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Mapping genetic determinants of kidney damage
in rat models

Angela Schulz and Reinhold Kreutz

During the last two decades, significant progress in our understanding of the development of kidney diseases has been achieved

by unravelling the mechanisms underlying rare familial forms of human kidney diseases. Due to the genetic heterogeneity in

human populations and the complex multifactorial pathogenesis of the disease phenotypes, the dissection of the genetic basis

of common chronic kidney diseases (CKD) remains a difficult task. In this regard, several inbred rat models provide valuable

complementary tools to uncover the genetic basis of complex renal disease phenotypes that are related to common forms

of CKD. In this review, data obtained in nine experimental rat models, including the Buffalo (BUF), Dahl salt-sensitive (SS),

Fawn-hooded hypertensive (FHH), Goto-Kakizaki (GK), Lyon hypertensive (LH), Munich Wistar Frömter (MWF), Sabra

hypertension-prone (SBH), spontaneously hypertensive rat (SHR) and stroke-prone spontaneously hypertensive rat (SHRSP)

inbred strains, that contributed to the genetic dissection of renal disease phenotypes are presented. In this panel of inbred

strains, a large number of quantitative trait loci (QTL) linked to albuminuria/proteinuria and other functional or structural kidney

abnormalities could be identified by QTL mapping analysis and follow-up studies including consomic and congenic rat lines.

The comprehensive exploitation of the genotype–renal phenotype associations that are inherited in this panel of rat strains is suitable

for making a significant contribution to the development of an integrated approach to the systems genetics of common CKD.
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INTRODUCTION

Common forms of chronic kidney diseases (CKD) represent complex
disease phenotypes that are influenced by both environmental and
genetic factors.1–5 Both arterial hypertension and type-2 diabetes
mellitus are major contributors to complex CKD, which has a high
prevalence in the general human population worldwide affecting
B11–15% of individuals in Europe and United States.6–9 CKD
represents as expected a major risk factor for the progression to
end-stage renal disease but associates also with an increased risk of
cardiovascular morbidity and mortality.10,11 In addition to the
assessment of impaired renal function or glomerular filtration rate,
urinary albumin excretion rate (albuminuria) represents another
important clinical marker for the evaluation of CKD and
cardiovascular risk of patients.10–15 These renal disease phenotypes
are also inherited in several inbred rat strains many of which are
hypertensive.16 During the last decades, genetic mapping studies by
genome-wide linkage analysis followed by fine mapping of selected
quantitative trait loci (QTL) for renal disease phenotypes were
reported. Subsequently, studies in consomic and congenic rats were
performed to further unravel the genetics of kidney injury in inbred
rat strains. For QTL confirmation, consomic strains were generated by
transfer of an entire chromosome carrying a QTL from a donor strain
into the disease background of a recipient strain or vice versa.17 For

QTL fine mapping analysis, congenic or subcongenic strains were
established by transfer of chromosomal fragments of different length
from the donor to the recipient background or vice versa.16,17

The aim of this report is to review the current status of genetic
mapping studies of genetic determinants of kidney damage in these
inbred rat models.

BUFFALO RAT

Strain breeding
The proteinuria-prone Buffalo/Mna (BUF) inbred rat strain was
derived from random bred BUF rats, and established at Nagoya
University in Japan.18,19 This inbred strain demonstrated spontaneous
thymomas.19–21

Strain characteristics
The normotensive22 BUF rat strain develops spontaneous progressive
proteinuria23–25 in the nephrotic range, that is, 4150mg per 24h,26

hypoproteinemia,23 abnormal lipid metabolism,23 structural renal
lesions such as focal and segmental glomerulosclerosis (FSGS) and
glomerular epithelial cell alterations with foot process effacement later
in life.22,23,25,27–29 Both proteinuria and FSGS are not linked to the
genetic susceptibility to develop spontaneous thymomas21,25,27,30,31
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and related immune disorder phenotypes.32,33 Furthermore, BUF rats
show muscle atrophy, fatigability and weakness.34,35

Cosegregation and linkage analyses
Linkage analysis in a male (BUF�Wistar Kyoto (WKY)/NCrj) F1�
BUF backcross population revealed significant linkage only to one
locus, that is, the QTL Pur1 (Proteinuria QTL 1) on rat chromosome
(RNO)13 linked to the development of proteinuria (Tables 1 and 5).24

Interestingly, this QTL explained about 39% of the total variance of
proteinuria in the backcross population.24 Further, fine mapping of
Pur1 by linkage analysis, physical mapping and single-nucleotide
polymorphism analysis narrowed the QTL to a 7.8-Mb long region
containing 38 genes of which 25 remained potential candidate genes
for proteinuria.19 Subsequently, in Arp3 (actin-related protein 3) a
missense mutation (L111F substitution) was found causing actin
assembly abnormalities in podocytes (Table 3).19 This mutation was
related to both proteinuria and FSGS development in the BUF rat.19

No consomic or congenic studies were reported.

DAHL RAT

Strain breeding
Dahl salt-sensitive (DS) and Dahl salt-resistant (DR) rat strains were
originally established as outbred strains from Sprague-Dawley rats by
Lewis K Dahl.36 DS and DR rats were selected for contrasting blood
pressure (BP) values in response to high dietary salt intake (8%
NaCl).16,37 The inbred Dahl rat strains Dahl salt-sensitive (SS/Jr) and
Dahl salt-resistant (SR/Jr) were derived from outbred DS and DR rats
by Rapp.16

Strain characteristics
SS/Jr rats are characterized by salt-sensitive hypertension,16,38

progressive proteinuria in response to high-salt diet and kidney
damage, which is associated with glomerular, tubulointerstitial and
vascular damage.16,39–52 Interestingly, SS/Jr develops early onset
spontaneous albuminuria at 4 weeks of age already when fed a
normal/low-salt diet before ultrastructural glomerular changes53 such
as segmental loss of podocyte foot processes43 are observed. However,
the progression of hypertension and renal damage is attenuated under
normal/low-sodium compared with high-sodium diet in aging
rats.16,38,43,48,53,54 The magnitude of albuminuria is not only
enhanced by high-salt intake but also modified by the composition
of dietary protein intake.55,56 In addition, the rats develop left
ventricular hypertrophy and fibrosis,47,49,51,57 hyperlipidemia46,51

and insulin resistance.58–60

Cosegregation and linkage analyses
Different studies addressed the genetics of albuminuria in SS rats
under either normal/low-salt or high-salt diet. Poyan Mehr analyzed
the genetic basis of early onset albuminuria on low-salt (0.2% NaCl)
diet in SS rats by genome-wide QTL mapping analysis of albuminuria
at 8 weeks of age in a large cohort of 539 (SSFub� spontaneously
hypertensive rat (SHR)Fub) F2 progeny.53 Seven suggestive or
significant UAE QTLs on RNO2, RNO6, RNO8, RNO9, RNO10,
RNO11 and RNO19 accounting together for 34% of the overall
variance of albuminuria were identified (Tables 1 and 5).53 It was
shown that homozygosity of two albuminuria increasing alleles for at
least six QTLs was necessary to generate a considerable increase in
UAE in young F2 rats.53

Garrett et al.54 identified in a backcross population of 276 male rats
derived from F1(Dahl SS/Jr (S)� SHR/NHsd)� S under low salt
(0.3% NaCl) 10 albuminuria and/or proteinuria QTL on RNO1–

RNO2, RNO6 (QTL1þQTL2), RNO8–RNO11, RNO13 and RNO19,
most of which colocalized with QTL for structural kidney lesion
phenotypes (Tables 1 and 5). As expected, most of the S alleles were
associated with increased albumin or protein excretion rates, although
alleles on RN06 (QTL1) and RNO11 were also linked to decreased
albumin excretion rates.54 The albuminuria RNO2-QTL was involved
in multiple interactions with albuminuria QTL on other
chromosomes.54 Subsequently, the authors confirmed in an
independent backcross population fed low salt (0.3% NaCl) all
previously identified low-salt albuminuria QTL54 except the RNO6-
QTL1 and the QTL on RNO10 (Table 1).61 Thus, taken together six
common albuminuria QTLs on RNO2, RNO6, RNO8, RNO9,
RNO11 and RNO19 were identified in all three studies, respectively
(Tables 1 and 5).
Subsequently, further studies analyzed the genetic influence on

renal damage in response to high-salt diet in the SS rat. One study
again in a backcross between SS and SHR rats demonstrated that the
albuminuria/proteinuria QTL on RNO2, RNO11 and RNO19 that
were detected under low-salt exposure were not detectable under
high-salt diet (Table 1).61 The authors hypothesized that SHR alleles
on RNO11 may mediate preglomerular vasoconstriction and hence,
protect against renal damage in response to an increased blood
pressure after high salt in backcross animals.61 Four of the
albuminuria/proteinuria QTL reported in this study on RNO6,
RNO8, RNO9 and RNO19 were also confirmed in a similar
cross.48 In the latter study, the effect of high-salt intake (4% NaCl)
was analyzed in an F2 cross derived from SS/Rkb� SHR/Rkb and led
to the identification of overall six albuminuria/proteinuria QTLs on
RNO3, RNO6 (2 QTL), RNO8, RNO9 and RNO19 (Tables 1 and
5).48 Moreover, the authors detected also QTL linked to structural
kidney injury phenotypes, for example, renal interstitial fibrosis,
tubulointerstitial inflammation and renal microangiopathy on
RNO20, RNO3 and RNO5, respectively (Tables 1 and 5).48 Of
interest, the SHR allele was associated with a more severe phenotype
at the tubulointerstitial inflammation and microangiopathy QTL.48

Moreno et al.62 identified in a female-specific linkage analysis of
(SS/JrHsdMcwi�Brown Norway (BN)/SsNHsdMcwi) F2 animals
126 QTL for 96 cardiovascular, renal and other traits in response to
graduated NaCl intake. A QTL on RNO2 was found to be associated
with proteinuria and focal glomerulosclerosis and a QTL on RNO11
with proteinuria and glomerular injury (Tables 1 and 5).

Consomic/congenic studies
Different consomic and congenic/subcongenic studies between SS and
SHR or SS and BN were performed to unravel the genetics of kidney
damages in SS rats.

