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Gender-specific contribution of aortic augmentation
index to variations in left ventricular mass index
in a community sample of African ancestry

Moekanyi Jeffrey Sibiya1,3, Gavin Robert Norton1,3, Bryan Hodson1, Michelle Redelinghuys1,
Muzi Joseph Maseko1, Olebogeng Harold Isaia Majane1, Elena Libhaber2 and Angela Jill Woodiwiss1,3

Although indices of aortic augmentation derived from radial applanation tonometry are independently associated with adverse

cardiovascular effects, whether these relationships are influenced by gender is uncertain. We compared the brachial blood

pressure-independent contribution of augmentation index (AIx) to variations in left ventricular mass index (LVMI) in a

community sample of 808 participants, 283 of whom were men. Aortic haemodynamics were determined using radial

applanation tonometry and SphygmoCor software and LVMI from echocardiography. In men, both AIx derived from aortic

augmentation pressure/central aortic pulse pressure (AP/PPc; partial r¼0.17, b-coefficient±s.e.m.¼0.55±0.20, Po0.01)

and AIx derived from the second peak/first peak (P2/P1) of the aortic pulse wave (partial r¼0.21, b-coefficient±s.e.m.¼
0.42±0.12, Po0.0005) were associated with LVM indexed to body surface area (LVMI–BSA). In contrast, in women, neither

AIx derived from AP/PPc (partial r¼ �0.08, b-coefficient±s.e.m.¼ �0.20±0.11, P¼0.08) nor AIx derived from P2/P1

(partial r¼ �0.06, b-coefficient±s.e.m.¼ �0.07±0.05, P¼0.17) were associated with LVMI–BSA. Both the strength of the

correlations (Po0.001 and Po0.0005 with z-statistics) and the slope of the AIx–LVMI relationships (P¼0.001 and

Po0.0005) were greater in men as compared with women. The lack of relationship between AIx and LVMI was noted in both

premenopausal (n¼285; AP/PPc vs. LVMI–BSA, partial r¼0.01, P¼0.95, P2/P1 vs. LVMI–BSA, partial r¼0.02, P¼0.77),

and postmenopausal (n¼240; AP/PPc vs. LVMI–BSA, partial r¼ �0.06, P¼0.37, P2/P1 vs. LVMI–BSA, partial r¼ �0.03,

P¼0.64) women. Similar differences were noted in the relationships between AIx and LVM indexed to height2.7 in men and

women. In conclusion, radial applanation tonometry-derived AIx may account for less of the variation in end-organ changes in

women as compared with men.
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INTRODUCTION

Although pulse pressure (PP) measured at the brachial artery is
closely correlated with central PP (PPc), PPc may be considerably
lower than in brachial arteries.1,2 The factors that determine aortic PP
differ markedly from those that determine brachial PP. In this regard,
aortic PP is augmented by changes in aortic reservoir function, the
timing or magnitude of both the forward and reflected waves and left
ventricular systolic function.1–5 Several studies have demonstrated
that indices of aortic pressure augmentation predict cardiovascular
events,6–12 or are associated with end-organ damage independent of
or better than brachial blood pressure (BP).13–16 As indices of aortic
pressure augmentation may be derived from simple and highly
reproducible tonometric assessments of the radial artery, these

indices are attractive additions to routine risk prediction. However,
some studies,12,17,18 including the Framingham Heart Study,17

have failed to show similar relations between indices of aortic
augmentation and cardiovascular outcomes. The factors that
determine whether indices of aortic pressure augmentation predict
cardiovascular damage therefore require identification.
The impact of gender on aortic augmentation index (AIx;

augmentation pressure/aortic PP), is well-recognised. In this regard,
women may have a higher AIx than men,5,19 but these differences may
be attributed to factors unrelated to aortic wave reflection.5 Hence,
the impact of AIx on cardiovascular damage in women may not be as
strong as that in men. Indeed, although AIx predicts outcomes
in men, similar relationships may be diminished in women.10
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Nevertheless, in that study,10 unadjusted relationships between AIx
and end-organ changes were no different in women as compared with
men. However, multivariate adjusted relationships between AIx and
end-organ changes were not reported on.10 To clarify whether gender
influences relationships between AIx and cardiovascular end-organ
changes, we therefore aimed to compare the association between
AIx and left ventricular mass index (LVMI) in men and women in a
large, community-based sample. In this regard, LVMI and the
regression thereof with antihypertensive therapy are well-recognised
independent predictors of cardiovascular outcomes.20–27

