Association of worsening arterial stiffness with incident heart failure in asymptomatic patients with cardiovascular risk factors

Abstract

We investigated the independent and incremental role of worsening arterial stiffness in new-onset heart failure (HF) in patients with preclinical HF. We retrospectively studied 456 consecutive asymptomatic patients with HF risk factors (hypertension, obesity, type 2 diabetes mellitus, atrial fibrillation and ischemic heart disease) who underwent paired applanation tonometry examinations (median interval of 2.4 years) during 2006–2011. Brachial ankle pulse wave velocity (baPWV) was measured as a surrogate marker of arterial stiffness. Patients were followed up for admission for new-onset HF over a median duration of 4.9 years after the second examination. HF was observed in 30 patients (7%). The change in baPWV (∆baPWV) was significantly associated with hospitalization for new-onset HF, independent of and incremental to comorbidities, renal dysfunction, left ventricular (LV) dysfunction and baPWV at baseline. Even in patients with an LV ejection fraction of 40%, ∆baPWV was significantly associated with hospitalization for new-onset HF after similar adjustments. When the patients were divided into groups based on this cutoff value of 15% ∆baPWV and the generally accepted external cutoff value of 1750 cm s−1 for baseline baPWV, the Kaplan–Meier estimates of the time of hospitalization for new-onset HF showed that a higher rate of HF was associated with higher baPWV at baseline and higher ∆baPWV (P=0.00005). In asymptomatic patients with cardiovascular risk factors, the deterioration in arterial stiffness was associated with hospitalization for new-onset HF, independent of and incremental with the clinical LV function and increased stiffness parameters at baseline.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. 1

    Butler J, Fonarow GC, Gheorghiade M . Need for increased awareness and evidence-based therapies for patients hospitalized for heart failure. JAMA 2013; 310: 2035–2036.

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Tsao CW, Lyass A, Larson MG, Levy D, Hamburg NM, Vita JA, Benjamin EJ, Mitchell GF, Vasan RS . Relation of central arterial stiffness to incident heart failure in the community. J Am Heart Assoc 2015; 4: 11.

    Google Scholar 

  3. 3

    Vlachopoulos C, Aznaouridis K, Stefanadis C . Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am College Cardiol 2010; 55: 1318–1327.

    Article  Google Scholar 

  4. 4

    Chirinos JA, Kips JG, Jacobs DR Jr, Brumback L, Duprez DA, Kronmal R, Bluemke DA, Townsend RR, Vermeersch S, Segers P . Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am College Cardiol 2012; 60: 2170–2177.

    Article  Google Scholar 

  5. 5

    Meguro T, Nagatomo Y, Nagae A, Seki C, Kondou N, Shibata M, Oda Y . Elevated arterial stiffness evaluated by brachial-ankle pulse wave velocity is deleterious for the prognosis of patients with heart failure. Circ J 2009; 73: 673–680.

    Article  Google Scholar 

  6. 6

    Lakatta EG, Levy D . Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: The aging heart in health: links to heart disease. Circulation 2003; 107: 346–354.

    Article  PubMed  Google Scholar 

  7. 7

    Duprez DA . Arterial stiffness/elasticity in the contribution to progression of heart failure. Heart Fail Clin 2012; 8: 135–141.

    Article  PubMed  Google Scholar 

  8. 8

    Mottram PM, Haluska BA, Leano R, Carlier S, Case C, Marwick TH . Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 2005; 91: 1551–1556.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Schillaci G, Battista F, Settimi L, Anastasio F, Pucci G . Cardio-ankle vascular index and subclinical heart disease. Hypertens Res 2015; 38: 68–73.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Sibiya MJ, Norton GR, Hodson B, Redelinghuys M, Maseko MJ, Majane OH, Libhaber E, Woodiwiss AJ . Gender-specific contribution of aortic augmentation index to variations in left ventricular mass index in a community sample of African ancestry. Hypertens Res 2014; 37: 1021–1027.

    Article  PubMed  Google Scholar 

  11. 11

    Petersen KS, Blanch N, Keogh JB, Clifton PM . Effect of weight loss on pulse wave velocity: systematic review and meta-analysis. Arterioscl ThrombVasc Biol 2015; 35: 243–252.

    CAS  Article  Google Scholar 

  12. 12

    Peng F, Pan H, Wang B, Lin J, Niu W . The impact of angiotensin receptor blockers on arterial stiffness: a meta-analysis. Hypertension Res 2015; 38: 613–620.

    CAS  Article  Google Scholar 

  13. 13

    Sahebkar A, Pecin I, Tedeschi-Reiner E, Derosa G, Maffioli P, Reiner Z . Effects of statin therapy on augmentation index as a measure of arterial stiffness: a systematic review and meta-analysis. Int J Cardiol 2016; 212: 160–168.

    Article  PubMed  Google Scholar 

  14. 14

    Ichihara A, Hayashi M, Koura Y, Tada Y, Hirota N, Saruta T . Long-term effects of intensive blood-pressure lowering on arterial wall stiffness in hypertensive patients. Am J Hypertens 2003; 16 (11 Pt 1): 959–965.

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM . Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation 2001; 103: 987–992.

    CAS  Article  Google Scholar 

  16. 16

    Senni M, Paulus WJ, Gavazzi A, Fraser AG, Díez J, Solomon SD, Smiseth OA, Guazzi M, Lam CS, Maggioni AP, Tschöpe C, Metra M, Hummel SL, Edelmann F, Ambrosio G, Stewart Coats AJ, Filippatos GS, Gheorghiade M, Anker SD, Levy D, Pfeffer MA, Stough WG, Pieske BM . New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. Eur Heart J 2014; 35: 2797–2815.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, Koji Y, Hori S, Yamamoto Y . Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res 2002; 25: 359–364.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    The Examination Committee of Criteria for 'Obesity Disease' in Japan, Japan Society for the Study of Obesity. New criteria for ‘obesity disease’ in Japan. Circ J 2002; 66: 987–992.