SS and SHR. Wendt et al.49 analyzed the effect of replacement of the
albuminuria/proteinuria QTL on SS-RNO19 previously described by
Siegel et al.48 Transfer of SHR-RNO19 into SS revealed in consomic
SS-19SHR a protective effect of RNO19 on albuminuria and
proteinuria in both sexes under both low- and high-salt diet
(Table 2).49

In different congenic and subcongenic studies, the phenotypic
effects of proteinuria and albuminuria QTL that were originally
detected under low- and/or high-salt diet on RNO2, RNO6, RNO8,
RNO9, RNO11 and RNO1354,61 were confirmed by transfer from
SHR into the SS strain (Table 2).52,63,64 The RNO2-QTL
demonstrated a major influence on proteinuria/albuminuria and
glomerular, tubular and interstitial phenotypes, and fibrosis without
influencing BP.61,65 Recombinant progeny testing refined this QTL on
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RNO2 to an interval, which spans 1.5 cM or B5.0Mb containing 64
known and/or predicted genes (Table 3).65 Among these candidates,
Sfrp2 (secreted frizzled-related protein 2) and Wnt2b (wingless-type
MMTV integration site family, member 2B) represent members of the
Wnt/b-catenin signalling pathway and are of interest because they are
involved in renal fibrosis. Moreover, Cct3 (chaperonin containing
TCP1, subunit 3) as another candidate in this interval seems to affect
cytoskeleton integrity (Table 3).65

In a reciprocal approach by transfer of SS-RNO8 or SS-RNO13
into the renal-protective SHR background, no significant changes
were observed in the derived congenic strains SHR.S(8) and
SHR.S(13) for proteinuria, glomerular, tubular or interstitial injury.52

SS and BN. In a complete chromosome, substitution panel invol-
ving SS and BN rat designate as SS(/Mwcwi)-xBN(/SSNHsdMcwi)
consomics each BN chromosome was transferred into the SS

Table 1 Renal disease QTL identified in genome-wide linkage analyses of genetic rat models

Cross Ref. Sex Treatment Week Phenotype QTL on RNO

BUF�WKY BC 19,24 m Normal diet 20–60 Proteinuria 13

FHH�ACI BC 77 m Normal diet 36 Proteinuria 1 (Rf-1), 1 (Rf-2)

36 Focal glomerulosclerosis 1 (Rf-1), 1 (Rf-2)

FHH�ACI F2 90 m Normal diet, Nx 14 Albuminuria 1 (Rf-1), 1 (Rf-2), 1 (Bpfh1), 3, 14, 17

14 Proteinuria 1 (Rf-1), 1 (Rf-2), 1 (Bpfh1), 3, 14, 17

14 Focal glomerulosclerosis 1 (Rf-1), 1 (Rf-2), 3, 14

FHH.1BN�FHH F2 91 f 0.4% NaCl 20 Renal blood flow autoregulation 1

GK�BN F2 114 m 1% NaCl 12, 24, 36, 48 Proteinuria 5, 7

48 Glomerulosclerosis 5, 7

48 Tubular sclerosis 5, 7

12, 24, 36, 48 Diabetes phenotypes 1, 4, 5, 10

LH� LN F2 124,126 m 0.3% NaCl 29–31 Creatinine levels 1, 2, 17

Kidney weight 1, 2, 3, 10, 17

MWF�Lew BC 141 m 0.2% NaCl 8, 14, 24 Albuminuria 1 (QTL1), 6 (QTL1), 12, 17

8, 14, 24 Proteinuria 1 (QTL1), 17

24 Superficial glomeruli X

24 Surface glomeruli 1, 13

MWF�SHR BC 142 m 0.2% NaCl 8, 14, 24 Albuminuria 1 (QTL2), 4, 6 (QTL2), 7, 8, 9, 15, X

8, 14, 24 Proteinuria 1 (QTL2), 6, 8, 15

24 Renal interstitial fibrosis 6

24 Superficial glomeruli 2, 6, 7, 9

24 Surface glomeruli 6

SBH�SBN F2 152 m 0.2% NaCl, Nx 12, 20, 24, 28, 32 Proteinuria 2, 3, 17, 20

SBH�SBN BC 150 m 0.2% NaCl, Nx 16 Proteinuria 2, 6, 9, 20

f 0.2% NaCl, Nx 20 Proteinuria 11, 13, 20

SHR-A3�SHR-B2 F2 168 m 0.2% NaCl 25 Immunoglobulin G subclasses associated

with albuminuria

6

SHRSP�SHR F2 176 m, f 1% NaCl 10 Renal vascular/parenchymal lesions 1 (QTL1þ2), 4, 10, 16

SS�SHR F2 53 m 0.2% NaCl 14 Albuminuria 2, 6 (QTL2), 8, 9, 10, 11, 19

SS�SHR BC 54 m 0.3% NaCl 8, 12, 16 Albuminuria 1, 2, 6 (QTL2), 8, 9, 10, 11, 13, 19

8, 12, 16 Proteinuria 1, 2, 6 (QTL1þ2), 8, 9, 10, 11, 19

16 Kidney lesion grade 2, 6, 8, 11, 13, 19

SS�SHR F2 61 m 2% NaCl 8, 12, 16 Albuminuria 1, 6 (QTL2), 8, 9, 13

8, 12, 16 Proteinuria 1, 6 (QTL2), 8, 9

16 Kidney lesion grade 1, 2, 8, 9, 13

SS�SHR F2 48 m 4% NaCl 14 Albuminuria 6 (QTL1þ2), 8, 9, 19

14 Proteinuria 3, 6 (QTL1), 19

14 Renal interstitial fibrosis 20

14 Tubulointerstitial inflammation grading 3

14 Microangiopathy 5

SS�BN F2 62 f 0.4/0.1/8% NaCl 12 Proteinuria 2, 11

12 Focal glomerulosclerosis 2

12 Glomerular injury 11

Abbreviations: ACI, August�Copenhagen Irish; BC, backcross; BN, Brown Norway; BUF, Buffalo; f, females; FHH, Fawn-hooded hypertensive; GK, Goto-Kakizaki; Lew, Lewis; LH, Lyon
hypertensive; LN, Lyon normotensive; m, males; MWF, Munich Wistar Frömter; QTL, quantitative trait loci; Ref., reference; RNO, rat chromosome; SBH, Sabra hypertension prone; SBN, Sabra
hypertension resistant; SHR, spontaneously hypertensive rat; SHRSP, spontaneously hypertensive rat, stroke prone; SS, Dahl salt-sensitive; WKY, Wistar-Kyoto.
Statistical thresholds for significance in linkage analysis were used as recommended by Lander and Kruglyak205 and maximal logarithm of odds (LOD) score values in BC or F2 populations are
given in bold when indicative for significant linkage.
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Table 2 Confirmed renal disease QTL of genetic rat models by consomic and/or congenic studies

Cross/reference consomics or congenics Treatment Phenotype

Confirmed QTL

on RNO

FHH�ACI77,90–96,98,101,103,104

ACI.FHH-(D1Rat74-D1Rat90) or Rf-1A 8.0% NaCl/ Proteinuria 1, 3

ACI.FHH-(D1Rat298-D1Rat90) or Rf-1A L-NAME/ Albuminuria 1, 3

ACI.FHH-D1Mit34/Rat156 or ACI.FHH-Rf1B Nx Glomerular damage 1, 3

ACI.FHH-(D1Rat324-D1Rat156) or Rf-1B Autoregulation of renal blood flow 1

ACI.FHH-(D1Rat384-D1Rat156) or Rf-1B Susceptibility to renal failure 1þ3, 1þ14

ACI.FHH-(D3Wox2-D3Rat59) or Rf-3

Rf-3_b (D3Got102-D3Got121)

ACI.FHH-(D1Rat475-D1Rat90)/(D3Rat84-D3Rat59)

or Rf-1Aþ3

ACI.FHH-(D1Mit18-D1Rat90)/(D14Mit11-D14Rat33/D14Rat65-

D14Rat90) or ACI.FHH-Rf-1þ4

ACI.FHH-(D1Mit18-D1Rat90)/(D14Rat98-D14Hmgc18)/Mcwi or

Rf-1aþ4_a

ACI.FHH-(D1Mit18-D1Rat90)/(D3Rat84-D3Rat59)/(D14Mit11-

D14Rat33/D14Rat65-D14Rat90) or Rf-1 þ 3þ4

ACI.FHH-(D1Mit18-D1Rat90)/(D3Rat6-D3Got149)/(D14Mit11-

D14Rat33/D14Rat65-D14Rat90) or Rf-1þ3þ4_a

ACI.FHH-(D1Mit18-D1Rat90)/(D3Got102-D3Got149)/

(D14Mit11-D14Rat33/D14Rat65-D14Rat90) or Rf-1þ3þ4_b

ACI.FHH-(D1Mit18-D1Mit8)/(D14Mit11-D14Hmgc14b/

D14Rat65-D14Rat90) or Rf-1Bþ1

FHH�BN66,102,103,104

FHH.1BNARþ Normal salt or 8.0%

NaCl L-NAME

Albuminuria 1, 15, 16, 18

FHH-1BN Proteinuria 1, 14, 15, 16

FHH-15BN Glomerular injury 1, 15, 16, 18

FHH-16BN Blocked medullary tubules (males) 15, 16

FHH-18BN Autoregulation of renal blood flow 1

FHH-20BN

FHH.BN-Rab38

LH�BN127

LH-13BN 0.3% NaCl Proteinuria (may depend on higher BP) 13

BN-13LH

MWF�SHR138–140,142–144

MWF-6SHR 0.2% NaCl Albuminuria 6, 8, 6þ8

MWF-8SHR Total nephron number 6, 6þ8

MWF-6SHR8SHR Renal interstitial fibrosis 6, 8 (females)

