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Sympathoinhibition caused by orally administered
telmisartan through inhibition of the AT1 receptor in
the rostral ventrolateral medulla of hypertensive rats

Takuya Kishi1, Yoshitaka Hirooka2 and Kenji Sunagawa3

In patients and animals with hypertension, sympathetic nervous system (SNS) activation is present. We have demonstrated that

angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the rostral ventrolateral medulla (RVLM), a vasomotor center in

the brainstem, causes SNS activation in hypertensive rats. The aim of the present study was to determine whether orally

administered AT1R blockers (ARBs) inhibit SNS activation through an anti-oxidant effect via inhibition of AT1R in the RVLM of

hypertensive rats and, if so, whether the benefits are class effects of ARBs. Stroke-prone spontaneously hypertensive rats

(SHRSPs), a hypertensive model with sympathoexcitation, were divided into four groups: SHRSPs treated with telmisartan

(TLM), candesartan (CAN), or hydralazine (HYD) and a vehicle group (VEH). Although systolic blood pressure was reduced in

the TLM, CAN and HYD groups to the same level, heart rate, SNS activation and oxidative stress in the RVLM were significantly

lower in the TLM group only. The pressor effect caused by the microinjection of angiotensin II into the RVLM and the depressor

effect caused by the microinjection of tempol, a superoxide dismutase mimetic, into the RVLM were both significantly smaller

in TLM, but not in CAN or HYD. These results suggest that orally administered TLM inhibits SNS activation through an

anti-oxidant effect via inhibition of AT1R in the RVLM of SHRSPs; these results are also independent of depressor effects and

are not class effects of ARBs.
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INTRODUCTION

Sympathetic nervous system (SNS) activation is a main cause of the
development and progression of hypertension.1–4 SNS activation is
mainly regulated by the brain,5–7 and we have demonstrated in rat
models with hypertension or heart failure that direct interventions to
the brain have beneficial effects because of sympathoinhibition.8–14

Particularly in the brain, SNS activation is mainly regulated by the
rostral ventrolateral medulla (RVLM) in the brainstem, and the
functional integrity of the RVLM is essential for the maintenance of
basal vasomotor tone.5,6 We have demonstrated that oxidative stress in
the RVLM produced by the angiotensin II type 1 receptor (AT1R) causes
SNS activation.11,14–17 Upregulation of the central AT1R is important in
the pathophysiology of hypertension.6,7 Microinjection of AT1R blockers
(ARBs) into the RVLM or intracerebroventricular infusion of ARBs
inhibits SNS activation in hypertensive rats.15,18–20 However, AT1R or
oxidative stress in the RVLM have not been targets for the treatment of
hypertensive patients because we do not have suitable oral agents to
inhibit AT1R or oxidative stress in the RVLM of hypertensive patients.

Interestingly, previous animal studies have suggested that periph-
erally administered ARBs inhibit the central actions of angiotensin II
in the brain.16,21–28 We demonstrated that orally administered ARBs
reduced oxidative stress in the brains of hypertensive rats16,27 and that
orally administered telmisartan (TLM) inhibits SNS activation in
hypertensive rats.16 These results suggest that orally administered
ARBs have the potential to inhibit SNS activation through reduction
of oxidative stress via inhibition of AT1R in the RVLM. In a previous
clinical study, TLM, an ARB, is effective in reducing short-term
ambulatory blood pressure variability and SNS activation in
hypertensive patients with diabetic nephropathy.29 However, in
other clinical studies, ARBs do not have the same beneficial effects
on the autonomic nervous system.30,31 Moreover, it has not been
determined whether the sympathoinhibition caused by orally
administered ARBs is a class effect of ARBs.32 Gohlke et al.26

demonstrated that, following peripheral administration, TLM is able
to penetrate the blood-brain barrier in a dose- and time-dependent
manner to inhibit centrally mediated effects of angiotensin II and that
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the effects of ARBs might differ depending on the pharmacokinetics
and properties of each drug. We hypothesized that orally administered
TLM penetrates the blood-brain barrier to a greater extent than any
other ARB.

