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Expression and functions of b1- and b2-adrenergic
receptors on the bulbospinal neurons in the rostral
ventrolateral medulla

Naoki Oshima1, Hiroshi Onimaru2, Kojiro Yamamoto1, Hanako Takechi1, Yasuhiro Nishida3, Takashi Oda1

and Hiroo Kumagai1

The expression and effects of b-adrenergic receptors (b-ARs) on the neurons of the bulbospinal rostral ventrolateral medulla

(RVLM) have been limitedly examined to date. The objective of this study was to examine the expression of b1- and b2-ARs on

the bulbospinal RVLM neurons electrophysiologically and histologically. To directly investigate whether RVLM neurons display

sensitivity to metoprolol (a b1-AR antagonist), dobutamine (a b1-AR agonist), butoxamine (a b2-AR antagonist), and salbutamol

(a b2-AR agonist), we examined changes in the membrane potentials of the bulbospinal RVLM neurons using the whole-cell

patch-clamp technique during superfusion of these drugs. During metoprolol superfusion, 16 of the 20 RVLM neurons were

hyperpolarized, and 5 of the 6 RVLM neurons were depolarized during dobutamine superfusion. During butoxamine superfusion,

11 of the 16 RVLM neurons were depolarized, and all of the 8 RVLM neurons were hyperpolarized during salbutamol

superfusion. These results suggest the expression of b1- and b2-ARs on the RVLM neurons. To determine the presence of b1-
and b2-ARs histologically, immunofluorescence examination was performed. Five metoprolol-hyperpolarized neurons were

examined for b1-AR and tyrosine hydroxylase (TH) immunoreactivity. All of the neurons displayed b1-AR immunoreactivity,

whereas three of the neurons displayed TH immunoreactivity. All of the five RVLM neurons that became depolarized during

metoprolol superfusion and hyperpolarized during butoxamine superfusion displayed b1- and b2-AR immunoreactivity. Our

findings suggest that b1-AR antagonists or b2-AR agonists may decrease blood pressure through decreasing the activity of the

bulbospinal RVLM neurons.
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INTRODUCTION

The actions of catecholamines include vasoconstriction, endothelial
dysfunction and sodium reabsorption and retention,1,2 all of which
increased the blood pressure (BP). The rostral ventrolateral medulla
(RVLM), which contains presympathetic neurons, contains C1
neurons.3,4 C1 neurons express catecholamine-synthesizing enzymes,
such as tyrosine hydroxylase (TH), dopamine b-hydroxylase and
phenylethanolamine N-methyltransferase,5 and have the potential to
utilize adrenaline, noradrenaline or dopamine as neurotransmitters.
Therefore, catecholamines are considered to participate in the control
of the BP through adrenergic receptors (ARs) expressed on the
presympathetic neurons.6 In fact, the neurons in the RVLM area
express a2-ARs,7,8 and a2-AR agonists have been used clinically as
antihypertensive drugs.9

Some previous studies demonstrated that the effects of catechola-
mines are mediated by b-ARs expressed on the neurons that affect
sympathetic nerve activities. Koepke et al.10,11 examined the roles of

b-ARs in the central nervous system and reported that b2-ARs in the
posterior hypothalamus mediate the increased renal sympathetic
nerve activity and antinatriuresis. The clear interaction between the
posterior hypothalamus and RVLM is not well known, but these
studies suggest that b-ARs are present on the neurons that affect
sympathetic nerve activities. Sun et al.12 reported the presence of
b-ARs in the rostral medullary pacemaker neurons by applying
propranolol, and Privitera et al.13 demonstrated that microinjection
of propranolol (a non-selective b-AR antagonist) into the bilateral C1
areas suppresses the neural activity of neurons in the C1 area.
However, few reports have described the presence of b1- and b2-
ARs on the bulbospinal RVLM neurons and the physiological roles of
these receptors expressed on RVLM neurons.

In this study, we examined the effects of b-AR antagonists or
agonists on the bulbospinal RVLM neurons using brainstem–spinal
cord preparations, which possess a preserved sympathetic nervous
system.14–22 While recording the membrane potentials (MPs) of the
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bulbospinal RVLM neurons using the patch-clamp technique, the
neurons were superfused with metoprolol (b1-AR antagonist),
dobutamine (b1-AR agonist), butoxamine (b2-AR antagonist) or
salbutamol (b2-AR agonist). Furthermore, to examine the direct
effects of metoprolol or butoxamine on the RVLM neurons, the
superfusion was conducted with each drug dissolved in a low-Ca2þ ,
high-Mg2þ or tetrodotoxin (TTX) solution. After recording the MPs
of the RVLM neurons, the b1- and b2-AR immunoreactivity of the
neurons were examined by immunofluorescence staining.

