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Regulation of the sympathetic nervous system
by nitric oxide and oxidative stress in the rostral
ventrolateral medulla: 2012 Academic Conference
Award from the Japanese Society of Hypertension

Takuya Kishi

Sympathoexcitation has an important role in the pathogenesis of hypertension. Previous studies have demonstrated that nitric

oxide (NO) and/or oxidative stress in the brain are important for the regulation of the sympathetic nervous system. We have

investigated the role of NO derived from an overexpression of endothelial NO synthase (eNOS) or oxidative stress in the rostral

ventrolateral medulla (RVLM), which is known as a vasomotor center in the brainstem, on the regulation of the sympathetic

nervous system. Our results indicated that NO derived from an overexpression of eNOS in the RVLM caused sympathoinhibition

via an increase in c-amino butyric acid and that angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the RVLM

caused sympathoexcitation. We also demonstrated that oxidative stress in the RVLM caused sympathoexcitation via interactions

with NO, effects on the signal transduction or apoptosis of the astrocytes. Furthermore, several orally administered AT1R

blockers have been found to cause sympathoinhibition via a reduction in oxidative stress through the blockade of AT1R in the

RVLM of hypertensive rats. In conclusion, our studies suggest that the increase in AT1R-induced oxidative stress and/or the

decrease in NO in the RVLM mainly cause sympathoexcitation in hypertension.
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INTRODUCTION

Sympathoexcitation is closely associated with the pathogenesis of hyper-
tension and the related organ damage.1–5 The sympathetic nervous
system is regulated by the brain, especially the rostral ventrolateral
medulla (RVLM) in the brainstem.6–7 There are inputs into the RVLM
from baroreceptors, chemoreceptors and visceral receptors via the
nucleus of the solitary tract (NTS)7–12 and the paraventricular nucleus
of the hypothalamus.8,13,14 Therefore, the RVLM is known as a vaso-
motor center, which determines the basal central sympathetic outflow.

The effect of nitric oxide (NO) and/or oxidative stress in the brain
on the regulation of the sympathetic nervous system has been
investigated in many previous studies.15–24 In particular, we have
investigated the role of NO and/or oxidative stress in the RVLM. In
the present review of our previous studies, we describe the
importance of NO and/or angiotensin II type 1 receptor (AT1R)-
induced oxidative stress in the RVLM on the regulation of the
sympathetic nervous system and the contribution of these
mechanisms to the pathophysiology of hypertension.

NO DERIVED FROM AN OVEREXPRESSION OF ENOS IN THE

RVLM CAUSES SYMPATHOINHIBITION

NO is an important mediator of intracellular signaling in various
tissues, including the central nervous system.25–27 There are three NO
synthase (NOS) isoforms: the constitutive neuronal NOS (nNOS),
endothelial NOS (eNOS) and inducible NOS (iNOS). A number of
studies have demonstrated the localization of nNOS, eNOS and iNOS
within the brain.28 Considerable evidence indicates that NOS acts on
the cardiovascular system, including the receptors and effectors of the
baroreflex pathway.15–17 We previously developed an in vivo technique
for eNOS gene transfer into the NTS of rats to determine the effects of
NO in the NTS on the sympathetic nervous system in a conscious
state.20,24,29–31 Compared to studies of the NTS, studies of the RVLM
in both acute and anesthetized models have resulted in both
sympathoexcitation and sympathoinhibition.24,32–37

In an experiment using whole-cell patch-clamp recordings of
visualized RVLM neurons from a brainstem slice, NO increased
the amplitude of excitatory postsynaptic currents.37 Therefore, to
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investigate the role of NO in the RVLM in a conscious state, we
applied the technique described above to study the RVLM.38–40 In
those studies, prolonged sympathoinhibition was observed after the
overexpression of eNOS in the RVLM.38–40 Microinjection of either a
NOS inhibitor or bicuculline, a g-amino butyric acid (GABA)
receptor antagonist, into the RVLM increased blood pressure to
greater levels in the group with overexpression of eNOS in the RVLM
compared with the control group. In addition, GABA levels in the
RVLM measured by in vivo microdialysis increased in the group with
overexpression of eNOS in the RVLM.