SHR-6MWF Glomerulosclerosis 6, 6þ8

SHR-8MWF Tubulointerstitial damage 6, 8

Podocyte alterations 6, 8, 6þ8

SBH�SBN150,152

SBH.1SBN Normal diet Proteinuria 1, 2, 17, 20

SBH.2SBN

SBH.17SBN

SBH.20SBN

SBH.XSBN

SHR�BN170

SHR.BN-D1Mit3/Igf2 1%NaCl/0.2% KCl,

DOCA

Renal damage such as proteinuria

and glomerular injury

1

SHRSP�SHR176,185

SHRSPwch1.0 1% NaCl,

stroke-permissive diet

Albuminuria 1

SHRSP.WKY-(D1Rat44-D1Arb21) or SHRSPwch1.5 Glomerulosclerosis 1

SHRSP.WKY-(Apbb1-D1Arb21) or SHRSPwch1.8

SHRSP.WKY-(D1Mgh5-D1Rat44) or SHRSPwch1.9

SHRSP.WKY-(D1Mgh5-D1Wox29) or SHRSPwch1.11
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background, respectively.66 For consomic studies, the animals were
fed diets with different salt content, for example, normal (0.4%) or
high-salt diets (4% or 8% NaCl) and protein compositions, and were
also additionally exposed to hypoxia.55,67,68 Collectively, it was
demonstrated in male rats that proteinuria and/or albuminuria was
significantly attenuated by transfer of RNO1, RNO5-8, RNO11,
RNO13, RNO16, RNO18 and RNOY from BN into SS
(Table 2).55,67,68 Interestingly, in corresponding females intro-
gression of each BN chromosome resulted in a significant reduction
of proteinuria and/or albuminuria with the exception of RNO3,
RNO15, RNO17 and RNOX (Table 2).55,68 A sexual dimorphism with
higher proteinuria levels in male compared with female SS rats was
reported in another study and related to a functional effect of RNOX
on proteinuria although this has not been confirmed and
documented, for example, by data obtained in consomic strains.67

Structural glomerular injury was significantly influenced by RNO1 in
male rats (Table 2).68

In addition, transfer of BN-RNO13 (containing the renin gene)
into consomic SS.BN13 ameliorated proteinuria levels, medullary
interstitial fibrosis, glomerulosclerosis and tubular necrosis in
response to high salt (4% NaCl; Table 2).69

Subsequently, in microarray analysis of kidneys from SS and
SS.BN13 sequential changes in gene expression were uncovered for
many differentially expressed genes on RNO13 (Table 3).70 The
microRNA miR-29b was found to affect different collagens and
genes related to the extracellular matrix and thus might have a
pivotal role in renal medullary injury of SS rats (Table 3).71

Importantly, consomic and congenic strains derived from RNO13
shared not inevitably the same pathways identified in salt-sensitive
hypertension and renal damage of the parental SS strain.72 In further
subcongenic breeding experiments, the QTL linked to proteinuria
development on RNO13 was narrowed to a 1.9-Mb region, which
however also affected BP (Table 3).73

FAWN-HOODED RAT

Strain breeding
The fawn-hooded rat model was selected from a cross of German-
brown and white Lashley rats16 and transferred early in 1970 by
Tobach of the American Museum of Natural History as a closed
outbred colony to Europe74 and afterwards to Unilever Research
Laboratories, Vlaardinger, The Netherlands.16 Until the mid 1980s,
hypertensive fawn-hooded rats were inbred and selected for high BP
denoted as fawn-hooded hypertensive (FHH) or normotension (FHL,
fawn-hooded low blood pressure).75,76

The August�Copenhagen (ACI, AxC9935) rat model is the
established original reference strain for FHH and show resistance to
hypertension, proteinuria and renal damage.77,78

Strain characteristics
The FHH strain is homozygous recessive for three coat color genes:
red-eyed dilution (r), nonagouti (a) and hooded (h).79,80 FHH develops
hematuria81 and a platelet storage-pool disease leading to a mild
bleeding disorder,74,82 which is based on a single-gene defect
on RNO1 containing the r gene.80 In addition, aging animals
develop spontaneously systemic and glomerular hypertension
and overt malignant nephrosclerosis with renal lesions such as
FSGS,83–87 podocyte injury84,86 and progressive proteinuria and
albuminuria.77,81,88 Moreover, a sexual dimorphism with more
aggravated hypertension and proteinuria in males compared with
females is observed.89 Overall, FHH have a shortened life
expectancy.84

In contrast, FHL rats develop also chronic renal failure but less
severe hypertension, only mild proteinuria and FSGS.75

Cosegregation and linkage analyses
Two linkage analyses in an (FHH/EUR�ACI)F1� FHH backcross
under normal conditions and in an (FHH/EUR�ACI/NCrEur)

Table 2 (Continued )

Cross/reference consomics or congenics Treatment Phenotype

Confirmed QTL

on RNO

SS�SHR52,54,61,63–65

S.SHR(2) 0.3% or 2% NaCl Proteinuria/albuminuria 2, 6 (QTL2), 8, 9, 13

S.SHR(6) Glomerular injury 2, 8

S.SHR(8) Tubular and interstitial injury 2, 8, 13

S.SHR(9)�4A Fibrosis 2, 8, 13

S.SHR(9)�2B

S.SHR(11)

S.SHR(13)

SS�SHR48,49,53

SS-19SHR 0.2% or Proteinuria 19

4% NaCl Albuminuria 19

SS�BN55,62,66–69,73,102

SS-�BN 0.4% or

4% or

8% NaCl

Proteinuria/albuminuria (m) 1, 5–8, 11, 13, 16, 18, Y

Proteinuria/albuminuria (w) 1–2, 4–14, 16, 18–20

Structural glomerular injury 1

Medullary interstitial fibrosis 13

Tubular necrosis 13

Glomerulosclerosis 13

Abbreviations: ACI, August�Copenhagen Irish; AR, autoregulation; BP, blood pressure; BN, Brown Norway; BUF, Buffalo; DOCA, deoxycorticosterone acetate; f, female; FHH, Fawn-hooded
hypertensive; LH, Lyon hypertensive; L-NAME, No-nitro-L-arginine methyl ester; m, males; MWF, Munich Wistar Frömter; QTL, quantitative trait loci; RNO, rat chromosome; SBH, Sabra
hypertension prone; SBN, Sabra hypertension resistant; SHR, spontaneously hypertensive rat; SHRSP, spontaneously hypertensive rat, stroke prone; SS, Dahl salt-sensitive; WKY, Wistar-Kyoto.
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Table 3 QTL fine mapping and candidate genes associated with renal disease of rat strains

Strain/reference phenotype QTL fine map on RNO Size

Candidate

genes Gene alteration and/or pathophysiological function

BUF19,25,206

Proteinuria and FSGS 13: D13Got8-

RN97596

— Arp3 L111F substitution in Arp3; actin assembly abnormalities in podocytes and

influence on immunological processes of macrophages and Th2 lymphocytes.

FHH91,97,98,103–105

Autoregulation of renal

blood flow and renal

disease

1: D1Rat20G17B-6-

D1Rat888, Rf-1

4.3 Mb Ins1

Olr385

Xpnpep1

Mxi1

Add3

Smndc1

DUSP-5

Smc3

Rbm20

Pdcd4

Shoc2

Glomerular hyperfiltration and rise in glomerular capillary pressure.

Proteinuria and FSGS 1: 143.4–144.9Mb,

Rf-2

1.5 Mb Rab38 Protein null mutation (G-A) in the translation initiation start codon of Rab38.

May modulate tubular processing of filtered albumin and proteins without

affecting the glomerular filtration barrier leading to proteinuria.

Also detected in a related FHH rat strain and several strains derived from the

Long Evans rat.

Albuminuria and

glomerulosclerosis

3: D3Got102-

D3Got121,

Rf-3

7.1 Mb 13 genes,

i.e., Bcl2l1

Rem1

Bcl2l1 may be involved in renal tubular damage.

Glomerular permeability

and glomerulosclerosis

14: D14Rat98-

D14Hmgc18

4.1 Mb — One non-synonymous, intergenic, intronic, or untranslated variant(s) between

ACI and FHH in this region leading to an increase in glomerular permeability and

glomerulosclerosis.

MWF143,144

Podocyte alterations 8: No fine mapping

reported

— — Locus on RNO8 modulates podoplanin loss in podocytes.

SBH150

Proteinuria 20: No fine mapping

reported

— Tubb5 (m, f)

C2 (m, f)

Ubd (m, f)

Psmb8 (m, f)

Potential candidates identified by combined expression and positional candidate

analysis.

SHR170

Hypertension-induced

renal damage

1: D1Mit1-Igf2

(D1Mgh22), overlap

with Rf-2, Bpfh-1,

possibly Rf-1

22cM — —

SS65,67,70–73,207

Proteinuria/albuminuria

Glomerular, tubular and

interstitial phenotypes

2: D2Arb11-Tpm3 1.5 cM,

B5 Mb

64 genes,

i.e., Sfrp2

Wnt2b

Cct3

Identification of the Wnt/b-catenin signalling pathway, in which Sfrp2 and Wnt2b

possibly lead to a modified fibrotic response primarily to renal damage in renal

fibrosis. Cct3 may affect cytoskeleton integrity.

Proteinuria, medullary

interstitial fibrosis,

glomerulosclerosis and

tubular necrosis

13: No fine mapping

reported

— Gene list (see

Liang et al.70)

miR-29b

Several candidate pathways described by Liang et al.70 with potential influence

on collagens and extracellular matrix.

Proteinuria 13: D13Hmgc37-

D13Got22

1.9 Mb Nap5 (8

SNPs)

LOC680596

LOC680652

Mgat5

Tmem163

LOC501853

Between SS and BN rats, eight SNPs could be identified in Nap5, of which five

SNPs are synonymous.
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F2 cross subjected to unilateral nephrectomy (Nx) were performed in
the FHH rat (Table 1).77,90 The authors identified in both linkage
studies overall five QTLs termed as Rf (renal failure) 1–5 locus,
respectively; they are linked to renal damage, that is, proteinuria,
albuminuria and/or focal glomerulosclerosis. Rf-1 and Rf-2 that are
distinct from each other were mapped on RNO1, Rf-3 on RNO3, Rf-4
on RNO14 and Rf-5 on RNO17 (Tables 1 and 5).77,90 All Rf loci
showed no significant effect on systemic BP, except RNO2.77 An
independent QTL on RNO1 (Bpfh-1, blood pressure in fawn-hooded-
1) on RNO177 was also significantly linked to albuminuria and
proteinuria (Tables 1 and 5).90 Interestingly, in response to No-nitro-
L-arginine methyl ester (L-NAME) the Rf-1 locus was also linked to
functional and structural renal damage in FHL rats ascertained by
genotype comparison between FHH and FHL.78

Lopez and associates demonstrated in a third linkage analysis in a
female F2 population derived from consomic FHH-1BN/Mcwi and
FHH/EurMcwi66 a QTL on RNO1 showing a dominant mode of
inheritance for impairment of renal blood flow autoregulation in
FHH (Tables 1 and 5).90,91 This QTL mapped to a 12.8-Mb region
inside the Rf-1 region (Table 3).90,91

Consomic/congenic studies
For QTL confirmation and QTL fine mapping, different consomic
and congenic studies were generated between FHH and ACI
or FHH and BN or for the genetic characterization of kidney injury
in FHH.