EXPERIMENTAL PROCEDURES

General preparations
Experiments were performed on brainstem–spinal cord preparations collected

from 1- to 5-day-old Wistar rats as previously described.15–22 The experimental

protocols were approved by the Institutional Review Board of National Defense

Medical College in accordance with the National Guidelines for the Conduct of

Animal Experiments. Briefly, with the animals under deep ether anesthesia, the

brainstem–spinal cord was isolated at the T helper type 2 (Th2) level, and the

brainstem was sectioned between the roots of cranial nerve VI and the lower

border of the trapezoid body. The preparations were continuously superfused

with a solution containing (in mmol l�1) 124 NaCl, 5.0 KCl, 1.2 KH2PO4, 2.4

CaCl2, 1.3 MgCl2, 26 NaHCO3 and 30 glucose. The preparations were

maintained at 25–26 1C (artificial cerebrospinal fluid). The pH (7.4) and

oxygenation were maintained by bubbling 90% O2–5% N2–5% CO2 through

the solution. To avoid recording respiratory neuronal activities, we examined

the phrenic nerve activity from the ventral root of C4 and excluded neurons

that displayed a strong phasic relationship with phrenic nerve discharges from

the subsequent experiments.17,18,22

Patch-clamp electrodes
Electrodes were pulled in one stage from thin-wall borosilicate filament

capillaries (GC100TF-10, outer diameter 1.0 mm, Clark Electromed, Reading,

UK) with a vertical puller. The electrodes had a tip diameter of 1.8–2.0mm and

a resistance of 4–6 MO. The electrode solution for the whole-cell recordings

consisted of (in mmol l�1): 130 potassium gluconate, 10 HEPES, 10 EGTA, 1

CaCl2 and 1 MgCl2, and the pH was adjusted to 7.2–7.3 using KOH. The

electrode tips were filled with 1% Lucifer Yellow (Sigma, St Louis, MO, USA).

Recording procedure
Electrodes were inserted into the RVLM. A patch-clamp amplifier (AxoPatch,

ID; Axon Instruments, Sunnyvale, CA, USA) was used to record the MPs. The

RVLM neurons were obtained from the ventral side of the medulla. Before the

intracellular whole-cell recordings, we observed the firing pattern of the target

neurons using extracellular recordings. After obtaining a GO seal, a single-shot

hyperpolarizing pulse (0.6–0.9 nA; duration, 30 ms) was applied to rupture the

neuronal membrane. To determine whether each of the recorded RVLM

neurons was indeed a bulbospinal neuron, the existence of antidromic action

potentials (APs) in the RVLM neurons was examined by delivering electrical

stimulation in the intermediolateral cell column at the Th2 level with a tungsten

electrode (30mm tip diameter, Unique Medical, Tokyo, Japan).17,18,22 The

RVLM neurons that displayed antidromic APs with electrical stimulation in the

intermediolateral cell column at the Th2 level were considered to be bulbospinal

RVLM neurons. The MPs were recorded using the current-clamp technique

(20 pA increments from �100 to 20 pA, 500 ms duration). All data were

recorded and analyzed using PowerLab (AD Instruments, Colorado Springs,

CO, USA). Membrane resistances of the RVLM neurons were calculated from

the current–voltage curves. During the course of the whole-cell recordings,

neurons were labeled with 0.2% Lucifer Yellow (lithium salt; Sigma-Aldrich, St

Louis, MO, USA) either by spontaneous diffusion or iontophoresis. A chloride

ion equilibrium potential of �89 mV was calculated using the Nernst equation

and the intracellular and extracellular chloride concentrations.

Experimental protocols
Protocol (1): During the MP recordings of the bulbospinal RVLM neurons, the

preparations were superfused with metoprolol (20mmol l�1,23 Sigma) and/or

butoxamine (20mmol l�1,24 Sigma) dissolved in artificial cerebrospinal fluid.

To confirm the effects opposite to those of metoprolol and butoxamine, the

preparations were superfused with dobutamine (5mmol l�1,25 Sigma) and

salbutamol (5mmol l�1,25 Sigma). The duration of each drug superfusion was

4–10 min. During superfusion with each drug, we defined depolarization and

hyperpolarization as an increase or decrease of the MP by 42 mV, respectively.

The changes in the MPs were determined 4 min after the start of superfusion

with each drug.