METHODS

Study group
The present study was conducted according to the principles outlined in the

Helsinki declaration. The Committee for Research on Human Subjects of the

University of the Witwatersrand approved the protocol (approval number:

M02-04-72 and renewed as M07-04-69 and M12-04-108). Participants gave

informed, written consent. The present study design has previously been

described.28–30 Briefly, 808 participants from randomly recruited families of

black African descent (Nguni and Sotho chiefdoms) with siblings older than

16 years from the South West Township of Johannesburg, South Africa, and

with central haemodynamic measurements and high-quality echocardiograms

were studied.

Clinical, demographic and anthropometric measurements
A standardized questionnaire was administered to obtain demographic and

clinical data.28–30 Height and weight were measured using standard approaches

and participants were identified as being overweight if their body mass

index was X25 kgm�2 and obese if their body mass index was X30kgm�2.

High-quality BP measurements were obtained by a trained nurse-technician

using a standard mercury sphygmomanometer.20 Korotkov phases I and V

were employed to identify systolic and diastolic BP, respectively, and care was

taken to avoid auscultatory gaps. Hypertension was defined as a mean systolic/

diastolic BPX140/90mmHg or the use of antihypertensive medication.

Laboratory blood tests of renal function, liver function, blood glucose,

hematological parameters and percentage glycated hemoglobin (HbA1C)

were performed. Diabetes mellitus (DM) or abnormal blood glucose control

was defined as the use of insulin or oral hypoglycaemic agents or an HbA1C

value greater than 6.1%. Menopause was confirmed with measurements of

follicle-stimulating hormone concentrations.

Pulse wave analysis
Central aortic systolic BP (SBPc), PPc and AIx were estimated using techniques

previously described.30,31 Briefly, after participants had rested for 15min in the

supine position, arterial waveforms at the radial (dominant arm) pulse were

recorded by applanation tonometry during an 8-s period using a high-fidelity

SPC-301 micromanometer (Millar Instrument, Houston, TX, USA) interfaced

with a computer employing SphygmoCor, version 6.21 software (AtCor

Medical Pty, West Ryde, New South Wales, Australia). The pulse wave was

calibrated by manual measurement (auscultation) of brachial BP taken

immediately before the recordings. The peripheral pressure waveform was

converted into a central aortic waveform using a validated generalized transfer

function incorporated in SphymoCor software. Recordings where the systolic

or diastolic variability of consecutive waveforms exceeded 5% or the amplitude

of the pulse wave signal was less than 80mV were discarded. All measurements

were made by a single experienced trained technician unaware of the clinical

history of the participants and with a low degree of intraobserver variability

and a high degree of reproducibility.30,31 Central aortic PP was determined as

the difference between SBPc and diastolic BP. Augmented pressure (AP) was

determined using SphygmoCor software and identified as the difference

between PPc and the first systolic shoulder of the aortic pulse wave. Aortic

AIx was determined as AP/aortic PP (AP/PPc) expressed as a percentage. To

avoid obtaining negative aortic AIx values in young participants, AIx was also

determined as the pressure at the second systolic peak of the aortic pulse

wave/the pressure at the first systolic peak of the aortic pulse wave (P2/P1)

expressed as a percentage.32

Echocardiography
Left ventricular end diastolic internal diameter and septal (anterior wall) and

posterior wall thickness were determined from transthoracic two-dimensional

targeted M-mode echocardiographic images obtained in the parasternal long

axis as previously described.28,29,31 Variables were analyzed according to the

American Society of Echocardiography convention.33 All measurements were

recorded and analyzed off-line by experienced investigators (CDL and AJW)

who were unaware of the clinical data of the participants and whom had a low

degree of inter and intraobserver variability.28,29,31 Only M-mode images of

acceptable quality were analyzed. In this regard, acceptable quality was

considered to exist when appropriate visualization of both the right and the

left septal surfaces occurred and where the endocardial surface of the septal and

posterior wall were clearly visible when imaging at the optimal angle of

incidence (perpendicular to the posterior wall) and close to the mitral leaflets.