FHH and ACI. Several congenic strains were established for QTL
fine mapping analysis by transfer of different segments of FHH/EUR-
Rf loci into the resistant ACI background (Table 2). Thus, in this
experimental setting the occurrence of genetic susceptibility to kidney
damage in ACI by transfer of Rf loci from FHH was tested. To
enhance renal damage susceptibility, that is, albuminuria/proteinuria
and focal glomerulosclerosis, in the resistant ACI background,
however, animals were subjected to either unilateral nephrectomy
(Nx) or NO inhibition by treatment with L-NAME or a combination
of both procedures.92–96 By using this protocol, different segments of
the FHH-Rf-1 region in five subcongenic ACI strains directly
aggravated indeed the susceptibility of kidney damage and the
autoregulation in congenic rats (Table 2).92–96 Thus, the Rf-1 locus
contains at least one gene that might influence the susceptibility to

progressive renal failure in the presence of higher BP values due to
NO inhibition or Nx.92

Van Dijk et al.93,95,96 demonstrated in a congenic Rf-3 strain a
slightly increased susceptibility to renal damage (Table 2), while single
Rf-4 and Rf-5 congenics appeared normal in comparison with ACI,
respectively.
In double-congenic studies, it was demonstrated that the

susceptibility to renal damage in FHH was influenced by different
synergistic gene–gene interactions.90 Interestingly, it could be shown
that in the FHH rat the Rf-1 locus has marked additive effects on
other Rf loci, that is, on Rf-3 and Rf-4 (Table 2),90,93,95 while the
interaction of Rf-1 with Rf-5 exhibited no significant effect on renal
damage.96

To further narrow the Rf-3 locus, two triple-congenic strains (Rf-
1þ 3þ 4_a and Rf-1þ 3þ 4_b) were generated, which include
different chromosomal segments of the Rf-1, Rf-3 and Rf-4 loci
(Table 2). Subsequently, comparative genomics of the triple-congenic
strains refined the Rf-3 region denoted as Rf-3_b to 7.1Mb and 13
known or predicted genes, which directly influence renal impairment,
that is, albuminuria, glomerulosclerosis and mean arterial pressure
(Table 3). In the Rf-3_b region, pyrosequencing revealed several genes
with non-synonomous amino-acid changes (Table 3).97

For fine mapping of the Rf-4 locus, which spanned originally
61.9Mb, only a 4.1-Mb segment of this FHH locus was introgressed
in a minimal congenic Rf-1aþ 4_a line of the ACI background
(Table 2).98 The authors stated that one non-synonymous, intergenic,
intronic or untranslated variant(s) between ACI and FHH in the
Rf-4_a segment may cause a loss of Nrf2 (Kelch-like ECH-associated
protein 1) transcription factor binding site, which may lead to an
increase in glomerular permeability to albumin and glomerulo-
sclerosis without a BP influence in FHH rats (Table 3).98 These
findings seem to be of further interest, because the 4.1-Mb interval
shows homology to human loci and QTL,99,100 which were linked to
renal function.98

FHH and BN. Mattson et al. followed the reciprocal approach and
generated a full panel of consomic strains in which each autosome or
sex chromosome of FHH/EurMcwi66 was replaced by the
corresponding BN/SSNHsdMcw chromosome. Male and female
animals were subjected to NO inhibition by treatment with
L-NAME and high-salt intake (8% NaCl) to aggravate renal damage

Table 3 (Continued )

Strain/reference phenotype QTL fine map on RNO Size

Candidate

genes Gene alteration and/or pathophysiological function

Nephrotic-range

proteinuria

18: No fine mapping

reported

— GATA-6 Apoptosis

SHRSP170,185

Albuminuria and

glomerulosclerosis

1: D1Mgh5-D1Arb21,

including Rf-2

109 Mb — —

Abbreviations: Add3, adducin 3 (gamma); Arp3, actin-related protein 3; Bcl2l1, Bcl2-like 1; BUF, Buffalo; C2, Complement component 2; Cct3, chaperonin containing TCP1, subunit 3; DUSP5,
dual specificity phosphatase 5; f, females; FHH, Fawn-hooded hypertensive; Ins1, insulin 1; LOC501853, similar to RAB3 GTPase-activating protein; LOC680596, hypothetical protein
LOC680596; LOC680652, hypothetical protein LOC680652; m, males; miR, microRNA; Mgat5, mannosyl (alpha-1,6-)-glycoprotein beta-1,6-N-acetyl-glucosaminyltransferase; Mxi1, MAX
interactor 1; MWF, Munich Wistar Frömter; Nap5, Nck-associated protein 5; Olr385, olfactory receptor 385; Pdcd4, programmed cell death 4; Psmb8, Proteasome (prosome, macropain) subunit,
beta type 8 (Large multifunctional peptidase 7); QTL, quantitative trait loci; Rab38, RAB38, member RAS oncogene family; Rbm20, RNA binding motif protein 20; Rem1, RAS (RAD and GEM)-
like GTP-binding 1; SBH, Sabra hypertension prone; Sfrp2, secreted frizzled-related protein 2; Shoc2, soc-2 (suppressor of clear) homolog (C. elegans); SHR, spontaneous hypertensive rat;
SHRSP, spontaneously hypertensive rat, stroke prone; SNP, single-nucletide polymorphism; Smc3, structural maintenance of chromosomes 3; Smndc1, survival motor neuron domain containing 1;
SS, Dahl salt-sensitive; Tmem163, transmembrane protein 163; Tubb5, Tubulin, beta 5 class I; Ubd, Ubiquitin D; Wnt2b, wingless-type MMTV integration site family, member 2B; Xpnpep1,
X-prolyl aminopeptidase (aminopeptidase P) 1, soluble.

QTL mapping in rat
A Schulz and R Kreutz

681

Hypertension Research



susceptibility, that is, albuminuria/proteinuria and structural kidney
damage, in the FHH background. The authors demonstrated that
renal disease phenotypes including proteinuria, albuminuria or
glomerular injury are influenced by RNO1, RNO14, RNO15,
RNO16 or RNO18 (Table 2).101,102

Further studies using BN as the reference strain for FHH generated
new insights into the role of Rf-1. Thus, in the congenic
FHH.1BNARþ strain autoregulation of renal blood flow was

normalized and a decrease in the progression of renal disease was
observed (Table 2).91,103 It was suggested that before hypertension
occurred an impaired autoregulation in FHH may lead to early onset
of renal disease such as glomerulosclerosis and renal interstitial
fibrosis.103

The genetic basis of albuminuria linked to the Rf-2 on RNO1 was
elucidated by identifying Rab38 (RAB38, member RAS oncogene
family) as a potential candidate gene within this locus.104 An

Table 4.1 Distribution of QTL associated with renal (disease) phenotypes in the rat genome. A letter code for each cross or strain combination

(specified in Legend Table 4.2) and corresponding references were listed below each QTL entry
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interesting study by Rangel-Filho et al. reported a protein null
mutation (G-A) in the translation initiation start codon of Rab38
in FHH (Table 3).104,105 The exchange of Rf-2 including Rab38 and
seven other genes led to the restoration of Rab38 protein expression
and a significant reduction of increased albuminuria and proteinuria
in congenic FHH.BN-Rab38 compared with FHH (Table 3).104 In
FHH, Rab38 may modulate the tubular processing of filtered proteins
without affecting the glomerular filtration barrier leading to
proteinuria.104

GOTO-KAKIZAKI RAT

Strain breeding
In 1973, the Goto-Kakizaki (GK) rat model was selected by inbreeding
from a non-diabetic Wistar rat colony in Sendai, Japan.106–109 GK rats
demonstrate glucose intolerance upon oral glucose tolerance tests,
and a colony was transferred to Europe in 1989.110

Strain characteristics
The GK rats are not obese and develop in both sexes spontaneously
with early onset glucose intolerance and mild hyperglycemia, and thus
non-insulin-dependent diabetes mellitus.108,110–114 In addition, other
phenotype such as salt-sensitive hypertension,115 hypertriglyceridemia,
endothelial dysfunction,115 microangiopathy and macroangiopathy
were observed in GK.110 Older animals develop significant renal
damage including glomerular hypertrophy, thickening of the
glomerular basement membrane, proliferation of mesangial cells,
glomerulosclerosis, tubulointerstitial fibrosis and inflammatory cell
infiltration.113,116–118 Moreover, some substrains of GK develop
increased proteinuria at 24 months of age,118 which might be
affected by hypertension.119 Furthermore, GK rats show early
development of neuropathy and retinopathy late in life.110

Cosegregation and linkage analyses
Nobrega et al.114 identified in a genome-wide analysis of a salt fed
(1% NaCl) GKFL�BN/Mcwi F2 population four loci on RNO1,
RNO4, RNO5 and RNO10 linked to early diabetes phenotypes
(Tables 1 and 5). Furthermore, from two proteinuria QTLs identified
on RNO5 and RNO7, only the QTL on RNO5 colocalized with a
diabetes QTL (Tables 1 and 5). Both proteinuria QTLs were also
linked to glomerulosclerosis and tubular sclerosis.114 These data
indicate that diabetes and proteinuria development in the GK rat
model were affected by different genetic mechanisms.114 Further

Table 4.1 (Continued)

K, QTL identified in linkage analysis (letter code for cross in normal font) or QTL confirmed by consomic/congenic studies (letter code for strains in bold); QTL, quantitative trait loci; RNO, rat
chromosome.

Table 4.2 Legend for Table 4.1

Label Cross/strains References

A BUF�WKY 19

B FHH�ACI 77, 90, 92, 93, 94, 95, 96, 98

C FHH�BN 101, 102, 103, 104

D FHH.1BN� FHH 91

E GK�BN 114

F LH�BN 127

G MWF�Lew 141

H MWF�SHR 138, 139, 140, 142, 143, 144

I SBH�SBN 150, 151, 152

J SHR-A3�SHR-B2 168

K SHR�BN 170

L SHRSP�SHR 176

M SHRSP�WKY 185

N SS�SHR 48, 49, 52, 53, 54, 61, 63, 64, 65

O SS�BN 55, 62, 67, 68, 69, 73

Abbreviations: ACI, August�Copenhagen Irish; BN, Brown Norway; BUF, Buffalo; FHH, Fawn-
hooded hypertensive; GK, Goto-Kakizaki; Lew, Lewis; LH, Lyon hypertensive; Lew, Lewis; MWF,
Munich Wistar Frömter; SBH, Sabra hypertension prone; SBN, Sabra hypertension resistant;
SHR, spontaneously hypertensive rat; SHRSP, spontaneously hypertensive rat, stroke prone;
SS, Dahl salt-sensitive; WKY, Wistar-Kyoto.
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Table 5 Chromosomal mapping and colocalizations of renal disease QTL identified in genome-wide linkage analyses of genetic rat models

QTL on

RNO QTL intervala or peakmarkerb Start position Stop position Phenotype Cross Sex Ref.