Protocol (2): The bulbospinal RVLM neurons were superfused with a low-

Ca2þ , high-Mg2þ solution26 for 30–40 min or TTX (0.5 mmol l�1,27 Naþ

channel blocker, Sigma) for 10 min to block synaptic transmissions from other

neurons to the recorded bulbospinal RVLM neurons. Thereafter, the neurons

were superfused with metoprolol or butoxamine dissolved in a low-Ca2þ ,

high-Mg2þ solution or TTX, and the MPs were recorded.

Immunofluorescence staining
To confirm the presence of b1- and b2-ARs histologically, immunofluorescence

staining was performed. After the aforementioned experiments, the prepara-

tions were fixed for 1 h at 4 1C in 4% paraformaldehyde in 0.1 m phosphate-

buffered saline, immersed in 18% sucrose–phosphate-buffered saline over-

night, embedded in optimal cutting temperature compound (Sakura Finetek,

Tokyo, Japan), frozen on dry ice and cut into 20-mm-thick transverse sections

followed by immunofluorescence staining.

Immunofluorescence staining protocols
Protocol (1): To confirm the existence of neurons expressing both b1-AR and

TH in the RVLM, the following primary antibodies were used: rabbit anti-b1-

AR antibody (1:400 dilution, Santa Cruz Biotechnology, Dallas, TX, USA) and

mouse anti-TH antibody (1:400 dilution, Sigma-Aldrich). The secondary

antibodies used (1:1000 dilution) for the immunofluorescence staining were

Alexa Fluor 546 goat anti-rabbit IgG (Molecular Probes/Invitrogen, Carsbad,

CA, USA) and Alexa Fluor 633 goat anti-mouse IgG. The Lucifer Yellow-

stained RVLM neurons that responded to metoprolol were examined for both

b1-AR and TH immunoreactivity using the triple-merged images.

Protocol (2): To confirm the existence of neurons expressing both b2-AR

and TH in the RVLM, rabbit anti-b2-AR antibody (1:400 dilution, Santa Cruz

Biotechnology) and mouse anti-TH were used as the primary antibodies. The

secondary antibodies used for the fluorescence staining were Alexa Fluor 546

goat anti-rabbit IgG and Alexa Fluor 633 goat anti-mouse IgG. The Lucifer

Yellow-stained RVLM neurons that responded to butoxamine were examined

for both b2-AR and TH immunoreactivity using the triple-merged images.

Protocol (3): To confirm the co-existence of b1- and b2-ARs on the RVLM

neurons, goat anti-b1-AR antibody and rabbit anti-b2-AR (1:400 dilution,

Sigma-Aldrich) were used as the primary antibodies. The secondary antibodies

for fluorescence staining were Alexa Fluor 633 donkey anti-goat IgG

(Molecular Probes/Invitrogen) and Alexa Fluor 594 donkey anti-rabbit IgG

(Molecular Probes/Invitrogen). The Lucifer Yellow-stained RVLM neurons that

responded to both metoprolol and butoxamine were examined for b1- and

b2-AR immunoreactivity using the triple-merged images.

Images of the immunofluorescence samples and Lucifer Yellow-stained

RVLM neurons were obtained with � 20 or � 40 objectives on an Olympus

FV1000 confocal microscope (Olympus Optical) or conventional fluorescence

microscope (BX60, Olympus Optical, Tokyo, Japan).16

Statistics
The results were expressed as means±s.e.m. Comparisons of the MPs recorded

before and during the superfusion with the drugs were performed using the

Student’s t-test for paired observations. Statistical significance was set at

Po0.05.

RESULTS

The recorded bulbospinal RVLM neurons (n¼ 93) were classified into
three types based on their firing patterns:17 regularly firing neurons
(n¼ 18; resting MP, �41.0±0.7 mV; frequency of APs (FAPs),
3.6±0.2 spikes s�1), irregularly firing neurons (n¼ 65; resting MP,
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�44.4±1.1 mV#; FAPs, 1.1±0.2 spikes s�1) (#Po0.05 vs. regularly
firing neurons), and silent-type neurons (n¼ 10; resting MP,
�46.0±0.9 mV*) (*Po0.01 vs. regularly firing neurons).

Of the 20 recorded neurons (regularly firing, 3; irregularly firing,
15; silent-type, 2), 16 (regularly firing, 3; irregularly firing, 12; silent-
type, 1) displayed hyperpolarization in response to metoprolol
superfusion. Of the 16 recorded neurons (regularly firing, 2;
irregularly firing, 12; silent-type, 2), butoxamine superfusion induced
depolarization in 11 (regularly firing, 2; irregularly firing, 8; silent-
type, 1) of the neurons. No significant changes in the membrane
resistance of the recorded RVLM neurons were observed in response
to superfusion with any drug (except salbutamol) (Tables 1a and b).