These results indicate that NO derived from the overexpression of
eNOS in the RVLM caused sympathoinhibition mediated by an
increased release of GABA. Similar to previous studies,16,41 we suggest
that NO derived from the overexpression of eNOS would mainly
mediate GABA release by the activation of N-methyl-D-aspartate
(NMDA) receptors in presympathetic neurons in the RVLM. In
addition, these studies provided convincing evidence that chronic
changes in neurotransmitters/neuromodulators in the RVLM have a
sustained impact on blood pressure in awake animals. In stroke-prone
spontaneously hypertensive rats (SHRSP), overexpression of eNOS in
the RVLM elicited greater depressor and sympathoinhibitory
responses with the enhancement of GABA release than in normo-
tensive rats.39 These results could indicate that NO dysfunction and
the resulting disinhibition of the RVLM contribute to sympatho-
excitation in SHRSP animals. Furthermore, overexpression of eNOS
in the RVLM improved the impaired baroreflex control of heart
rate in SHRSP animals.40 In summary, NO derived from an
overexpression of eNOS in the RVLM caused sympathoinhibition
via GABA release and facilitated the baroreflex function.

However, we were unable to fully determine whether NO in the
RVLM causes sympathoinhibition because we examined the role of
NO derived from an overexpression of eNOS in the RVLM. eNOS,
nNOS and iNOS are all located in the RVLM.42 Previous studies have
demonstrated that the application of a selective nNOS inhibitor into
the RVLM caused a depressor effect.43–45 Moreover, the sympatho-
excitation elicited by epicardial application of bradykinin was
significantly attenuated by the unilateral microinjection of non-
selective NOS inhibitors or a specific nNOS inhibitor into the
RVLM, although the sympathoexcitation was unchanged by the
injection of an eNOS inhibitor into the RVLM.46 Another previous
report indicated that NO derived from nNOS induced
sympathoexcitation via both NMDA and non-NMDA receptors.47

In contrast, overexpression of nNOS in the RVLM normalized the
impaired baroreflex function due to sympathoinhibition in rats with
heart failure.48

With regard to iNOS, we demonstrated that the overexpression of
iNOS in the RVLM caused sympathoexcitation in a conscious state of
normotensive rats49 and that the iNOS expression in the RVLM was
enhanced in spontaneously hypertensive rats (SHR).50 However, other
studies have indicated that the NO derived from iNOS caused
sympathoinhibition44,45 via GABA receptors47 and that iNOS in the
RVLM was reduced in SHR.42 Inconsistent results have also been
shown within the same species,34–36 although the variable actions of
NO in the RVLM observed in different species might be explained by
interspecies variation in NOS density and distribution.32,33 These
conflicting results suggest that the effects of NO on the regulation of
the sympathetic nervous system would be different among NOS
isoforms.

In addition, we have not clarified the effect of NO on the release of
the excitatory amino acid glutamate in the RVLM.51 Stimulation of
the cardiac sympathetic pathways activates RVLM neurons associated

with glutamate as well as nNOS,52 and NO facilitates the action of
glutamate in the RVLM through cyclic GMP/protein.37,47 Although
we previously demonstrated that overexpression of eNOS in the
RVLM increased the release of glutamate, microinjection of a
glutamate receptor antagonist into the RVLM did not alter blood
pressure.32 Further examinations to clarify the precise mechanisms for
the effects of each NOS isoform and glutamate in the RVLM are
necessary.