1 D1Rat238 3 897 423 — Renal vascular/parenchymal lesions SHRSP�SHR F2 m, f 176

1 (Rf-2) D1Mit20–D1Mit4c 94356 876

(or 94582 077)

160 000 000d Focal glomerulosclerosis FHH�ACI BC m 77

1 (Rf-2) D1Mit20–D1Mgh26 94356 876

(or 94582 077)

176 616 212 Focal glomerulosclerosis FHH�ACI F2 m 90

1 Kallikrein locus 94692 856 — Renal vascular/parenchymal lesions SHRSP�SHR F2 m, f 176

1 (QTL1) D1Rat31–D1Rat216 107 734 739 185 923 619 Albuminuria MWF�Lew BC m 141

1 (Bpfh1) D1Wox6–D1Mgh26 131 956 600 176 616 212 Albuminuria FHH�ACI F2 m 90

1 (Rf-2) D1Wox6–D1Mgh26 131 956 600 176 616 212 Albuminuria FHH�ACI F2 m 90

1 (Rf-2) D1Wox6–D1Mgh26 131 956 600 176 616 212 Proteinuria FHH�ACI F2 m 90

1 (Bpfh1) D1Wox6–D1Mgh26 131 956 600 176 616 212 Proteinuria FHH�ACI F2 m 90

1 (QTL 1) D1Rat38–D1Rat236 133 566 681 155 183 662 Proteinuria MWF�Lew BC m 141

1 D1Rat43c 138 300 000d — Creatinine levels LH� LN F2 m 126

1 (Rf-2) Rab38 144 783 919 144 864 573 Proteinuria FHH�ACI m 104,105

1 D1Rat278 168 930 690 168 930 831 Kidney weight LH� LN F2 m 126

1 D1Mco29–D1Rat86 186 471 762 259 173 488 Albuminuria SS�SHR BC m 54

1 D1Mco29–D1Rat86 186 471 762 259 173 488 Albuminuria SS�SHR F2 m 61

1 D1Mco29–D1Rat86 186 471 762 259 173 488 Kidney lesion grade SS�SHR F2 m 61

1 D1Mco29–D1Rat86 186 471 762 259 173 488 Proteinuria SS�SHR F2 m 61

1 D1Rat287–D1Rat89 190 114 248 265 343 617 Renal blood flow autoregulation FHH.1BN�FHH F2 f 91

1 D1Rat188 206 567 644 — Kidney weight LH� LN F2 m 126

1 (Rf-1) D1Mgh11c (D1Rat383e)–D1Mit8 209 205 489 257 363 728 Albuminuria FHH�ACI F2 m 90

1 (Rf-1) D1Mgh11c (D1Rat383e)–D1Mit8 209 205 489 257 363 728 Focal glomerulosclerosis FHH�ACI F2 m 90

1 (QTL2) D1Rat71–D1Rat90 216 663 010 267 111 087 Albuminuria MWF�SHR BC m 142

1 (QTL 2) D1Rat71–D1Rat90 216 663 010 267 111 087 Proteinuria MWF�SHR BC m 142

1 D1Uia5–D1Rat86 219 804 772 259 173 488 Proteinuria SS�SHR BC m 54

1 D1Mit18 224 426 267 — Kidney weight LH� LN F2 m 126

1 (Rf-1) D1Mit6c (D1Mit18e)–D1Mit8 224 426 267 257 363 728 Focal glomerulosclerosis FHH�ACI BC m 77

1 (Rf-1) D1Mit6c (D1Mit18e)–D1Mit8 224 426 267 257 363 728 Proteinuria FHH�ACI BC m 77

1 D1Rat75–D1Mgh13 235 098 674 252 340 527 Diabetes phenotypes GK�BN F2 m 114

1 (Rf-1) D1Rat119–D1Mit8 242 586 139 257 363 728 Proteinuria FHH�ACI F2 m 90

1 D1Rat151c 250 670 000d — Surface glomeruli MWF�Lew BC m 141

1 (Rf-1) Ins1 258 001 134 258 001 688 May cause renal function FHH�BN m 103

1 (Rf-1) Olr385 258 055 709 258 064 088 May cause renal function FHH�BN m 103

1 (Rf-1) Xpnpep1 259 089 652 259 139 681 May cause renal function FHH�BN m 103

1 (Rf-1) Mxi1 259 219 584 259 259 979 May cause renal function FHH�BN m 103

1 (Rf-1) Add3 259 347 673 259 455 407 May cause renal function FHH�BN m 103

1 (Rf-1) Smndc1 259 596 813 259 607 340 May cause renal function FHH�BN m 103

1 (Rf-1) DUSP5 259 754 234 259 767 645 May cause renal function FHH�BN m 103

1 (Rf-1) Smc3 259 822 480 259 865 602 May cause renal function FHH�BN m 103

1 (Rf-1) Rbm20 259 905 545 260 144 190 May cause renal function FHH�BN m 103

1 (Rf-1) Pdcd4 260 183 648 260 202 032 May cause renal function FHH�BN m 103

1 (Rf-1) Shoc2 260 255 253 260 273 170 May cause renal function FHH�BN m 103

2 D2Rat194–D2Rat276 29237 361 83276 916 Proteinuria SS�BN F2 f 62

2 D2Rat14c 41000 000d — Superficial glomeruli MWF�SHR BC m 142

2 D2Rat32c (D2Mit5e)–D2Rat54 66680 022 210 012 267 Proteinuria SBH�SBN F2 m 152

2 D2Mco18–D2Rat61 79796 834 227 150 249 Kidney lesion grade SS�SHR F2 m 61

2 D2Mco18–D2Rat61 79796 834 227 150 249 Proteinuria SS�SHR BC m 54

2 D2Rat30–D2Rat70 116 504 241 254 933 362 Proteinuria SBH�SBN BC m 150

2 D2Rat217–D2Rat82 121 545 311 214 633 868 Albuminuria SS�SHR BC m 54

2 D2Rat217–D2Rat61 121 545 311 227 150 249 Kidney lesion grade SS�SHR BC m 54

2 D2Rat93 133 459 410 — Kidney weight LH� LN F2 m 126

2 D2Rat147–D2Mgh12 138 700 980 210 636 169 Focal glomerulosclerosis SS�BN F2 f 62

2 D2Rat221 145 754 797 — Creatinine levels LH� LN F2 m 126

2 D2Rat36c–D2Rat57 163 100 000d 218 568 266 Albuminuria SS�SHR F2 m 53

2 Sfrp2 175 479 320 175 486 865 May lead to a modified fibrotic response SS�SHR m 65

2 Cct3 180 381 044 180 434 152 primarily to renal damage in renal SS�SHR m 65

2 Wnt2b 200 218 630 200 233 002 fibrosis SS�SHR m 65
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Table 5 (Continued )

QTL on

RNO QTL intervala or peakmarkerb Start position Stop position Phenotype Cross Sex Ref.

3 D3Mgh9–D3Rat117 4 010 231 25 297 184 Proteinuria SS�SHR F2 m 48

3 D3Mgh9 4 010 231 — Tubulointerstitial inflammation

grading

SS�SHR F2 m 48

3 D3Arb8 60 697 027 — Kidney weight LH�LN F2 m 126

3 D3Rat31–D3Mgh1 76 620 759 163 778 754 Proteinuria SBH�SBN F2 m 152

3 (Rf-3) D3Mit4 131 188 559 — Albuminuria FHH�ACI F2 m 90

3 (Rf-3) D3Mit4 131 188 559 — Focal glomerulosclerosis FHH�ACI F2 m 90

3 (Rf-3) D3Mit4 131 188 559 — Proteinuria FHH�ACI F2 m 90

3 (Rf-3) Rem1 142 976 928 142 985 368 May cause renal function FHH�ACI m 97

3 (Rf-3) Bcl2l1 143 129 087 143 180 199 May cause renal function FHH�ACI m 97

4 D4Rat1–D4Rat22 6 690 730 60 974 511 Diabetes phenotypes GK�BN F2 m 114

4 D4Rat95 131 141 780 — Albuminuria MWF�SHR BC m 142

4 D4Mgh7c 150 000 000d — Renal vascular/parenchymal lesions SHRSP�SHR F2 m, f 176

5 D5Mgh2–D5Rat26 17 517 135 119 333 217 Diabetes phenotypes GK�BN F2 m 114

5 D5Mit10 57 974 568 — Microangiopathy SS�SHR F2 m 48

5 D5Rat13 76 605 418 — Proteinuria GK�BN F2 m 114

5 D5Rat13 76 605 418 — Glomerulosclerosis GK�BN F2 m 114

5 D5Rat13 76 605 418 — Tubular sclerosis GK�BN F2 m 114

6 (QTL1) D6Rat80–D6Mit9 1 301 953 34 039 304 Albuminuria SS�SHR F2 m 48

6 (QTL1) D6Rat46–D6Rat84c (D6Uia3e) 13 286 616 46 050 011 Proteinuria SS�SHR BC m 54