The effects of metoprolol and dobutamine on the bulbospinal
RVLM neurons
Of the 20 recorded bulbospinal RVLM neurons, 16 showed hyperpo-
larization and decreased FAPs during metoprolol superfusion
(Figure 1a, Table 1a). Furthermore, when 4 of these 16 neurons were
subjected to superfusion with 20mmol l�1 metoprolol followed by
100mmol l�1 metoprolol, stronger hyperpolarization was observed
during the 100mmol l�1 metoprolol superfusion (�4.5±2.2 mV vs.
�3.5±1.5 mV, not statistically significant; Figure 1b).

Of the 12 recorded bulbospinal RVLM neurons, 9 displayed
hyperpolarization during superfusion with metoprolol dissolved in a
low-Ca2þ , high-Mg2þ solution (Figure 1c, Table 1b). Furthermore,
three of the four bulbospinal RVLM neurons also displayed hyperpo-
larization during superfusion with metoprolol dissolved in TTX
solution (before �45.4±2.2 mV, during �48.1±2.2 mV, Po0.01;
data not shown).

To examine the effects of b1-AR agonists on the bulbospinal RVLM
neurons, dobutamine solution was applied. Of the six recorded

bulbospinal RVLM neurons, five displayed depolarization and
increased FAPs in response to dobutamine superfusion (Figure 1d,
Table 1a).

The effects of butoxamine and salbutamol on the bulbospinal
RVLM neurons
Of the 16 recorded RVLM neurons, 11 showed depolarization and
increased FAPs during butoxamine superfusion (Figure 2a, Table 1a).
Of the eight bulbospinal RVLM neurons superfused with butoxamine
dissolved in a low-Ca2þ , high-Mg2þ solution, seven showed

Table 1a Changes in the membrane potentials of bulbospinal RVLM neurons during superfusion with each of the drugs

Drug MP (mV) FAP (Hz) MR (MO)

Metoprolol (20mmol l�1) Depolarization Before �40 0.3 560

(n¼1) During �37.2 0.8 440

No change Before �46.9±2.8 0.2±0.1 426±91

(n¼3) During �47.0±3.1 0.3±0.1 374±62

Hyperpolarization Before �43.0±0.9 1.9±0.4 420±43

(n¼16) During �46.5±1.0* 0.5±0.2* 393±43

Dobutamine (5mmol l�1) Depolarization Before �43.3±2.2 0.8±0.3 430±11

(n¼5) During �40.9±2.8* 1.6±0.3* 399±12

No change

(n¼0)

Hyperpolarization Before �41.6 0 490

(n¼1) During �43.7 0 527

Butoxamine (20mmol l�1) Depolarization Before �46.2±2.3 0.2±0.1 418±11

(n¼11) During �44.0±2.3* 0.9±0.1* 389±97

No change Before �41.7±1.7 0.2±0.1 722±11

(n¼2) During �42.8±1.0 0.3±0.1 701±16

Hyperpolarization Before �44.0±2.5 0.5±0.2 336±14

(n¼3) During �47.0±2.3# 0.1±0.1 335±14

Salbutamol (5mmol l�1) Depolarization

(n¼0)

No change

(n¼0)

Hyperpolarization Before �42.8±1.7 1.1±0.2 477±32

(n¼8) During �45.0±1.8* 0.3±0.1# 399±32#

Abbreviations: FAP, frequency of action potential; MP, membrane potential; MR, membrane resistance; RVLM, rostral ventrolateral medulla. Values are mean±s.e.m. *Po0.01 , #Po0.05 vs.
before each drug superfusion. The hyperpolarized neuron under butoxamine superfusion was a silent-type one.