In hypertensive patients, ARBs are preferable for hypertensive
patients.33 New mechanistic insight into antihypertensive treatment
could be provided if systemic treatment with ARBs was shown to
inhibit SNS activation through inhibition of AT1R in the brain of
hypertensive patients. The aim of the present study is to investigate
whether orally administered TLM inhibits SNS activation through the
reduction of oxidative stress via inhibition of AT1R in the RVLM of
hypertensive rats. If so, we also aim to determine whether the results
are independent of its depressor effects and if these effects are class
effects of ARBs. To this end, we divided stroke-prone spontaneously
hypertensive rats (SHRSPs) with severe sympathetic hyperactivity,
used as the hypertensive model into TLM-, CAN-, hydralazine
(HYD)- or vehicle (VEH)-treatment groups. TLM and CAN are
widely used ARBs, and both ARBs have powerful blood pressure-
lowering effects.32 We determined SNS activation by 24-h urinary
norepinephrine excretion and determined the oxidative stress in the
RVLM using the thiobarbituric acid-reactive substance (TBARS)
method. We also determined the activity of nicotinamide adenine
dinucleotide phosphate (NAD(P)H) oxidase, which is a key AT1R-
activated component in the creation of oxidative stress moieties in the
RVLM. Furthermore, we also performed microinjections of
angiotensin II, superoxide dismutase mimetic (tempol) or
NAD(P)H oxidase inhibitor (apocynin) into the RVLM of each
group.

METHODS

Animals
This study was reviewed and approved by the committee on ethics for Animal

Experiments, Kyushu University Graduate School of Medical Sciences, and

conducted according to the Guidelines for Animal Experiments by the Kyushu

University. Male SHRSPs and age-matched Wistar–Kyoto (WKY) rats (12 to

14 weeks old) weighing 350 to 425 g were fed standard feed during this

protocol (SLC Japan, Hamamatsu, Japan). They were housed individually in a

temperature-controlled room (22 to 23 1C) with a 12-h/12-h light-dark cycle

(lights on at 0700 hours). We divided SHRSPs and the WKY rats into four

groups: a TLM-treatment group (TLM rats), a CAN-treatment group (CAN

rats), a HYD-treatment group (HYD rats) and a VEH-treatment group (VEH

rats).

Oral administration of TLM, CAN or HYD
SHRSPs and WKY rats were treated for 4 weeks. TLM rats received TLM

(2 mg kg�1 per day, dissolved in 0.5% methylcellulose) and were given this oral

gavage once daily (Sigma-Aldrich, St Louis, MO, USA). CAN rats received

CAN (2 mg kg�1 per day, dissolved in 0.5% methylcellulose) and were given

this oral gavage once daily (Sigma-Aldrich). HYD rats received HYD and were

given this oral gavage once daily (5 mg kg�1 per day, dissolved in drinking

water) (Sigma-Aldrich). VEH rats received 0.5% methylcellulose by oral gavage

once daily.

Measurement of blood pressure, heart rate and SNS activation
Systolic blood pressure and heart rate were measured once weekly using the

tail-cuff method (BP-98 A; Softron, Tokyo, Japan). At 4 weeks, we calculated

urinary norepinephrine excretion for 24 h as an indicator of SNS activation as

previously described.9–11

Microinjection of angiotensin II, tempol or apocynin into the
RVLM
At the end of the study, we microinjected angiotensin II bilaterally into the

RVLM of all rats (n¼ 5 per group). To inhibit the local oxidative stress in the

RVLM, we microinjected tempol (100 pmol) bilaterally into the RVLM of all

rats (n¼ 5 rats per group). To inhibit the NAD(P)H oxidase locally in the

RVLM, we microinjected apocynin (1 nmol) bilaterally into the RVLM of all

groups (n¼ 5 per group). The doses of tempol or apocynin and the procedures

of the microinjection are reported in our previous studies.11,15

Measurement of TBARS in the RVLM
To obtain RVLM tissue, the rats were deeply anesthetized with sodium

pentobarbital (100 mg kg�1 IP) and transcardially perfused with PBS

(150 mol l�1 NaCl, 3 mmol l�1 KCl and 5 nmol l�1 phosphate; pH 7.4,

4 1C). The brains were quickly removed, and 1-mm thick sections were

obtained with a cryostat at �7±1 1C. The RVLM was defined according to a

rat brain atlas as described previously9,11 and obtained using a punch-out

technique. The RVLM tissues were homogenized in 1.15% KCl (pH 7.4), 0.4%

sodium dodecyl sulfate and 7.5% acetic acid adjusted; the pH was adjusted to

3.5 with NaOH. Thiobarbituric acid (0.3%) was added to the homogenate. The

mixture was maintained at 5 1C for 60 min followed by heating to 100 1C for

60 min. After cooling, the mixture was extracted with distilled water and

n-butanolpyridine (15:1) and centrifuged at 1600 g for 10 min. The absorbance

of the organic phase was measured at 532 nm. The amount of TBARS was

determined by absorbance, as described previously.11,15

Measurement of NAD(P)H oxidase activity
At the end of the study, NAD(P)H-dependent superoxide production in the

RVLM was measured using a lucigenin luminescence assay as described

previously.14,15 Quantification of NAD(P)H oxidase activity was expressed

relative to that in WKY rats treated with VEH; this level was assigned a value of 1.

Statistical analysis
All values are expressed as the means±s.e.m. Comparisons between any two

mean values were performed using Bonferroni’s correction for multiple

comparisons. Analysis of variance was used to compare all the parameters in

all groups. Differences were considered to be statistically significant at a P value

of o0.05.