Left ventricular mass (LVM) was determined using a standard formula34

and indexed (LVMI) to height2.7 (LVMI-ht2.7) and to body surface area

(LVMI–BSA). Left ventricular relative wall thickness was defined as (LV

anteriorþ posterior wall thickness at end diastole)/LV end diastolic diameter.

LVH was identified as an LVMI–BSA495 gm�2 for women and 4115 gm�2

for men. Concentric LV remodeling was identified as a relative wall thickness

X0.42, and eccentric LVH as a relative wall thickness o0.42 with an increased

LVMI–BSA.

Statistical analysis
For database management and statistical analysis, SAS software, version 9.1

(SAS Institute, Cary, NC, USA) was employed. To determine relationships

between PPc or AIx and LVMI, multivariate linear regression analysis was

performed. To determine relationships between AIx and concentric LV

remodeling, LVH or eccentric LVH in sex-specific groups, multivariate logistic

regression analysis was performed. In multivariate models, adjustments were

made for the impact of brachial BP (PP, SBP or mean arterial pressure (MAP)),

age, body weight, body height (for LVMI–BSA), the presence of diabetes

mellitus or an HbA1C46.1%, treatment for hypertension, regular tobacco

use and regular alcohol intake. To determine probability values, further

adjustments for non-independence of family members was performed using

non-linear regression analysis (mixed procedure as defined in the SAS

package). To ensure that relationships occurred independent of the use of

antihypertensive therapy, sensitivity analysis was conducted in participants not

receiving antihypertensive therapy. Regression coefficients were compared with

z-statistics.

RESULTS

Characteristics of the participants
The clinical and demographic characteristics of women and men are
shown in Table 1. Only 1.9% of participants had a history of
cardiovascular disease. Importantly, 45.2% of participants with
hypertension were not receiving therapy. Moreover, 35.4% of all
participants and 28.0% of participants not receiving antihypertensive
therapy had uncontrolled hypertension. Participants (19.1%) had
concentric LV remodeling and 17.3% had LVH (7.1% concentric and
10.2% eccentric LVH). More women than men had concentric LV
remodeling, but a similar proportion had LVH, with no differences
noted in the proportion with concentric and eccentric LVH (Table 1).
Women had a higher AIx than men, but PPc was similar in men and
women (Table 1).

Relationships between aortic BP and LVMI independent of brachial
BP in gender-specific groups
PPc was related to LVMI independent of mean arterial pressure in
both men and women (Table 2, Figure 1). However, the strength of
the relations (partial r) was greater in men than in women (Table 2).
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In men, but not in women, PPc was related to LVMI independent of
confounders and brachial PP and SBP (Table 2). However, no
differences were noted in the strength (partial r values, Table 2,
P¼ 0.09 using z-statistics) or slopes (b-coefficients, P¼ 0.06) of the
brachial PP adjusted PPc–LVMI–BSA relations in men versus women.
In contrast to the brachial BP-independent relations between PPc and
LVMI in men, SBPc was not related to LVMI–BSA independent of

brachial SBP or PP in men (P¼ 0.36–0.38) or brachial SBP in women
(P¼ 0.43). Moreover, SBPc was not related to LVMI-ht2.7 indepen-
dent of brachial SBP or PP in men (P¼ 0.07–0.73) or brachial SBP in
women (P¼ 0.68). These brachial BP-independent relations between
PPc or SBPc and LVMI were largely reproduced in participants not
receiving antihypertensive therapy and in pre- and post-menopausal
women (data not shown).