Table 1b Changes in the membrane potentials of bulbospinal RVLM

neurons during superfusion with each of the drugs dissolved in a low-

Ca2þ , high-Mg2þ solution

Drug MP (mV) MR (MO)

Metoprolol (20mmol l�1) Depolarization Before �43.7±1.5 254±21

(n¼2) During �40.0±0.1 266±33

No change Before �42.4 325

(n¼1) During �43.0 333

Hyperpolarization Before �43.5±0.3 451±45

(n¼9) During �47.3±1.0* 325±50

Butoxamine (20mmol l�1) Depolarization �43.0±0.6 316±44

(n¼7) During �39.5±0.7* 308±58

No change

(n¼0)

Hyperpolarization Before �42.5 357

(n¼1) During �45.1 340

Abbreviations: FAP, frequency of action potential; MP, membrane potential; MR, membrane
resistance; RVLM, rostral ventrolateral medulla. Values are mean±s.e.m. *Po0.01 vs. before
each drug superfusion.
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depolarization (Figure 2b, Table 1b). Additionally, all of the four
bulbospinal RVLM neurons displayed depolarization during super-
fusion with butoxamine dissolved in TTX solution (before
�45.3±2.3 mV, during �41.2±1.9 mV, Po0.05; data not shown).

As shown in Figure 3c, MPs of bulbospinal RVLM neurons (n¼ 5)
were recorded during superfusion with metoprolol dissolved in a low-
Ca2þ , high-Mg2þ solution followed by superfusion with butoxamine

dissolved in a low-Ca2þ , high-Mg2þ solution. In all the cases, the
neurons displayed hyperpolarization during superfusion with meto-
prolol and depolarization during superfusion with butoxamine. To
examine the effects of b2-AR agonists on the bulbospinal RVLM
neurons, salbutamol superfusion was performed. All of the eight
recorded bulbospinal RVLM neurons displayed hyperpolarization and
decreased FAPs during the salbutamol superfusion (Figure 2d,

-40 mV
-50 mV

metoprolol (20 µmol/L)

-40 mV
-50 mV

metoprolol (20 µmol/L)

1 min

2 min
metoprolol (100 µmol/L)
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-50 mV

metoprolol (20 µmol/L)

-40 mV

dobutamine (5 µmol/L)

-50 mV

low-Ca2+,high-Mg2+

1 min

1 min

Figure 1 Changes in the membrane potentials (MPs) of the bulbospinal RVLM neurons during metoprolol (b1-AR antagonist) and dobutamine (b1-AR

agonist) superfusion. (a) Bulbospinal RVLM neurons showed hyperpolarization during metoprolol superfusion. (b) While the MPs of the RVLM neurons were

recorded, the cells were superfused with 20mmol l�1 metoprolol followed by 100mmol l�1 metoprolol; RVLM neuron hyperpolarization occurred in a dose-

dependent manner. (c) Bulbospinal RVLM neurons showed hyperpolarization during superfusion with metoprolol dissolved in a low-Ca2þ , high-Mg2þ

solution. This neuron showed an irregularly firing pattern but no spontaneous discharge given that it showed no APs during superfusion with a low-Ca2þ ,

high-Mg2þ solution. (d) Bulbospinal RVLM neurons showed depolarization during dobutamine superfusion.

-40mV
-50mV

butoxamine (20 µmol/L)

-40mV

butoxamine (20 µmol/L)

-50mV
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1 minlow-Ca2+, high-Mg2+

-40 mV
-50 mV

d
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low-Ca2+, high-Mg2+

40 V

salbutamol (5 µmol/L)

-40 m
-50 mV

butoxamine (20 µmol/L)
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Figure 2 Changes in the MPs of the bulbospinal RVLM neurons during butoxamine (a b2-AR antagonist) and salbutamol (a b2-AR agonist) superfusion.

(a) Bulbospinal RVLM neurons showed depolarization and an increase in the frequency of APs during butoxamine superfusion. (b) Bulbospinal RVLM
neurons showed depolarization during superfusion with butoxamine dissolved in a low-Ca2þ , high-Mg2þ solution. This result suggests b2-AR in these

bulbospinal RVLM neurons. (c) Recording of the MPs of the bulbospinal RVLM neurons while the cells were superfused with metoprolol followed by

butoxamine; both drugs were dissolved in a low-Ca2þ , high-Mg2þ solution. The neurons showed hyperpolarization during the metoprolol superfusion and

depolarization during the butoxamine superfusion under the blockade of the synaptic transmissions. (d) Bulbospinal RVLM neurons showed hyperpolarization

during salbutamol superfusion.
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Table 1a). The membrane resistance of the recorded RVLM neurons
displayed significant changes during the salbutamol superfusion
(Table 1a).