6 (QTL1) D6Rat108–D6Mit9 16 302 146 34 039 461 Proteinuria SS�SHR F2 m 48

6 D6Rat135–D6Rat165 49 087 616 93 819 252 Proteinuria SBH�SBN BC m 150

6 (QTL1) D6Rat95–D6Rat12 54 887 959 114 032 160 Albuminuria MWF� Lew BC m 141

6 (QTL2) D6Rat106–D6Rat6 68 036 230 123 455 207 Albuminuria MWF�SHR BC m 142

6 (QTL2) D6Rat106–D6Rat6 68 036 230 123 455 207 Proteinuria MWF�SHR BC m 142

6 (QTL2) D6Mit3–D6Wox13 75 049 528 136 452 267 Albuminuria SS�SHR BC m 54

6 (QTL2) D6Mit3–D6Wox13 75 049 528 136 452 267 Albuminuria SS�SHR F2 m 61

6 (QTL2) D6Mit3–D6Wox13 75 049 528 136 452 267 Proteinuria SS�SHR BC m 54

6 (QTL2) D6Mit3–D6Wox13 75 049 528 136 452 267 Proteinuria SS�SHR F2 m 61

6 (QTL2) D6Rat104–D6Rat6 88 723 451 123 455 207 Albuminuria SS�SHR F2 m 53

6 D6Mit8 97 561 874 — Renal interstitial fibrosis MWF�SHR BC m 142

6 D6Mit8 97 561 874 — Superficial glomeruli MWF�SHR BC m 142

6 D6Uia5–D6Wox13 113 959 391 136 452 267 Kidney lesion grade SS�SHR BC m 54

6 D6Rat12 114 032 010 — Surface glomeruli MWF�SHR BC m 142

6 (QTL2) D6Rat6–D6Rat4 123 455 031 144 200 901 Albuminuria SS�SHR F2 m 48

6 Igh (LOC366772) locus 138 250 040 138 452 782 Immunoglobulin G subclasses

associated with albuminuria

SHR-A3�
SHR-B2 F2

m 168

7 D7Mgh6 96 648 985 — Glomerulosclerosis GK�BN F2 m 114

7 D7Mgh6 96 648 985 — Proteinuria GK�BN F2 m 114

7 D7Mgh6 96 648 985 — Tubular sclerosis GK�BN F2 m 114

7 D7Rat7 126 394 716 — Superficial glomeruli MWF�SHR BC m 142

7 D7Rat4 134 614 034 — Albuminuria MWF�SHR BC m 142

8 D8Rat53–D8Rat19 19 815 643 98 451 403 Albuminuria MWF�SHR BC m 142

8 D8Rat53–D8Rat20 19 815 643 94 870 319 Albuminuria SS�SHR F2 m 53

8 D8Rat53–D8Rat12 19 815 643 108 654 668 Proteinuria MWF�SHR BC m 142

8 D8Mit5–D8Rat130 32 203 395 98 986 263 Albuminuria SS�SHR BC m 54

8 D8Mit5–D8Rat130 32 203 395 98 986 263 Albuminuria SS�SHR F2 m 61

8 D8Mit5–D8Rat130 32 203 395 98 986 263 Kidney lesion grade SS�SHR F2 m 61

8 D8Mit5–D8Rat133 32 203 395 94 514 282 Proteinuria SS�SHR BC m 54

8 D8Mit5–D8Rat130 32 203 395 98 986 263 Proteinuria SS�SHR F2 m 61

8 D8Mit3–D8Rat133 45 291 675 94 514 282 Kidney lesion grade SS�SHR BC m 54

8 D8Rat39–D8Rat20 49 035 744 94 870 319 Albuminuria SS�SHR F2 m 48

9 (QTL2) D9Mgh5–D9Uia4 2 176 483 59 247 627 Albuminuria SS�SHR BC m 54

9 D9Rat29–D9Rat3 22 066 241 99 799 902 Albuminuria MWF�SHR BC m 142

9 D9Rat29–D9Rat71 22 066 241 106 234 825 Albuminuria SS�SHR F2 m 53

9 D9Rat29–D9Rat5 22 066 241 85 187 003 Albuminuria SS�SHR F2 m 48
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Table 5 (Continued )

QTL on

RNO QTL intervala or peakmarkerb Start position Stop position Phenotype Cross Sex Ref.

9 (QTL1) D9Rat26–D9Mco6 37313 134 105 580 061 Albuminuria SS�SHR BC m 54

9 D9Rat26–D9Rat97c (D9Mco6e) 37313 134 105 580 061 Proteinuria SS�SHR BC m 54

9 D9Uia4–D9Mco6 59247 347 105 580 061 Albuminuria SS�SHR F2 m 61

9 D9Uia4–D9Mco6 59247 347 105 580 061 Kidney lesion grade SS�SHR F2 m 61

9 D9Uia4–D9Mco6 59247 347 105 580 061 Proteinuria SS�SHR F2 m 61

9 D9Mit5–D9Rat109 75633 468 100 495 220 Proteinuria SBH�SBN BC m 150

9 D9Rat5 85186 878 — Superficial glomeruli MWF�SHR BC m 142

10 D10Mit6–D10Rat2c

(D10Rat134e)

14721 136 108 557 588 Diabetes phenotypes GK�BN F2 m 114

10 D10Rat43–D10Rat93 23428 128 81887 390 Albuminuria SS�SHR F2 m 53

10 D10Rat38–D10Mco66 31668 581 82143 815 Albuminuria SS�SHR BC m 54

10 D10Rat38–D10Mco66 31668 581 82143 815 Proteinuria SS�SHR BC m 54

10 D10Rat168 39032 756 — Kidney weight LH� LN F2 m 126

10 D10Rat21–D10Rat55

(Rbp4g locus)

83527 878 89167 279 Renal vascular/parenchymal lesions SHRSP�SHR F2 m, f 176

11 D11Rat31–D11Rat50 8 176 273 84841 212 Albuminuria SS�SHR BC m 54

11 D11Rat31–D11Rat50 8 176 273 84841 212 Proteinuria SS�SHR BC m 54

11 D11Rat20–D11Rat6 16670 275 45232 942 Albuminuria SS�SHR F2 m 53

11 D11Rat15–D11Rat38 29744 438 62045 696 Glomerular injury SS�BN F2 f 62

11 D11Rat71–D11Rat61c

(D11Rat62e)

41711 172 69538 204 Proteinuria SS�BN F2 f 62

11 D11Rat67–D11Rat50 45797 511 84841 212 Kidney lesion grade SS�SHR BC m 54

11 D11Rat7–D11Mgh2c

(D11Rat42e)

46499 942 79034 468 Proteinuria SBH�SBN BC f 150

12 D12Rat59–D12Mgh5 4 864 405

(or 155 314)

29130 304 Albuminuria MWF�Lew BC m 141

13 D13Rat1–D13Rat63 10555 731 80482 429 Albuminuria SS�SHR BC m 54

13 D13Rat1–D13Rat61 10555 731 68034 927 Albuminuria SS�SHR F2 m 61

13 D13Rat1–D13Rat61 10555 731 68034 927 Kidney lesion grade SS�SHR F2 m 61

13 D13Got8–Rn97596 37191 204 43542 044 Proteinuria BUF�WKY BC m 19

13 Arp3 37861 558 37904 589 May cause proteinuria BUF�WKY m 19

13 Nap5 38444 115 39275 959 May cause proteinuria SS�BN m 73

13 D13Mgh4–D13Mgh6 38489 802 63301 552 Proteinuria SBH�SBN f 150

13 LOC680596 39619 022 39620 110 May cause proteinuria SS�BN m 73

13 LOC680652 39764 191 39801 771 May cause proteinuria SS�BN m 73

13 Mgat5 39900 089 40135 002 May cause proteinuria SS�BN m 73

13 Tmem163 40144 073 40327 947 May cause proteinuria SS�BN m 73

13 LOC501853 40419 938 40432 494 May cause proteinuria SS�BN m 73

13 D13Rat62 60679 880 — Surface glomeruli MWF�Lew BC m 141

13 D13Mgh5–D13Mgh6 63301 413 101 704 301 Kidney lesion grade SS�SHR BC m 54

13 miR29b (rno-mir-29b-2) 110 967 520 110 967 600 May cause renal medullary injury SS�BN m 71

14 (Rf-4) D14Mgh7 11567 182 — Albuminuria FHH�ACI F2 m 90

14 (Rf-4) D14Mgh7 11567 182 — Proteinuria FHH�ACI F2 m 90

14 (Rf-4) Intergenic variant(s) 17821 228 — May cause a loss of Nrf2 transcription

factor binding site

FHH�ACI m 98

15 D15Rat66 21851 206 — Proteinuria MWF�SHR BC m 142

15 D15Rat102 97700 575 — Albuminuria MWF�SHR BC m 142

16 D16Mit2 4 304 397 — Renal vascular/parenchymal lesions SHRSP�SHR F2 m, f 176

17 D17Rat1–D17Rat67 5 583 327 35394 345 Proteinuria SBH�SBN F2 m 152

17 D17Rat2–D17Rat17 9 988 754 42344 987 Kidney weight LH� LN F2 m 126

17 D17Rat94c (D17Rat86e)–D17Rat58 18278 604 81039 648 Creatinine levels LH� LN F2 m 126

17 (Rf-5) D17Mit12 (Spl6 locus) 26570 057 71570 057 Albuminuria FHH�ACI F2 m 90

17 (Rf-5) D17Mit12 (Spl6 locus) 26570 057 71570 057 Proteinuria FHH�ACI F2 m 90

17 D17Rat33–D17Rat133 70864 165 91948 193 Albuminuria MWF�Lew BC m 141

17 D17Rat58 81039 506 — Proteinuria MWF�Lew BC m 141

19 D19Rat34–D19Uia1c (D19Wox1e) 2 265 038 46087 922 Albuminuria SS�SHR BC m 54

19 D19Rat86c (D19Rat34e)–D19Rat57 2 265 038 57234 989 Albuminuria SS�SHR F2 m 48
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analysis showed that diabetes in GK rats might be affected by chronic
inflammatory processes.120 More recently, renal and circulating Nsa2
(Nop-7-associated 2) levels were elevated in GK rats and associated
with the development of diabetic nephropathy in this strain.121

No consomic or congenic studies were reported.