Table 1 Characteristics of the study sample

Men (n¼283) Women (n¼525) P-value

Age (years) 43.0±19.0 45.3±17.5 ¼0.09

Body mass index (kg m�2) 25.9±16.1 32.6±13.6 o0.0001

Body weight (kg) 71.9±17.6 80.2±29.2 o0.0001

Body height (m) 168.5±8.7 157.4±7.1 o0.0001

% Obese 17.7 56.6 o0.0001

Regular tobacco (% subjects) 33.6 4.8 o0.0001

Regular alcohol (% subjects) 33.2 12.4 o0.0001

% With DM or HbA1C46.1% 21.2 28.4 o0.05

% Women postmenopausal — 45.7 —

% Hypertensive 40.3 45.3 ¼0.17

% Treated for hypertension 15.6 30.7 o0.0001

% Hypertensives controlled to target BPa 28.1 39.1 o0.05

% of all with uncontrolled BPb 38.9 33.5 ¼0.14

Pulse rate (beats min�1) 62±12 68±11 o0.0001

Conventional SBP/DBP (mmHg) 131±22/85±13 128±23/83±13 ¼0.07/o0.05

Conventional pulse pressure (mm Hg) 45.9±18.0 44.5±15.3 ¼0.26

Central SBP (mm Hg) 121±22 120±23 ¼0.29

Central pulse pressure (PPc; mm Hg) 35.9±17.1 35.7±14.1 ¼0.90

Aortic augmentation index (AP/PPc)c (%) 23.9±12.8 28.8±12.5 o0.0001

Aortic augmentation index (P2/P1)d (%) 135±22 145±25 o0.0001

Left ventricular mass index (gm�2.7) 40.4±14.8 42.3±15.1 ¼0.07

Left ventricular mass index (gm�2) 82.8±34.4 72.1±27.7 o0.0001

Left ventricular relative wall thickness 0.38±0.08 0.39±0.08 o0.05

Concentric LV remodeling (%) 14.8 21.3 o0.05

Concentric LV hypertrophy (%) 7.4 6.9 ¼0.77

Eccentric LV hypertrophy (%) 8.5 11.1 ¼0.25

Abbreviations: AP, aortic augmentation pressure; BP, blood pressure; DBP, diastolic blood pressure; DM, diabetes mellitus; HbA1C, glycosylated hemoglobin; Hg, hemoglobin; LV, left ventricular;
PPc, central pulse pressure; SBP, systolic blood pressure.
Data are expressed as mean±s.d. or proportions. Data were compared with w2-analysis or a Student’s unpaired t-test.
aindicates conventional SBP/DBPo140/90mmHg.
bindicates conventional SBP/DBPX140/90mmHg.
c(Augmentation pressure/aortic pulse pressure)�100.
d(Pressure at the second systolic peak of the aortic pulse wave/pressure at the first systolic peak of the aortic pulse wave)�100.

Table 2 Brachial blood pressure-independent relations between central PPc and LVM index in men and women from a community sample