    Article  Google Scholar 

  19. 19

    Saito M, Okayama H, Nishimura K, Ogimoto A, Ohtsuka T, Inoue K, Hiasa G, Sumimoto T, Higaki J . Possible link between large artery stiffness and coronary flow velocity reserve. Heart 2008; 94: e20.

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU . Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1–39 e14.

    Article  PubMed  Google Scholar 

  21. 21

    Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Popescu BA, Waggoner AD . Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016; 29: 277–314.

    Article  Google Scholar 

  22. 22

    Kosmala W, Jellis CL, Marwick TH . Exercise limitation associated with asymptomatic left ventricular impairment: analogy with stage B heart failure. J Am College Cardiol 2015; 65: 257–266.

    Article  Google Scholar 

  23. 23

    Ammar KA, Jacobsen SJ, Mahoney DW, Kors JA, Redfield MM, Burnett JC Jr, Rodeheffer RJ . Prevalence and prognostic significance of heart failure stages: application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation 2007; 115: 1563–1570.

    Article  PubMed  Google Scholar 

  24. 24

    Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A . Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009; 53: 982–992.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Harrell FE Jr, Lee KL, Mark DB . Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15: 361–387.

    Article  Google Scholar 

  26. 26

    Mebazaa A, Gheorghiade M, Pina IL, Harjola VP, Hollenberg SM, Follath F, Rhodes A, Plaisance P, Roland E, Nieminen M, Komajda M, Parkhomenko A, Masip J, Zannad F, Filippatos G . Practical recommendations for prehospital and early in-hospital management of patients presenting with acute heart failure syndromes. Crit Care Med 2008; 36 (1 Suppl): S129–S139.

    Article  PubMed  Google Scholar 

  27. 27

    Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J . Endothelial dysfunction, arterial stiffness, and heart failure. J Am College Cardiol 2012; 60: 1455–1469.

    CAS  Article  Google Scholar 

  28. 28

    Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH . Aortic stiffness: current understanding and future directions. J Am College Cardiol 2011; 57: 1511–1522.

    Article  Google Scholar 

  29. 29

    Hori M, Inoue M, Kitakaze M, Tsujioka K, Ishida Y, Fukunami M, Nakajima S, Kitabatake A, Abe H . Loading sequence is a major determinant of afterload-dependent relaxation in intact canine heart. Am J Physiol 1985; 249 (4 Pt 2): H747–H754.

    CAS  PubMed  Google Scholar 

  30. 30

    Ohtsuka S, Kakihana M, Watanabe H, Sugishita Y . Chronically decreased aortic distensibility causes deterioration of coronary perfusion during increased left ventricular contraction. J Am College Cardiol 1994; 24: 1406–1414.

    CAS  Article  Google Scholar 

  31. 31

    Yang H, Negishi K, Otahal P, Marwick TH . Clinical prediction of incident heart failure risk: a systematic review and meta-analysis. Open Heart 2015; 2: e000222.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Kinlay S, Libby P, Ganz P . Endothelial function and coronary artery disease. Curr Opin Lipidol 2001; 12: 383–389.

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Nakao M, Nomura K, Karita K, Nishikitani M, Yano E . Relationship between brachial-ankle pulse wave velocity and heart rate variability in young Japanese men. Hypertens Res 2004; 27: 925–931.

    Article  PubMed  Google Scholar 

  34. 34

    Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J . The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am College Cardiol 2009; 54: 1747–1762.

    CAS  Article  Google Scholar 

  35. 35

    Tomiyama H, Arai T, Koji Y, Yambe M, Motobe K, Zaydun G, Yamamoto Y, Hori S, Yamashina A . The age-related increase in arterial stiffness is augmented in phases according to the severity of hypertension. Hypertens Res 2004; 27: 465–470.

    Article  PubMed  Google Scholar 

  36. 36

    Hunt SA . ACC/AHA guidelines: A-, B-, C-, and D-based approach to chronic heart failure therapy. Eur Heart J Suppl 2006; 8 (Suppl E): E3–E5.

    Article  Google Scholar 

  37. 37

    Leenen FH, Nwachuku CE, Black HR, Cushman WC, Davis BR, Simpson LM, Alderman MH, Atlas SA, Basile JN, Cuyjet AB, Dart R, Felicetta JV, Grimm RH, Haywood LJ, Jafri SZ, Proschan MA, Thadani U, Whelton PK, Wright JT Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial Collaborative Research Group. Clinical events in high-risk hypertensive patients randomly assigned to calcium channel blocker vs. angiotensin-converting enzyme inhibitor in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Hypertension 2006; 48: 374–384.

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Webb AJ, Fischer U, Mehta Z, Rothwell PM . Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet 2010; 375: 906–915.

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Chen SC, Lee WH, Hsu PC, Lin MY, Lee CS, Lin TH, Voon WC, Lai WT, Sheu SH, Su HM . Association of brachial-ankle pulse wave velocity with cardiovascular events in atrial fibrillation. Am J Hypertens 2015; 29: 348–356.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance of Mr Masaru Morino in the collection of outcome data. The study was approved by the institutional review board of Kitaishikai Hospital.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Makoto Saito.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Hypertension Research website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aisu, H., Saito, M., Inaba, S. et al. Association of worsening arterial stiffness with incident heart failure in asymptomatic patients with cardiovascular risk factors. Hypertens Res 40, 173–180 (2017). https://doi.org/10.1038/hr.2016.116

Download citation

Keywords

  • arterial stiffness
  • heart failure
  • pulse wave velocity

Further reading

Search