OXIDATIVE STRESS IN THE RVLM CAUSES

SYMPATHOEXCITATION IN HYPERTENSIVE RATS

We focused on oxidative stress in the RVLM as a major sympathoex-
citation factor because oxidative stress acts as a counterpart to NO.
We measured oxidative stress in the RVLM using the electron-spin
resonance method or the thiobarbituric acid-reactive substances
method and demonstrated that oxidative stress was increased in the
RVLM of SHRSP animals53–61 and SHR.62,63 We also confirmed
that a microinjection of tempol, a membrane-permeable superoxide
dismutase (SOD) mimetic, into the RVLM decreased blood pressure
and heart rate in SHRSP animals but not in normotensive rats.
Furthermore, we transfected adenoviral vectors encoding the
manganese SOD (MnSOD) gene into the RVLM in SHRSP animals.
Overexpression of MnSOD in the RVLM decreased blood pressure,
heart rate and urinary norepinephrine excretion in SHRSP animals
but not in normotensive rats. We also found reduced SOD activity in
the RVLM of SHRSP animals compared with normotensive rats, and
this reduction led to a decreased capability for scavenging superoxide
anions.

These findings indicate that oxidative stress in the RVLM causes
sympathoexcitation, and this mechanism was involved in the neural
pathophysiology of hypertension in SHRSP animals. We have also
demonstrated that oxidative stress in the RVLM caused sympathoex-
citation in several other hypertensive models, such as salt-induced
hypertension,62 dietary-induced hypertension57,64 and experimental
jet lag.56 Moreover, these results are consistent with previous studies
of other investigators.65,66 In addition, Oliveira-Sales et al.67–69

suggested that sympathoexcitation in renovascular (two-kidney one-
clip) hypertensive rats was associated with oxidative stress in the
RVLM and paraventricular nucleus of the hypothalamus. These
results strongly suggest that the increase in oxidative stress in the
RVLM is an important cause, not a result, of the sympathoexcitation,
which then leads to hypertension.

SOURCES OF OXIDATIVE STRESS IN THE RVLM

Among the sources of oxidative stress in the RVLM, such as
nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase,
xanthine oxidase, uncoupled NOS and mitochondria, we demon-
strated that mainly the activation of the AT1 receptor/NAD(P)H
oxidase produced the oxidative stress in the RVLM of SHRSP
animals.58,70,71 These results are consistent with a previous report.72

The renin angiotensin system in the brain is associated with
enhanced central sympathetic outflow,73–78 and mitochondria-derived
oxidative stress has been shown to mediate sympathoexcitation
induced by angiotensin II in the brain.79,80 Angiotensin II exo-
genously administered into the RVLM elicited a pressor response via
sympathoexcitation.81,82 Moreover, the inhibition of the AT1 receptor
in the RVLM by AT1 receptor blockers caused sympathoinhibition in
hypertensive rats.57–59,62,64,71,81 We found that the overexpression of
MnSOD attenuated the angiotensin II-induced pressor response
associated with oxidative stress in the RVLM.70 All of these results
indicate that the AT1 receptor/NAD(P)H oxidase may be the main

Brain oxidative stress and nitric oxide in sympathetic regulation
T Kishi

846

Hypertension Research



source of oxidative stress in the RVLM of hypertensive rats. Moreover,
we showed that Rac1 was associated with the activation of NAD(P)H
oxidase.20,22–24,55,79

Rac1 is a small G protein involved in integrating the intracellular
transduction pathways toward NAD(P)H activation and requires lipid
modifications to migrate from the cytosol to the cell membrane. The
inhibition of Rac1 caused by the transfection of the adenovirus
vectors encoding a dominant-negative Rac1 into the RVLM or NTS
decreased blood pressure, heart rate and urinary norepinephrine
excretion in SHRSP animals but not in normotensive rats.22,79 A
blockade of Rac1 translocation from the cytosol to the membrane in
the RVLM of SHRSP animals caused sympathoinhibition via a
decrease in NAD(P)H oxidase activity and oxidative stress.55 Thus,
our findings indicate that activation of the AT1 receptor/NAD(P)H
oxidase associated with Rac1 mainly produced oxidative stress in the
RVLM of SHRSP animals.