Immunoreactivity
Lucifer Yellow staining was performed after the whole-cell recordings
of the bulbospinal RVLM neurons were completed (Figures 3–5). Five
of the RVLM neurons displaying hyperpolarization during metoprolol
superfusion were examined for b1-AR immunoreactivity. All of these
neurons were confirmed to be located in the RVLM and displayed
b1-AR immunoreactivity (Figures 3a, c, d and 4a). TH immunor-
eactivity was also observed in three of these neurons (Figures 3a–d). A
triple-merged image revealed that approximately all of the TH-
immunoreactive neurons in the RVLM area exhibited b1-AR immu-
noreactivity (Figures 3a, b and d). Furthermore, two bulbospinal
RVLM neurons that showed no change in MPs during metoprolol
superfusion were examined for b1-AR immunoreactivity and were
negative for b1-AR immunoreactivity (Figure 4b).

Three RVLM neurons that showed depolarization during butox-
amine superfusion were examined for b2-AR immunoreactivity; all of
these neurons were confirmed to be located in the RVLM and display
b2-AR immunoreactivity (Figure 4c). Two of the neurons
also displayed TH immunoreactivity. Approximately, all of the
TH-immunoreactive neurons in the RVLM also exhibited b2-AR
immunoreactivity.

Five of the bulbospinal RVLM neurons that showed hyperpolariza-
tion during metoprolol superfusion and depolarization during the
subsequent butoxamine superfusion (Figure 2c) were examined for
b1- and b2-AR immunoreactivity, and all of these neurons exhibited
both b1- and b2-AR immunoreactivity (Figures 5a–d). The number of
b1- and b2-AR-immunoreactive RVLM neurons was ascertained in
three 20-mm-thick transverse sections, including the Lucifer Yellow-
stained neurons. The number of b1- and b2-AR-immunoreactive
RVLM neurons (unilateral) was 199.0±15.4 per section and
192.7±20.8 per section, respectively. The number of RVLM neurons
displaying both b1- and b2-AR immunoreactivity was 180.0±21.6
per section. In the RVLM, most of the b1-AR-immunoreactive
neurons also exhibited b2-AR immunoreactivity; however, complete
overlap was not observed (Figures 5a, b and d).

DISCUSSION

b1- and b2-ARs on the bulbospinal RVLM neurons
RVLM neurons, including C1 catecholaminergic neurons, are con-
sidered to regulate peripheral sympathetic nervous activity and the
BP.28 However, few reports have examined b1- or b2-AR expression in
the bulbospinal RVLM neurons. In this study, the clear effects of
metoprolol, dobutamine, butoxamine and salbutamol on the activities
of the bulbospinal RVLM neurons strongly suggested the existence
and functional role of the b1- and b2-ARs in the bulbospinal RVLM
neurons. We hypothesize that catecholamines in the RVLM may
control the BP via the mediation of these receptors.

The role of catecholamines in the RVLM is not well understood.
Abbott et al.29 suggest that catecholaminergic neurons in the RVLM
use glutamate as the primary neurotransmitter, and Morrison30 also
suggests that glutamate is the principal excitatory neurotransmitter
from the RVLM to the sympathetic preganglionic neurons in the
thoracic spinal cord. Moreover, Chen et al.31 report that
norepinephrine microinjection into the RVLM does not alter the
resting systolic BP. However, in this study, bulbospinal RVLM neurons
were hyperpolarized and depolarized by the b1-AR antagonist and the
b2-AR antagonist, respectively. The results suggest that catecholamine
may serve as a neurotransmitter in the RVLM. In addition to these
receptors, the presence of a2-ARs on RVLM neurons is known,7–9

and its agonist hyperpolarizes RVLM neurons.28 The effects of
catecholamines depend on the type of ARs that catecholamines act
on, and the catecholamines’ effects on RVLM neurons may cancel
each other through these types of ARs.

The effects of metoprolol and dobutamine on the bulbospinal
RVLM neurons
Although Paschalis et al.32 reported the existence of the b1-AR in the
neurons of the RVLM, the physiological roles of the b1-AR expressed
on the RVLM neurons remain unknown.

In this study, metoprolol induced hyperpolarization in 80% of the
bulbospinal RVLM neurons (Figures 1a and b, Table 1a), and
the percentage decreased to 75% under the blockade of synaptic
transmissions (Figure 1c, Table 1b). These results suggest that
metoprolol directly induces hyperpolarization of the bulbospinal
RVLM neurons and that the b1-AR is expressed on these neurons.
Moreover, hyperpolarization of the RVLM neurons in response to
metoprolol superfusion occurred in a dose-dependent manner
(Figure 1b). Various previous studies suggest that orally administered
metoprolol crosses the blood–brain barrier.33,34 Given that metoprolol
hyperpolarized RVLM neurons in this study, a portion of its
BP-decreasing effect may be derived from reducing the activity of
RVLM neurons.