Men Women

Adjustments n Partial r* (95% CI) P-value n Partial r* (95% CI) P-value

PPc vs. LVM indexed to body surface area

þBrachial SBPa 283 0.25 (0.14 to 0.36) o0.0001 525 0.05* (�0.03 to 0.14) ¼0.23

þBrachial PPa 283 0.14 (0.02 to 0.25) o0.05 525 0.02 (�0.07 to 0.10) ¼0.71

þBrachial MAPa 283 0.27 (0.16 to 0.38) o0.0001 525 0.13* (0.04 to 0.21) o0.005

PPc vs. LVM indexed to height2.7

þBrachial SBPa 283 0.27 (0.16 to 0.38) o0.0001 525 0.06* (�0.03 to 0.14) ¼0.18

þBrachial PPa 283 0.18 (0.06 to 0.29) o0.005 525 0.02* (�0.07 to 0.11) ¼0.65

þBrachial MAPa 283 0.29 (0.18 to 0.39) o0.0001 525 0.11* (0.02 to 0.19) o0.05

Abbreviations: CI, confidence interval; LVM, left ventricular mass; MAP, mean arterial pressure; OR, odds ratio; PP, pulse pressure; PPc, central pulse pressure; SBP, systolic blood pressure.
*Po0.05 for comparison of r values between men and women using z-statistics.
aAdjustments are for age, body weight, height (for LVM indexed for BSA), the presence of diabetes mellitus or an HbA1c46.1%, pulse rate, treatment for hypertension (in all participants), regular
tobacco use and regular alcohol intake and brachial BP as indicated. Probability values are derived after further adjustments for the non-independence of family members.
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Gender-specific relationships between AIx and LVMI
On bivariate analysis, AIx was associated with LVMI in both men
(Po0.0001 for all) and women (Po0.05 to Po0.0001). However, the
relationship between AIx (P2/P1) and LVM indexed to BSA was
stronger in men (r¼ 0.28, 95% confidence interval¼ 0.16–0.38,
Po0.0001) as compared with women (r¼ 0.11, 95% confidence
interval¼ 0.02–0.19, Po0.05; Po0.05 for comparison of relation-
ships using z-statistics). Furthermore, men showed a trend for a
stronger AIx (AP/PPc)-LVM indexed for BSA relationship (P¼ 0.05
for comparison of relationships) and for a stronger AIx (P2/P1)-LVM
indexed for height2.7 relationship (P¼ 0.05 for comparison of
relationships) than women.
On multivariate regression analysis independent of mean arterial

pressure and alternative confounders, AIx was associated with LVMI
in men, but not in women (Table 3, Figure 2). Moreover, the strength
(partial r values) and the slope (b-coefficients) of the relationships
between AIx and LVMI were greater in men as compared with women
(Table 3). Independent relationships between AIx and LVMI were
noted in neither pre-, nor postmenopausal women (Table 3). In
participants not receiving antihypertensive therapy, an independent

relationship between AIx (P2/P1) and LVMI–BSA was noted in men
(n¼ 239, partial r¼ 0.16, Po0.05), whilst no relationship between
AIx and LVMI–BSA was noted in women (n¼ 364, partial r¼ �0.02,
P¼ 0.76; Po0.05 for comparison using z-statistics). Moreover, in
participants not receiving antihypertensive therapy, a trend for an
independent relationship between AIx (P2/P1) and LVM indexed for
height2.7 was noted in men (partial r¼ 0.13, P¼ 0.05), whereas no
relationship between AIx and LVM indexed for height2.7 was noted in
women (partial r¼ �0.003, P¼ 0.96).

Relationships between AIx and LV remodeling or LVH
In neither men (AIx (AP/PPc), odds ratio¼ 1.029, Wald
statistics¼ 2.31, P¼ 0.13; AIx (P2/P1), odds ratio¼ 1.013, Wald
statistics¼ 1.70, P¼ 0.19) nor in women (AIx (AP/PPc), odds
ratio¼ 0.99, Wald statistics¼ 0.65, P¼ 0.42; AIx (P2/P1), odds
ratio¼ 1.00, Wald statistics¼ 0.001, P¼ 0.98), was AIx independently
associated with LVH (concentricþ eccentric). No relations between
AIx and concentric LV remodeling or AIx and the type of LVH
(eccentric versus concentric) were noted in either men or women
(data not shown).

Figure 1 Multivariate adjusted left ventricular mass indexed for body surface area (BSA) (LVMI in g m�2) or height2.7 (LVMI in g m�2.7) across quartiles of

central aortic pulse pressure in men and women from a community sample. Adjustments are for age, mean arterial pressure, body weight, body height (for

LVM indexed for BSA), the presence of diabetes mellitus or an HbA1C46.1%, pulse rate, treatment for hypertension, regular tobacco use and regular

alcohol intake. Probability values are derived after further adjustments for the non-independence of family members. P for trend effects: LVM indexed for

BSA; men, Po0.0001, women, Po0.005; LVM indexed for height2.7; men, Po0.0001, women, Po0.05. See Table 2 for comparison of relationships

between men and women. *Po0.05, **Po0.01, ***Po0.0001 vs. quartile1, wPo0.01, wwPo0.0005 vs. quartile 2.
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DISCUSSION