MECHANISMS OF OXIDATIVE STRESS-INDUCED

SYMPATHOEXCITATION IN THE RVLM

We have demonstrated several mechanisms by which oxidative
stress in the RVLM causes sympathoexcitation. Superoxide
interacts with NO. As we consider that NO in the RVLM causes
sympathoinhibition,29,38,39 decreased NO bioavailability in the RVLM
induced by superoxide might cause sympathoexcitation. Recently, we
demonstrated that a reduction in NO-mediated GABA release in the
RVLM was involved in superoxide-induced sympathoexcitation in
SHRSP animals.83 Regarding the relationship between superoxide and
NO, we should also focus on the formation of peroxynitrite because
the kinetics of the formation of peroxynitrite from superoxide and
NO are strong.84 In fact, peroxynitrite in the RVLM has an excitotoxic
effect.85

A recent study suggested that reactive oxygen species and reactive
nitrogen species, such as peroxynitrite, could dose dependently
regulate iNOS function and that peroxynitrite reduces both NO and
superoxide productions via enzymatic iNOS dysfunction.86 Another
report indicated that an interaction between NO and superoxide in
the RVLM via the formation of peroxynitrite contributed to the
hypotensive effect of NO after overexpression of eNOS in SHR.87 The
role of peroxynitrite in the RVLM on the regulation of the
sympathetic nervous system should be further examined.

The excitatory amino acid glutamate in the RVLM is known to
cause strong sympathoexcitation.6,7 We recently demonstrated that
oxidative stress modulates the balance between glutamate and GABA
in the RVLM of hypertensive rats.63 The results are consistent with
previous reports, which demonstrated that NAD(P)H oxidase-derived
superoxide in the RVLM was involved in the angiotensin II-induced
pressor response via an enhancement of the presynaptic release of
glutamate.72 We hypothesize that glutamate in the RVLM might be
involved in oxidative stress-evoked sympathoexcitation.

We have also focused on the signal transduction associated with
oxidative stress. The AT1 receptor activates caspase-3 in the RVLM
through the Ras/mitogen-activated protein kinase/extracellular
signal-regulated kinase, which is involved in sympathoexcitation in
SHRSP animals.71 The activities of Ras, p38 mitogen-activated protein
kinase, extracellular signal-regulated kinase and caspase-3 in the
RVLM were elevated in SHRSP animals compared with those in
normotensive rats. The phosphorylation of the pro-apoptotic proteins
Bax and Bad, which release cytochrome c in the mitochondria, was
shown to activate caspase-3.71 In contrast, the phosphorylation
of the anti-apoptotic protein Bcl-2 inhibited caspase-3 activation.
Intracerebroventricular infusion of a caspase-3 inhibitor reduced

blood pressure and heart rate with sympathoinhibition in SHRSP
animals but not in normotensive rats. Intracerebroventricular
infusion of an AT1 receptor blocker caused sympathoinhibition and
also reduced the activities of Ras, p38 mitogen-activated protein
kinase, extracellular signal-regulated kinase and caspase-3 in the
RVLM of SHRSP animals. These results are consistent with a
previous report, which indicated that NAD(P)H oxidase derived
superoxide and functioned in the activation of p38 mitogen-activated
protein kinase or extracellular signal-regulated kinase1/2 by
angiotensin II in the RVLM.72 Although the relationship between
oxidative stress and activation of these kinases is bidirectional,88 these
pathways could exist downstream of the AT1 receptor in the RVLM of
SHRSP animals and could be related to the blood pressure elevation
and sympathoexcitation observed in SHRSP animals.