RVLM

IO

30µm

100 µm

Figure 3 Histological examination of the bulbospinal RVLM neurons in

transverse sections. (a) b1-AR-immunoreactive neurons are indicated in red.

Numerous b1-AR immunoreactive neurons are visualized in the RVLM. The

arrow indicates the recorded bulbospinal RVLM neuron. IO, inferior olivary
nucleus. (b) The tyrosine hydroxylase (TH)-immunoreactive neurons in the

RVLM are indicated in white. The arrow indicates the recorded bulbospinal

RVLM neuron. (c) The Lucifer Yellow-stained bulbospinal RVLM neuron is

presented in green. This neuron showed hyperpolarization during metoprolol

superfusion. (d) Triple-merged image of panels (a–c). The arrow indicates

the Lucifer Yellow-stained bulbospinal RVLM neuron exhibiting both b1-AR

and TH immunoreactivity. In the inset, the merged bulbospinal RVLM

neuron is visualized under higher magnification.
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To confirm the expression of the b1-AR on these neurons,
dobutamine superfusion, which induced depolarization in 83% of
the RVLM neurons, was performed. These findings support our
finding that blockade of the b1-AR activity decreased the activity of
the RVLM neurons.

In the brain, b1-AR expression has been reported in neurons of the
amygdala35 as well as anterior hypothalamic36 and paraventricular
nuclei.37 In these studies cited above, b1-AR antagonists decreased the
activity of these neurons. Other reports38,39 have suggested that b1-AR
antagonists exert a neuroprotective effect. In many parts of the brain,
b1-AR antagonists may exert a neuroprotective effect by decreasing
neuron activity. The decrease in bulbospinal RVLM neuron activity
induced by metoprolol in this study suggests that b1-AR antagonists
may exert a protective effect on the RVLM neurons and reduce BP
through decreasing RVLM neuron activity.

In two cases, the RVLM neurons exhibited depolarization during
superfusion with metoprolol dissolved in a low-Ca2þ , high-Mg2þ

solution (Table 1b). The mechanism underlying this unexpected
finding remains unclear at present, and further study is needed.

The effects of butoxamine and salbutamol on the bulbospinal
RVLM neurons
In the brain, b2-AR expression has been reported in neurons of the
cerebellum,40 hippocampus41 and amygdala.42 Furthermore, various
reports43,44 also demonstrate that b2-AR stimulation exerts
neuroprotective effects by decreasing nuclear factor kappa B
signaling, inflammation and apoptosis in the brain.45 To the best of
our knowledge, no reports on the existence or on the

electrophysiological functions of the b2-AR in RVLM neurons are
available.

In this study, butoxamine induced depolarization of 69% of the
bulbospinal RVLM neurons (Figure 2a, Table 1a), and the percentage
increased to 88% under the blockade of synaptic transmissions
(Figure 2b and Table 1b). These results suggest that the b2-AR is
expressed in the bulbospinal RVLM neurons and that blockade of the
b2-AR increases the activity of these neurons.

To confirm the opposing effects of butoxamine and metoprolol,
metoprolol superfusion was followed by butoxamine superfusion, and
both drugs were dissolved in a low-Ca2þ , high-Mg2þ solution
(Figure 2c). Whereas the bulbospinal RVLM neurons showed
hyperpolarization in response to superfusion with metoprolol, they
exhibited depolarization in response to superfusion with butoxamine.
These results suggest the presence of both b1- and b2-ARs in some
bulbospinal RVLM neurons.

The b2-AR agonist salbutamol produced hyperpolarization of the
RVLM neurons in the majority of cases (Figure 2d, Table 1a). The
hyperpolarizing effect of salbutamol lends support to the depolarizing
effect of butoxamine.

These results suggest the existence and functional role of b2-ARs in
the bulbospinal RVLM neurons. b2-AR agonists are generally known
to dilate blood vessels and decrease BP.46 The existence of b2-ARs in
the bulbospinal RVLM neurons was demonstrated in this study, and
b2-AR agonists are considered to reduce BP partially through
decreasing bulbospinal RVLM neuron activity.

The membrane resistance of the RVLM neurons decreased only
during salbutamol superfusion (Table 1a). b2-AR agonists induce

40 µm

Figure 4 b1-AR- and b2-AR-immunoreactive neurons in the RVLM visualized under high magnification. (a1) b1-AR-immunoreactive neurons in the RVLM.

(a2) The Lucifer Yellow-stained bulbospinal RVLM neurons showed hyperpolarization during metoprolol superfusion. (a3) Merged image of panels a1 and a2.