The main finding of the present study is that in a large, community-
based sample, AIx was associated with LVMI in men, but not in
women. Although there is considerable debate as to the factors that
determine AIx,3–5 this does not detract from the evidence provided
from several studies demonstrating that AIx is associated with
cardiovascular damage beyond brachial BP.6–14 However, as in
some studies AIx does not predict cardiovascular outcomes,12,17,18

the possible factors that influence this relationship require
identification. In this regard, although AIx predicts outcomes in
men, similar relationships may be diminished in women.10 The
present study provides support for a decrease in the relationship
between AIx and end-organ damage in women as compared with
men. This is in contrast to the comparable unadjusted relations
previously demonstrated between AIx and LVMI or alternative end-
organ changes between men and women in a large community-based
study.10 However, whether in that study10 similar relations between
AIx and end-organ changes were also noted in men and women after
multivariate adjustments is unclear.10

Previous studies that have demonstrated that AIx derived from
radial applanation tonometry is independently associated with LVM
reduction, or LVH,13,14 were not statistically powered to report on
whether these associations were sex specific. Interestingly, however, in
both studies, 70% or more of the study participants were men.13,14

Hence, both of these studies13,14 may reflect a dominant impact of
AIx on LVMI in men.
An explanation for the gender-specific impact on relations between

AIx and LVMI noted in the present study, or between AIx and

cardiovascular outcomes in a previous study,10 requires consideration.
In this regard, in contrast to what was previously thought, AIx is not
an appropriate index of wave reflection.3–5 Rather, unlike more
suitable indices of wave reflection, AIx may be influenced by aortic
reservoir function,3 left ventricular systolic function,4 as well as height
and female gender.3 Some of these factors may have little impact on
cardiovascular risk. Indeed, measures of reflective wave function are
better risk markers than AIx.10,17 Alternatively, although aortic PP is
associated with cardiovascular damage, reflective wave function may
contribute little toward the impact of aortic PPc on cardiovascular
damage in women. Indeed, in a large, community-based study, both
AIx and the reflection index predicted cardiovascular outcomes in
men, but not in women.10 Hence, further studies are required to
establish whether the sex-specific relations between AIx and LVMI or
alternative end-organ changes are attributed to the poor relationship
between AIx and reflective wave function,3–5 or to the lack of impact
of reflective waves on end-organ changes in women as compared
to men.
Several differences were noted between men and women in the

present study, differences which may account for the sex-specific
effects of AIx on LVMI. In this regard, more women than men were
obese or had diabetes mellitus or an abnormal HbA1c and hence
obesity or diabetes mellitus may have a more important role than BP
in mediating increases in LVMI in women. In addition, although a
similar proportion of men and women were hypertensive, fewer
hypertensive men were receiving antihypertensive medication. Hence,
the sensitivity to detect an impact of AIx on LVMI may have been
greater in men than in women.

Table 3 Brachial blood pressure-independent relations between aortic augmentation indices and left ventricular mass indexed to body surface

area (LVMI–BSA) or height2.7 (LVMI-ht2.7) in men and in women from a community sample