Recently, additional central mechanisms of sympathoexcitation
associated with oxidative stress were considered, such as perivascular
macrophages in the brain,89,90 transcription factor nuclear factor
kappa-B91 and microglial cytokines92 in the brain. We also recently
demonstrated that neuron-astrocyte uncoupling mediated by AT1

receptor-induced oxidative stress in the RVLM caused sympatho-
excitation in SHRSP animals.93,94

There are several unsolved issues. First, there may be multiple
targets of oxidative stress in the RVLM. We have not clarified which
types of cells, such as presympathetic neurons, interneurons or the
axon terminals from NTS and paraventricular nucleus to the RVLM,
are targets of oxidative stress in the RVLM. We demonstrated that
oxidative stress triggered calcium influx in the neural cells; this
mitochondrial calcium accumulation led to sympathoexcitation
associated with mitochondrial oxidative stress production.70 These
results were similar to a previous report.80 We also determined that
oxidative stress in the RVLM enhanced glutamatergic excitatory
inputs and attenuated GABAergic inhibitory inputs from the
paraventricular nucleus into the RVLM.63 Interestingly, Chan et al.72

clearly demonstrated that NAD(P)H oxidase-derived superoxide in
the RVLM was involved in the angiotensin II-induced pressor
response via enhancement of the presynaptic release of glutamate to
RVLM neurons. Our recent results indicate that oxidative stress-
induced sympathoexcitation might be mediated by the apoptosis of
astrocytes in the RVLM.71,93 However, we have not conducted
electrophysiological examinations to clarify the effect of oxidative
stress on the electrophysiological characteristics of the RVLM neurons.

Several previous studies performed by Kumagai et al.95–97 indicated
that the RVLM bulbospinal neurons in SHR depolarized and the firing
rate increased by angiotensin II. Furthermore, angiotensin II produced
a sustained inward current and increased the frequency and amplitude
of the excitatory postsynaptic currents. These angiotensin II-evoked
responses in the RVLM might be associated with oxidative stress, and
angiotensin II-induced oxidative stress has the potential to reduce the
expression of the voltage-gated potassium channel in the RVLM.98,99

Moreover, the AT1 receptor enhanced the frequency of glutamate-
sensitive spontaneous excitatory postsynaptic currents in the RVLM.72

Further studies to explore these unsolved questions are required.

EFFECTS OF AT1 RECEPTOR BLOCKERS ON OXIDATIVE

STRESS IN THE RVLM AND SYMPATHETIC NERVOUS SYSTEM

The AT1 receptor in the brain has an important role in the
pathophysiology of hypertension.7,9,73,74,79,100,101 Interestingly,
peripherally administered AT1 receptor blockers can penetrate the
blood–brain barrier and block the AT1 receptor within and outside
the brain, although the extent of the blocking action within the brain
varies among AT1 receptor blockers.58,64,102–105 A high density of AT1
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receptor is present in brain regions that are involved in the regulation
of the sympathetic nervous system, such as the circumventricular
organs outside of the blood–brain barrier that peripherally adminis-
tered AT1 receptor blockers are able to access, and also regions inside
the blood–brain barrier.101

Recent studies suggest that systemically administered AT1 receptor
blockers also act on the AT1 receptor within the brain, thereby
reducing blood pressure in hypertensive rats.22,58,64,103,106–108

The extent of the actions of AT1 receptor blockers within the brain
might depend partly on the lipophilicity and pharmacokinetics
of the blockers.102,105 We have also examined the sympatho-
inhibitory effect via a reduction in oxidative stress through the
inhibition of the AT1 receptor in the brain, and our results are
consistent with many previous studies.64,101–107 Orally administered
telmisartan or olmesartan reduced blood pressure and urinary
norepinephrine excretion in SHRSP animals and was associated
with a reduction in oxidative stress production in the brainstem,
including the RVLM.22,108 Orally administered telmisartan has been
shown to inhibit AT1 receptor-induced oxidative stress in the RVLM
and cause sympathoinhibition in SHRSP animals to a greater extent
than candesartan, in spite of similar depressor effects.58 Similar results
were obtained in obesity-induced hypertensive rats treated with
telmisartan or losartan.64 Thus, it is conceivable that orally
administered AT1 receptor blockers could cause sympathoinhibition
associated with the blockade of the AT1 receptor in the RVLM.
Moreover, the sympathoinhibitory effects caused by orally
administered AT1 receptor blockers may not be class effects.