LYON HYPERTENSIVE RAT

Strain breeding
The Lyon hypertensive (LH) rat strain was established in 1969 by
breeding of outbred Sprague-Dawley rats, which were selected for
high systolic BP.122 In addition, the control strains Lyon normotensive
(LN) and Lyon low blood pressure strain were generated.16,122,123

Strain characteristics
LH rats demonstrate mild spontaneous, salt-sensitive hypertension,
proteinuria and albuminuria and exhibit several features common to
the human metabolic syndrome including dyslipidemia, insulin
resistance and glucose intolerance.124–127

Cosegregation and linkage analyses
Two linkage analyses were performed by using a male LH� LN F2
population for BP, anthropometry, renal, metabolic and endocrine
phenotypes.124,126 For the renal phenotype, data QTL were
demonstrated for creatinine levels on RNO1, RNO2 and RNO17
and for kidney weight phenotypes on RNO1–RNO3, RNO10 and
RNO17, while no linkage for proteinuria, albuminuria or structural
kidney damages was reported (Table 1).126 In addition, several QTLs
linked to BP could be detected on RNO2, RNO13 and RNO17.126

Consomic studies
Gilibert et al.127 confirmed in consomic studies using BN as a
reference strain in an LH-13BN consomic strain, in which BN/
NHsdMcwi-RNO13 was transferred into the LH background, the
functional relevance of the RNO13 carrying BP-QTL (Table 2).
Interestingly, the LH-13BN consomic strain exhibits a 50% reduc-

tion in proteinuria in LH-13BN compared with LH.127 However, it
could be not clarified whether the amelioration in proteinuria
depends on the lower BP observed in the congenic strain or
whether genetic factors on RNO13 control the proteinuria
development.127 In contrast, reciprocal introgression of LH-RNO13
into the BN background is not capable of inducing a proteinuria
phenotype in the consomic strain BN-13LH.127

MUNICH WISTAR FRÖMTER RAT

Strain breeding
The Munich Wistar Frömter (MWF) rat strain was originally selected
over several generations for the presence of an increased number of
surface glomeruli and originally established as a colony (MWF/Ztm)
in Hannover, Germany.128,129 The colony MWF/FUB renamed as
MWF/Rkb and more recently to MWF/FubRkb was established in
1996 by further inbreeding of rats from the original colony at the
Charité – Universitätsmedizin Berlin, Germany.130

Strain characteristics
MWF rats develop mild SS spontaneous hypertension, spontaneous
albuminuria of early onset, structural renal abnormalities such as an
inherited nephron reduction of 30–50%, glomerulosclerosis, reduced
podocyte number, renal interstitial fibrosis and endothelial dysfunc-
tion.130–139 Moreover, a sexual dimorphism leads to a more severe

Table 5 (Continued )

QTL on

RNO QTL intervala or peakmarkerb Start position Stop position Phenotype Cross Sex Ref.

19 D19Rat34–D19Uia1c (D19Wox1e) 2 265 038 46 087 922 Kidney lesion grade SS�SHR BC m 54

19 D19Rat34–D19Uia1c (D19Wox1e) 2 265 038 46 087 922 Proteinuria SS�SHR BC m 54

19 D19Rat86c (D19Rat34e)–D19Rat2 2 265 038 55 455 363 Proteinuria SS�SHR F2 m 48

19 D19Rat19–D19Mit7 7 813 538 45 090 916 Albuminuria SS�SHR F2 m 53

20 Ubd 1 475 944 1 477 895 May cause proteinuria SBH�SBN m, f 150

20 Tubb5 3 060 224 3 090 776 May cause proteinuria SBH�SBN m, f 150

20 C2 4 051 146 4 071 909 May cause proteinuria SBH�SBN m, f 150

20 D20Rat41–D20Rat5 4 740 610 18 411 969 Proteinuria SBH�SBN BC m, f 150

20 Psmb8 4 786 260 4 789 223 May cause proteinuria SBH�SBN m, f 150

20 D20Rat32–D20Rat27 4 977 627 28 656 743 Proteinuria SBH�SBN F2 m 152

20 D20Rat12 32 880 867 — Renal interstitial fibrosis SS�SHR F2 m 48

X DXRat8 41 386 879 — Albuminuria MWF�SHR BC m 142

X DXRat96 122 069 706 — Superficial glomeruli MWF� Lew BC m 141

Abbreviations: ACI, August�Copenhagen Irish; Backcross, BC; BN, Brown Norway; BUF, Buffalo; f, females; FHH, Fawn-hooded hypertensive; GK, Goto-Kakizaki; Lew, Lewis; LH, Lyon
hypertensive; LN, Lyon normotensive; Lew, Lewis; m, males; miR, microRNA; MWF, Munich Wistar Frömter; QTL, quantitative trait loci; Ref., reference; RNO, rat chromosome; SBH, Sabra
hypertension prone; SBN, Sabra hypertension resistant; SHR, spontaneously hypertensive rat; SHRSP, spontaneously hypertensive rat, stroke prone; SS, Dahl salt-sensitive; WKY, Wistar-Kyoto.
Candidate genes are given in bold: Add3, adducin 3 (gamma); Arp3, actin-related protein 3; Bcl2l1, Bcl2-like 1; C2, Complement component 2; Cct3, chaperonin containing TCP1, subunit 3;
DUSP5, dual specificity phosphatase 5; Ins1, insulin 1; LOC501853, similar to RAB3 GTPase-activating protein; LOC680596, hypothetical protein LOC680596; LOC680652, hypothetical
protein LOC680652; Mgat5, mannosyl (alpha-1,6-)-glycoprotein beta-1,6-N-acetyl-glucosaminyltransferase; Mxi1, MAX interactor 1; Nap5, Nck-associated protein 5; Olr385, olfactory receptor
385; Pdcd4, programmed cell death 4; Psmb8, Proteasome (prosome, macropain) subunit, beta type 8 (Large multifunctional peptidase 7); Rab38, RAB38, member RAS oncogene family;
Rbm20, RNA binding motif protein 20; Rem1, RAS (RAD and GEM)-like GTP-binding 1; Shoc2, soc-2 (suppressor of clear) homolog (C. elegans); Sfrp2, secreted frizzled-related protein 2; Smc3,
structural maintenance of chromosomes 3; Smndc1, survival motor neuron domain containing 1; Tmem163, transmembrane protein 163; Tubb5, Tubulin, beta 5 class I; Ubd, Ubiquitin D;
Wnt2b, wingless-type MMTV integration site family, member 2B; Xpnpep1, X-prolyl aminopeptidase (aminopeptidase P) 1, soluble.
aQTL mapping was carried out by the 2-logarithm of odds (LOD) interval for placement of each QTL as recommended by Lander and Kruglyak.205 For original studies in which LOD intervals were
not reported, corresponding 2-LOD intervals were estimated by the authors of this review. Importantly, both the marker intervals and subsequently the start and stop positions of each QTL interval
represent only approximate values.
bIn several studies, only the peak marker of the identified QTLs were reported and given in Table 5 as indicated by ‘start position’.
cPositional localization by RGSC Genome Assembly v3.4 were not reported in Rat Genome Database (RGD, http://www.rgd.mcw.edu/). Light and dark grey colors represent main colocalizations
between QTL.
dPosition estimated by flanking markers.
ePosition given by this next flanking marker.
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manifestation and progression of albuminuria and subsequent renal
failure in males compared with females.130,133,140

Cosegregation and linkage analyses
Schulz et al. performed two genome-wide linkage analyses in back-
cross populations between MWF and a normotensive (Lewis/FUB) and
a hypertensive (SHR/FUB) reference strain and identified overall 11
different QTLs on 10 rat chromosomes including RNO1 (QTL1 and
QTL2), RNO4, RNO6–RNO9, RNO12, RNO15, RNO17 and RNOX,
which accounted for albuminuria development in MWF (Tables 1 and
5).130,141,142 In addition, six QTLs on RNO1 (QTL1 and QTL2),
RNO6, RNO8, RNO15 and RNO17 were linked to proteinuria, and
one QTL was linked to renal interstitial fibrosis on RNO6 (Tables 1
and 5).141,142 Only the albuminuria QTL on RNO6 was identified in
both crosses. Overall, the QTL on RNO6 and the QTL on RNO8,
which was only detected in the cross between MWF and SHR,
exhibited the strongest linkage and phenotypic effects on
albuminuria.141,142 Furthermore, seven QTLs on RNO1–RNO2,
RNO6–RNO7, RNO9, RNO13 and RNOX were linked to the number
of superficial or surface glomeruli (Tables 1 and 5), while the total
number of nephrons was not analyzed in these QTL-mapping
studies.141,142

Consomic studies
The functional role of both major albuminuria QTLs on RNO6 and
RNO8 was confirmed by transfer of either RNO6 or RNO8 from SHR
into the MWF background.138–140 Thus, in both single-consomic
strains MWF-6SHR and MWF-8SHR, the progressive albuminuria
observed in aging male and female MWF was significantly
ameliorated (Table 2).138–140 Interestingly, the nephron deficit
observed in MWF (�36% vs SHR) was linked to RNO6, since
total nephron number was only normalized by replacement of RNO6
but not of RNO8 in consomic strains (Table 2).138,139 Recently,
double-consomic studies in MWF-6SHR8SHR by double transfer of
SHR-RNO6 and SHR-RNO8 into MWF confirmed a strong
synergistic effect between QTL on RNO6 and RNO8, since the
albuminuria and associated structural kidney damage phenotypes
were completely abolished in the double-consomic strain (Table 2).143

In a reciprocal single-consomic strain, transfer of MWF-RNO8 into
the isolated albuminuria-resistant SHR background caused an induc-
tion of albuminuria already under normal conditions, while an
increase in structural glomerular damage was only detected after Nx
in consomic SHR-8MWF (Table 2).144 Thus, the results demonstrate
the independent role of MWF QTL on RNO8 for both albuminuria
and structural kidney damage.144 In contrast, MWF-RNO6 failed to
induce an albuminuria phenotype either under control conditions
or in response to a 50% nephron reduction after Nx in consomic
SHR-6MWF.145

SABRA RAT

Strain breeding
The original Sabra colonies of hypertension-prone (H) and hyperten-
sion-resistant (N) strains were developed by Ben-Ishay at the Hebrew
University Medical Center in Jerusalem, Israel. Rats were selected for
high BP values due to Nx, treatment with deoxycorticosterone acetate,
and 1% NaCl.146,147 This original and not fully inbred colony was
terminated in 1992, when a subset of rats was transferred to the Ben-
Gurion University Barzilai Medical Center in Ashkelon, Israel.
Subsequently, two new genetically and phenotypically homogeneous
colonies of Sabra hypertension-prone (SBH/y) and hypertension-
resistant (SBN/y) rats were further developed.148

Strain characteristics
The inbred Sabra strains represent a model of salt sensitivity; the
substrain SBH/y shows salt sensitivity, while the substrain SBN/y is
salt resistant.148,149 Both inbred Sabra strains are normotensive during
life when fed a normal diet, but SBH/y exhibits spontaneously
proteinuria,150 whereas SBN/y is protected from proteinuria
development.151 After salt loading, salt-sensitive SBH/y animals
develop hypertension in contrast to salt-resistant SBN/y rats;151 the
SBH/y strain is also more susceptible to develop glomerulosclerosis
than SBN/y.151 Moreover, Sabra rats exihbit also a sexual dimorphism
of the renal phenotype, since the progression of proteinuria
development and FSGS is more accelerated in males compared with
females.151