The Lucifer Yellow-stained bulbospinal RVLM neurons showed b1-AR immunoreactivity. (b1) b1-AR-immunoreactive neurons in the RVLM. (b2) The Lucifer

Yellow-stained bulbospinal RVLM neurons displayed no change in membrane potential during metoprolol superfusion. (b3) Merged image of panels b1 and

b2. The Lucifer Yellow-stained bulbospinal RVLM neurons did not show b1-AR immunoreactivity. (c1) b2-AR-immunoreactive neurons in the RVLM. (c2) The

Lucifer Yellow-stained bulbospinal RVLM neurons showed hyperpolarization during butoxamine superfusion. (c3) Merged image of panels c1 and c2.
The Lucifer Yellow-stained bulbospinal RVLM neurons showed b2-AR immunoreactivity.
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Naþ–Kþ pump activation,47 opening up of Kþ (ATP) channels48

and regulation of the L-type calcium channels Ca(v)1.2,49 which may
underlie the decrease of the membrane resistance of the RVLM
neurons observed during salbutamol superfusion. The membrane
resistances differ greatly among the neurons (from 100 MO to
1000 GO). Therefore, on the whole, no statistically significant
changes of the membrane resistance were observed during
superfusion with other drugs.

b1- and b2-ARs immunoreactivity in the bulbospinal RVLM
neurons
In this study, all of the five neurons that displayed hyperpolarization
in response to metoprolol superfusion exhibited b1-AR immunor-
eactivity (Figures 3a, c, d and 4a). Given that RVLM neurons also
include C1-catecholaminergic neurons,3,4 we examined the TH
immunoreactivity of the aforementioned five neurons, and three of
these neurons exhibited TH immunoreactivity (Figures 3b, c and d).
Approximately all of the TH-immunoreactive neurons in the RVLM
also displayed b1-AR immunoreactivity (Figures 3a, b and d),
suggesting that catecholamines act on the RVLM neurons in an
autocrine manner. Numerous b1-AR-immunoreactive neurons were
observed in the RVLM (Figure 3a). Paschilis et al.32 reported the
presence of b1-AR-immunoreactive neurons in the RVLM, which
supports our findings.

Bulbospinal RVLM neurons that displayed no response during
metoprolol superfusion did not exhibit b1-AR immunoreactivity
(Figure 4b), indicating that not all bulbospinal RVLM neurons
express b1-ARs.

As shown in Figure 4c, all of the three neurons exhibiting
depolarization in response to butoxamine superfusion displayed
b2-AR immunoreactivity. Two of the neurons also displayed TH
immunoreactivity, and approximately all TH-immunoreactive neu-
rons in the RVLM also exhibited b2-AR immunoreactivity. Although
there are few reports on the presence of b2-AR-immunoreactive
neurons in the RVLM, we demonstrated b2-AR expression in the
bulbospinal RVLM neurons both electrophysiologically and histolo-
gically in this study.

RVLM neurons that displayed depolarization during metoprolol
superfusion and hyperpolarization during butoxamine superfusion
(Figure 2c) were examined for b1- and b2-AR immunoreactivity.
These neurons exhibited b1- and b2-AR immunoreactivity,
and 90% of the neurons in the RVLM that exhibited b1-AR
immunoreactivity also displayed b2-AR immunoreactivity
(Figures 5a–d). b1- and b2-ARs mediate opposite effects on
bulbospinal RVLM neuron activity. With regard to other parts of
the brain, b1- and b2-ARs co-expression has been reported in the
neurons of the cornu ammonis 1 (CA1) and CA3 regions of the rat
hippocampus.41

In summary, the presence of b1- and b2-ARs in the bulbospinal
RVLM neurons was demonstrated both electrophysiologically and
histologically. Treatment with a b1-AR antagonist decreased the
activity of the bulbospinal RVLM neurons, whereas treatment with
a b2-AR antagonist increased their activity. A number of neurons in
the RVLM displayed b1- or b2-AR’s immunoreactivity, and the
majority of TH-immunoreactive neurons exhibited both b1- and
b2-AR immunoreactivity. Furthermore, b1-ARs may co-exist with b2-
ARs on the bulbospinal neurons in the RVLM. Based on these results,
b2-AR antagonists or b2-AR agonists may reduce the BP through
decreasing the activity of bulbospinal RVLM neurons. However, the
agonists or antagonists’ effect on RVLM neurons in vivo is unknown,
and the role of catecholamines in the RVLM is unclear. Further
studies are expected.
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