SYMPATHOINHIBITION BY TARGETING OXIDATIVE STRESS IN

THE RVLM OF HYPERTENSIVE ANIMALS

3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (sta-
tins) are potent inhibitors of cholesterol biosynthesis. In addition, a
previous study suggested that statins reduce blood pressure in patients
with hypertension,109 and the potential sympathoinhibition of statins
has been demonstrated.110–112 We have also demonstrated that orally
administered atorvastatin causes sympathoinhibition and improves
impaired baroreflex sensitivity via a reduction in oxidative stress
through the inhibition of the AT1 receptor-NAD(P)H oxidase and the
upregulation of MnSOD in the RVLM of SHRSP animals;54,55,111

these findings are consistent with a previous study of the
vasculature.113 Moreover, we also determined that orally
administered atorvastatin could increase NOS in the brainstem of
SHRSP animals.114 From these results, we consider that statins have a
potential to cause sympathoinhibition via a reduction in oxidative
stress and/or an activation of NOS in the RVLM.

Several calcium channel blockers have been confirmed to cause
sympathoinhibition via a reduction in oxidative stress in the RVLM of
hypertensive rats. Orally administered amlodipine115 or azelnidipine61

caused sympathoinhibition via a reduction in oxidative stress in the
RVLM of SHRSP animals. We confirmed that orally administered
azelnidipine inhibited the NAD(P)H oxidase activity and activated
MnSOD in the RVLM of SHRSP animals.61 Furthermore, a
combination of atorvastatin and amlodipine60 or olmesartan and
azelnidipine116 had additive effects of sympathoinhibition via a
reduction in oxidative stress in the RVLM.

Interestingly, caloric restriction57 and exercise training59 have been
shown to have a pivotal role in sympathoinhibition via a reduction in
oxidative stress through the blockade of the AT1 receptor in
hypertensive rats. These results suggest that adipocytokines and/or
insulin resistance may affect the AT1 receptor in the RVLM and cause
sympathoexcitation.

PERSPECTIVES AND CONCLUSIONS

The figure 1 shows our conceptualization of the regulation of the
sympathetic nervous system via NO derived from overexpression
of eNOS and/or AT1 receptor-induced oxidative stress in the
RVLM. Regarding treatment for subnormal sympathoexcitation in
cardiovascular diseases, our studies and other reports indicate that a
blockade of the AT1 receptor in the RVLM may be necessary.64,101–108

AT1 receptor blockers are widely used in the treatments for
hypertension.117 In addition, AT1 receptor blockers may have
protective effects on neurons, thereby reducing the incidence of
stroke and improving cognition.117,118

Recent results from studies of renal nerve ablation in patients with
resistant hypertension suggest that renal afferent nerves may also
contribute to blood pressure elevation.119–121 Renal afferent nerves
project directly into many areas in the central nervous system, such as
the NTS and hypothalamus.122,123 Oxidative stress was shown to
mediate sympathoexcitation in the phenol renal injury model of
hypertension in which the renal afferent nerves are stimulated.124 In
this model, the AT1 receptor and NAD(P)H oxidase in the brain are
activated. Previous studies have suggested that increased oxidative
stress production and reduced nNOS expression may be involved in
these mechanisms, and these changes lead to the alteration of
cytokines in the brain.124,125

We suggest that the AT1 receptor and related oxidative stress
production in the RVLM should be therapeutic targets for the
treatment of abnormal sympathoexcitation in hypertension. In
conclusion, our studies suggest that the increase in AT1 receptor-
induced oxidative stress and/or decrease in NO in the RVLM mainly
cause sympathoexcitation in hypertension.
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Figure 1 A schema showing our concept of the regulation of sympathetic

nerve activity via NO derived from the overexpression of eNOS and AT1R-

induced oxidative stress in the RVLM. GABA, g-amino butyric acid;
NAD(P)H oxidase, nicotinamide adenine dinucleotide phosphate.
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