n Partial r (95% CI)a b-coefficient±s.e.m. P-value

Augmentation index (AP/PPc)b vs. LVMI–BSA

Men 283 0.17c (0.05 to 0.28) 0.55±0.20d o0.01

Women 525 �0.08 (�0.16 to 0.01) �0.20±0.11 ¼0.08

Premenopausal women 285 0.01 (�0.11 to 0.12) 0.01±0.14 ¼0.95

Postmenopausal women 240 �0.06 (�0.19 to 0.07) �0.18±0.21 ¼0.37

Augmentation index (P2/P1)
e vs. LVMI–BSA

Men 283 0.21c (0.10 to 0.32) 0.42±0.12d o0.0005

Women 525 �0.06 (�0.14 to 0.03) �0.07±0.05 ¼0.17

Premenopausal women 285 0.02 (�0.10 to 0.14) 0.02±0.08 ¼0.77

Postmenopausal women 240 �0.03 (�0.16 to 0.10) �0.04±0.09 ¼0.64

Augmentation index (AP/PPc)b vs. LVMI-ht2.7

Men 283 0.19c (0.07 to 0.30) 0.25±0.08d o0.005

Women 525 �0.04 (�0.13 to 0.04) �0.05±0.06 ¼0.34

Premenopausal women 285 0.09 (�0.02 to 0.21) 0.09±0.06 ¼0.12

Postmenopausal women 240 �0.09 (�0.21 to 0.04) �0.15±0.12 ¼0.19

Augmentation index (P2/P1)
e vs. LVMI-ht2.7

Men 283 0.23c (0.11 to 0.34) 0.18±0.05d ¼0.0001

Women 525 �0.04 (�0.13 to 0.04) �0.03±0.03 ¼0.32

Premenopausal women 285 0.09 (�0.02 to 0.21) 0.05±0.03 ¼0.12

Postmenopausal women 240 �0.07 (�0.20 to 0.05) �0.06±0.05 ¼0.26

Abbreviations: CI, confidence interval; PPc, central pulse pressure.
aAdjustments are for age, mean arterial pressure, body weight, height (for LVM indexed for BSA), the presence of diabetes mellitus or an HbA1C46.1%, pulse rate, treatment for hypertension,
regular tobacco use and regular alcohol intake. Probability values are derived after further adjustments for the non-independence of family members.
b(Augmentation pressure/aortic pulse pressure)�100.
cPo0.005 vs. partial r value for women.
dPo0.005 vs. b-coefficient for women.
e(Pressure at the second systolic peak of the aortic pulse wave/pressure at the first systolic peak of the aortic pulse wave)�100.
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The clinical implication of the present study is that when
considering the contribution of central aortic haemodynamic
measurements as predictors of cardiovascular damage, AIx may serve
as an appropriate predictor in men, but not in women. Hence, in
women, either aortic BP per se may be a better aortic haemodynamic
index to predict damage beyond brachial BP, or wave separation
analysis may be required to identify the impact of reflective waves on
cardiovascular damage.
The limitations of the present study are as follows: first, the

cross-sectional nature of the study precludes conclusions being drawn
regarding cause and effect. Second, in the present study, calibration
of the radial waveform from brachial BP measurements ignores
amplification of BP from brachial to radial arteries. Hence, aortic
pressures are likely to have been underestimated using the current
approach. Third, because the present study was community based,
only a small proportion of participants had LVH. Hence, we were not
statistically powered to show sex-specific relations between AIx and
LVH. Thus, further studies are necessary in untreated hypertensives
to evaluate whether the relationship between AIx and LVH is
sex-specific. Last, the present study was conducted in one ethnic

group. Hence further studies in communities of alternative ethnic
origins are required.
In conclusion, in the present study, we show that despite an

independent relationship between aortic BP and LVMI in both men
and women, AIx is independently associated with LVMI in men, but
not in women. These data suggest that AIx may not be an appropriate
predictor of the extent of cardiovascular end-organ changes in
women.
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Figure 2 Multivariate adjusted left ventricular mass indexed for body surface area (BSA) (LVMI in g m�2) or height2.7 (LVMI in g m�2.7) across quartiles of

aortic augmentation index ((pressure at the second systolic peak of the aortic pulse wave/pressure at the first systolic peak of the aortic pulse wave)�100)

in men and women from a community sample. Adjustments are for age, mean arterial pressure, body weight, body height (for LVM indexed for BSA), the

presence of diabetes mellitus or an HbA1C46.1%, pulse rate, treatment for hypertension, regular tobacco use and regular alcohol intake. Probability values

are derived after further adjustments for the non-independence of family members. P for trend effects: LVM indexed for BSA; men, Po0.0005, women,

P¼0.17; LVM indexed for height2.7; men, P¼0.0001, women, P¼0.32. See Table 2 for comparison of relationships between men and women.

*Po0.001, **Po0.0005 vs. quartile1, wPo0.05, wwPo0.005 vs. quartile 2, #Po0.05, ##Po0.01 vs. quartile 3.
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