the principal cells of the connecting tubules and collecting duct,
aldosterone directly binds to MR and regulates the expression and
activity of the amiloride-sensitive ENaC.41 This process is mediated by
the interplay of the Ser/Thr kinase SGK1 and ubiquitin ligase neuronal
precursor cell expressed developmentally downregulated 4-2.41

Aldosterone regulates ENaC also via proteolytic cleavage42 and
epigenetic modification.43 Activation of ENaC by aldosterone drives
electrogenic Na+ reabsorption, which promotes lumen-negative
potential and stimulates Cl− reabsorption, or K+ and H+ secretion.
Consistent with this, in patients with autosomal recessive
pseudohypoaldosteronism type I, mutations in any of the three
different ENaC subunits cause salt wasting, hyperkalemia and
metabolic acidosis.44,45 K+ secretion in this segment is mediated by
renal outer medullary K+ channels, and apical vacuolar H+-ATPase is
responsible for H+ secretion.
With regard to the route of Cl− reabsorption in this segment,

accumulating data indicate the critical role of pendrin (encoded
by SLC26A4), a Cl−/HCO3

− exchanger selectively present in
β-intercalated cells.46–48 In mice lacking pendrin, Wall et al.48 found
that Cl− flux in the cortical collecting duct is no longer evident, and

these mice show the salt-loss phenotype. Conversely, overexpression of
pendrin produces salt-dependent hypertension.49 The role of pendrin
in the complex network of the kidney fluid system was established in
the study by Soleimani et al.,50 who reported severe volume depletion
and hypotension in mice lacking pendrin and the Na+–Cl−

co-transporter. These data demonstrate that pendrin and Na+–Cl−

co-transporter are the main Cl− reabsorption pathways in the distal
nephron and that pendrin contributes to fluid and electrolyte
homeostasis.
Previous studies have identified the factors influencing pendrin

expression and/or activity, including acid/base change, angiotensin II,
K+, Cl− and mineralocorticoids.51–54 Indeed, evidence indicates that
intercalated cells express MR.7 In β-intercalated cells, the synthetic
mineralocorticoid deoxycorticosterone pivalate is shown to increase
pendrin expression in the apical membrane.52 However, the effects of
mineralocorticoids may not be evident depending on the experimental
conditions,55 suggesting that MR is regulated via complex mechanisms
in these cells.
To obtain insights into the mechanisms regulating MR function, we

have comprehensively analyzed the phosphorylation sites in MR.25

Among the identified sites, phosphorylation at S843 (MRS843-P) is of
particular interest because of its location in the ligand-binding
domain. Previous reports have highlighted the importance of S843
in determining ligand selectivity.56 Indeed, biochemical assays using
phosphomimetic MRS843E revealed that phosphorylation severely
impairs aldosterone binding. Consistent with this, phosphomimic
MR is exclusively cytoplasmic and shows no transcriptional activity,
even in the presence of aldosterone at a physiological concentration
(1 nmol l− 1). A recent study suggested that phosphorylated MR exerts
a dominant negative effect,57 further underscoring the biological
impact of MRS843-P.
In terms of physiological significance, analysis of mouse tissues

using phospho-specific antibodies revealed that MRS843-P is exclusively
present in the cytoplasm of the intercalated cells and is
dephosphorylated in volume depletion via angiotensin II signaling.
Conversely, K+ loading increases MRS843-P in these cells. The decrease
in MRS843-P in hypovolemic conditions is associated with the increase
in pendrin and apical H+-ATPase, which can be corrected by the MR
antagonist spironolactone. These data indicate that volume depletion
induces MR dephosphorylation, thereby activating Cl− flux
mechanisms involving intercalated cells (Figure 2).
As elegantly demonstrated by a mathematical model in the previous

reports,58,59 maximal Na–Cl reabsorption in the collecting duct occurs
when electrolyte flux mechanisms in intercalated cells and
principal cells are activated simultaneously. Under these conditions,
K+ secretion is minimized as a result of electroneutral Na–Cl
transport in this segment, limiting K+ secretion in the presence of
high aldosterone levels. Identification of intercalated cell MR
phosphorylation provides a mechanism that integrates the function
of principal cells and intercalated cells, which determines the balance
of Na+/K+ exchange and Na–Cl co-transport in the collecting duct.
Interestingly, we found reduced MRS843-P in a mouse model of
pseudohypoaldosteronism type II, a rare Mendelian disorder featuring
hypertension and hyperkalemia,25 indicating that the Ser/Thr kinase
WNK4 is involved in the regulation of this site. These data also suggest
a possibility that the dysregulation of this site may have a role in its
pathogenesis. It is likely that pseudohypoaldosteronism type II mice
exhibit impaired K+ secretion partly because of the constitutive
dephosphorylation of this site.

Figure 2 Mechanism for mineralocorticoid receptor (MR) regulation in renal
intercalated cells. High K+ intake increases MR phosphorylation, which
prevents ligand binding and MR activation in hyperaldosteronism.
Dephosphorylation of the receptor in response to angiotensin II signaling
restores receptor competence, increasing Cl− flux mechanisms involving
these cells in the collecting duct. ‘P’ denotes phosphorylation. Adapted from
ref. 25.
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FUTURE RESEARCH DIRECTIONS

Identification of a novel MR phosphorylation site raises several
questions for further research. First, additional studies are required
to determine the identity of the kinase that mediates MRS843-P.
Given that phosphorylation at this site non-competitively inhibits
ligand binding, artificial manipulation of this site may have
therapeutic potential. Second, the mechanisms that control MRS843

phosphorylation in a cell-selective manner are unclear. One possibility
is that the responsible kinases are highly enriched in intercalated cells.
Alternatively, other post-translational modifications, such as O-linked
β-N-acetylglucosamine,60,61 may have a role. Third, the role of cortisol
in intercalated cells may require further investigation. Although the
role of aldosterone in intercalated cells has been demonstrated, it is
possible that cortisol also acts as a ligand. As suggested previously, the
difference in phenotype between MR-knockout mice and aldosterone
synthase-knockout mice is consistent with the role of cortisol.62

Finally, the role of MRS843-P in the pathophysiology of hypertension
and kidney disease needs further evaluation. Future studies are
warranted to clarify these issues, which will hopefully lead to the
identification of potential therapeutic targets for selective MR
modulation.
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