Cosegregation and linkage analyses
Yagil et al.150,152 performed in two (SBH/y� SBN/y) F2 crosses
studied under low-salt diet and after Nx a total genome scan
strategy to identify proteinuria QTL. The authors detected in male
rats three QTLs linked to proteinura but not to BP on RNO2, RNO17
and RNO20 and in female rats three QTLs linked to proteinuria on
RNO11, RNO13 and RNO20 (Tables 1 and 5).150,152 Moreover, only
in males three additional proteinuria QTLs on RNO3, RNO6 and
RNO9 were identified at which, however, the SBH/y allele associated
with lower albuminuria levels suggesting a protective effect of the
SBH/y genome at these QTL (Tables 1 and 5).150,152

Consomic/congenic studies
Consomic studies on proteinuria development in the Sabra rat model
were reported for the identified QTL on RNO2, RNO17 and
RN20150,151 and for two further chromosomes from previous
studies, for example, RNO1 and RNOX, on which no proteinuria
QTL was mapped by linkage analysis (Table 2).153,154 In a first report,
the transfer of RNO1 or RNO17 from SBH/y into the SBN/y
background resulted in both consomic strains in marked
proteinuria that was several-fold higher in male animals in response
to Nx compared with male SBN/y Nx animals (Table 2).150,151 These
results confirm the role of genes on RNO1 and RNO17 for
proteinuria development in male SBH/y rats (Table 3).150,151

However, the extent of glomerulosclerosis was not considerably
influenced by either chromosome.151 In a more recent study, in
which the reciprocal single-chromosome transfer from SBN/y into the
SBH/y background was used, the functional evidence for the presence
of a proteinuria-related QTL on chromosomes RNO1, RNO2 and
RNO20 in both male and female rats was confirmed (Table 2).150 In
contrast, a significant effect on proteinuria of RNO17 was only
detected in males and no effect in either sex was found for RNOX
(Table 2).150 Genome-wide gene expression analysis in kidneys from
SBH/y and SBN/y with and without uninephrectomy revealed
differentially expressed genes that mapped within the boundaries of
the proteinuria-related QTLs identified in these strains. Overall 24
transcripts in males and 30 in females were identified, only 4 of which
Tubb5 (Tubulin, beta 5 class I), Ubd (Ubiquitin D), Psmb8
(Proteasome (prosome, macropain) subunit, beta type 8 (Large
multifunctional peptidase 7)) and C2 (Complement component 2)
on RNO20 were common to both sexes (Table 3).150

SPONTANEOUSLY HYPERTENSIVE RAT

Strain breeding
Okamoto and Aoki155 established the SHR model from outbred WKY
rats by selective breeding for high BP under normal conditions in
Kyoto, Japan. These not fully inbred stocks were imported by the
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National Institutes of Health in the United States.16,156 Subsequently,
several colonies were established, which lack genetic homogeneity and
thus show phenotypic variance.16,156–158

Strain characteristics
The SHR rat is a model that develops spontaneous hypertension in
early life.159 The salt sensitivity status of hypertension may vary
between different colonies of SHR strains.160,161 In addition, SHR rats
develop several other phenotypes including insulin resistance,162–165

renal damage such as mild proteinuria and albuminuria, glomerular
sclerosis and pathological alterations in small vessels with age.166,167

Cosegregation and linkage analyses
Herring et al.168 investigated whether the IgG/Fc-g receptor pathway
in glomeruli is capable of modulating hypertensive glomerular disease
such as albuminuria in SHR. In an (SHR-A3� SHR-B2)-F2
intercross, the authors identified in male SHR-A3 a QTL on RNO6
linked to IgG subclasses (Tables 1 and 5), which was derived from the
IgH gene (immunoglobulin heavy chain complex).168 Subsequently,
single-nucleotide polymorphism genotyping revealed that allelic
variation in the IgH haplotype block or neighboring genes may
modify the susceptibility to hypertensive renal injury without a BP
influence.168

Congenic studies
Renal transplant studies showed that the kidneys of BN are more
susceptible to hypertension-induced damage compared with SHR.169

St Lezin et al.170 assumed that underlying genetic susceptibility
factors, that is, the Rf loci on RNO1, which were originally
identified in the FHH rat,77,89,90 may contribute to renal failure in
BN.170 Subsequently, the authors introgressed a 22-cM segment of
RNO1, which may overlap with Rf-2, Bpfh-1 and possibly with Rf-1 in
FHH,77,89,90 from normotensive BN/Cr rats into the hypertensive
SHR/Ola background of the congenic strain SHR.BN-D1Mit3/Igf2
(Tables 2 and 3).170 The results in these strains demonstrated that in
BN rats susceptibility to renal damage such as proteinuria and
glomerular injury in response to deoxycorticosterone acetate-salt
loading was also significantly aggravated by one or more genes
related to the transferred RNO1 segment, carrying Rf loci from FHH
(Table 2).170

SPONTANEOUSLY HYPERTENSIVE RAT, STROKE-PRONE

Strain breeding
By Okamoto et al.171 the A1-sb and A3 substrains of SHR were
crossed to select offsprings for further inbreeding, when parents were
highly susceptible to stroke.172 The resulting inbred strain SHRSP/
A3N was defined as SHRSP.171

Strain characteristics
SHRSP show salt-sensitive spontaneous hypertension, vascular and
particularly cerebrovascular lesions associated with a high incidence of
strokes.160,171,173,174 In addition, SHRSP develop salt-induced renal
damage such as albuminuria,48 severe glomerulosclerosis, tubulo-
insterstitial fibrosis, inflammation,48,160 renal vascular lesions,173 and
an increase in the glomerular renin-angiotensin system.175 Male
SHRSP rats are more affected in developing renal lesions compared
with females.176

Cosegregation and linkage analyses
In a genotype/phenotype cosegregation study in an SHRSP/SHR F2
intercross population including both genders, Gigante et al.176

detected QTL regions on RNO1, RNO4, RNO10 and RNO16
affecting renal damage in this cross (Tables 1 and 5), while both
susceptible and protective alleles of SHRSP were identified for renal
changes such as the degree of renal vascular and parenchymal lesions.

Consomic studies
On RNO1 several QTLs linked to BP,47,48,54,77,90,177–183 stroke or stroke-
associated phenotypes,182,184 and renal damages48,54,77,90,141,142,151

could be identified in different rat models. To demonstrate genetic
differences in the incidence of hypertension, cerebral stroke and renal
damage under salt loading in tap water (1% NaCl), Ishikawa et al.185

analysed five congenic rat strains, in which different chromosomal
segments from WKY/Izm-RNO1 were transferred into the SHRSP/
Izm background (Table 2). The findings showed that one or more
gene(s) on RNO1 was/were associated with salt-induced renal
damage, that is, albuminuria and glomerulosclerosis, which act
independently of BP in SHRSP.

CONCLUSIONS

The increasing incidence and prevalence of complex forms of CKD in
the general human population1–5,9 poses a major global health
problem. Understanding the molecular basis, including the genetic
susceptibility, of complex CKD may therefore open new opportunities
for early diagnosis and development of novel therapeutic strategies
that protect against CKD, halt CKD or even reverse the apparently
inevitable progressive course of CKD.186 During the last two decades
significant progress in our understanding of the development of
kidney diseases has been achieved by unravelling the mechanisms
underlying rare familial forms of human kidney diseases.187

Notwithstanding this progress, knowledge about genetic factors that
contribute to common forms of complex CKD is scarce, although
human genome-wide association studies sought to close this gap by
identifying susceptibility loci for CKD or reduced kidney function,
that is, GFR.99,188,189 So far susceptibility loci could be identified
on all human chromosomes (HSA), 1–22, except the sex
chromosomes.2,3,8,99,188,190–201 Only a few studies, however, were
successful, identifying within their associated genomic interval a
single locus with a plausible candidate as a susceptibility locus for
more common forms of CKD. Thus, a locus on chromosome 22
carrying a variant in the Apolipoprotein L-1 (APOL1) gene has been
shown to explain a major portion of the increased genetic risk for
non-diabetic CKD observed in African Americans.198,202 Moreover, an
identified missense variant in Cubilin (CBN) has been associated with
albuminuria in the general population and in patients with
diabetes.203

In the genetic mapping studies in inbred rat models only a few
molecular variants have been clearly identified to date, including Arp3
in the BUF rat19 and Rab38 in the FHH rat104,105 (Table 3), although
no variant has been ultimately confirmed, for example, by single gene
congenic strains or further transgenic models. Nevertheless, given
their phenotypic characteristics the panel of rat models summarized
here represents an important tool in our armamentarium to explore
the genetics of the most prevalent forms of complex CKD to which
both arterial hypertension and type-2 diabetes mellitus are major
contributors.1–5,9 In this regard, this panel is a valuable experimental
and data resource in which numerous QTLs associated with renal
(disease) phenotypes have been identified on all rat chromosomes
(Tables 4 and 5). Moreover, several important findings obtained from
studies in these models have already contributed to our knowledge on
the genetic determination of complex renal disease phenotypes.
Hence, studies in the FHH,90,93,95,97 MWF141–143 and SS53,54 rat
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models highlighted the role of major susceptibility loci that in concert
and genetic interaction with multiple other loci influence renal disease
susceptibility (Table 5). Moreover, these models allow the combina-
tion of genetic analyses with unlimited gene expression studies,65,70,150

including timed renal and compartment-specific expression analysis
during the onset of renal disease phenotypes such as
albuminuria,143,204 while these experimental algorithms are difficult
or impossible to pursue in humans due to the limited access to renal
tissue. The comprehensive exploitation of the genotype–renal pheno-
type associations that are inherited in this panel of rat strains is
therefore suitable for making a significant contribution to the
development of an integrated approach to the systems genetics of
CKD.189 This may pave the way for the development of eagerly
awaited novel and successful prognostic, diagnostic and therapeutic
tools for the integrated management of common forms of CKD.
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Nyengaard JR, de Heer E, Kreutz R. Elimination of severe albuminuria in aging
hypertensive rats by exchange of 2 chromosomes in double-consomic rats. Hyperten-
sion 2011; 58: 219–224.
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