RESULTS

Blood pressure, heart rate and urinary norepinephrine excretion
Systolic blood pressure of SHRSPs was significantly lower in each
TLM, CAN and HYD rats when compared with VEH rats after
4 weeks of treatment (Figure 1a) and there was no difference among
TLM, CAN and HYD rats (Figure 1a). However, heart rate in SHRSPs
was significantly lower in TLM rats compared with CAN and HYD
rats (Figure 1b). In WKY rats, systolic blood pressure and heart rate
were the same among the groups (Figures 1c and d). Urinary
norepinephrine excretion was significantly lower in TLM rats versus
CAN, HYD and VEH rats in SHRSPs. However, urinary norepi-
nephrine excretion was the same in CAN and VEH rats (Figure 2a). In
WKY rats, urinary norepinephrine excretion was the same among all
groups (Figure 2b).

TBARS levels and NAD (P) H oxidase activity in the RVLM
In SHRSPs, TBARS levels (Figure 3a) and NAD(P)H oxidase activity
(Figure 3b) in the RVLM rats were significantly lower in TLM rats
versus CAN, HYD and VEH rats, but there was no difference between
CAN and VEH rats. In WKY rats, TBARS levels (Figure 3c) and
NAD(P)H oxidase activity (Figure 3d) in the RVLM were the same
between all groups.

Effects of microinjection of angiotensin II into the RVLM
In SHRSPs, the pressor effects caused by the microinjection of
angiotensin II into the RVLM were significantly smaller in TLM rats
than in CAN, HYD or VEH rats (Figure 4a), and they were the same
in CAN and VEH rats (Figure 4a). In WKY rats, the pressor effects
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caused by the microinjection of angiotensin II into the RVLM were
the same among groups (Figure 4b).

Effects of microinjection of tempol or apocynin into the RVLM
In SHRSPs, the depressor effects caused by the microinjection of
tempol (Figure 5a) or apocynin (Figure 5b) into the RVLM were
significantly smaller in TLM rats than in CAN, HYD or VEH rats, and
there was no difference between CAN and VEH rats. In WKY rats, the
depressor effects caused by the microinjection of tempol (Figure 5c)
or apocynin (Figure 5d) into the RVLM were the same in all groups.

DISCUSSION

In the present study, we demonstrated two major findings. First,
orally administered TLM inhibits SNS activation through the reduc-
tion of oxidative stress via inhibition of AT1R in the RVLM of
SHRSPs. Second, the sympathoinhibition caused by orally adminis-
tered TLM in SHRSPs is independent of its depressor effect and is not
a class effect of ARBs. These results suggest that orally administered

TLM might have the potential to be a novel treatment for hyperten-
sion via sympathoinhibition.

SNS activation is determined mainly by neural activity in the
RVLM in hypertensive patients.5,6 We demonstrated that oxidative
stress in the brain causes hypertension through sympathoexci-
tation.11,15–17,34,35 We also demonstrated that AT1R-inducced
oxidative stress in the RVLM causes SNS activation in hypertensive
rats.11,14,15 Direct inhibition of the AT1R in the RVLM inhibits SNS
activation in hypertensive rats.15,18–20 Peripherally administered ARBs
also inhibit the central actions of angiotensin II in the brain.21–28

Furthermore, we demonstrated that orally administered TLM inhibits
SNS activation by reducing oxidative stress in the brains of
hypertensive rats.16 However, it has not been determined whether
the sympathoinhibition caused by orally administered ARBs is a class
effect of ARBs.32 The effects of ARBs might differ depending on the
pharmacokinetics and properties of each drug.26 In the present study,
orally administered TLM inhibits SNS activation and the angiotensin
II-AT1R-NAD(P)H oxidase-oxidative stress pathway in the RVLM of
SHRSPs. However, orally administered CAN or HYD does not have
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Figure 1 (a) Systolic blood pressure of each group of stroke-prone spontaneously hypertensive rats (SHRSPs) (n¼5 each), (b) heart rate of each group

(n¼5 each) of SHRSPs, (c) systolic blood pressure of each group of Wistar–Kyoto (WKY) rats (n¼5 each) and (d) heart rate of each group of WKY rats

(n¼5 each). *Po0.05 vs. VEH in each strain. CAN, candesartan; HYD, hydralazine; TLM, telmisartan; VEH, vehicle.
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Figure 2. (a) 24-h urinary norepinephrine excretion of each group of stroke-prone spontaneously hypertensive rats (SHRSPs) (n¼5 each) and (b) 24-h

urinary norepinephrine excretion of each group (n¼5 each) of Wistar–Kyoto (WKY) rats. *Po0.05 vs. VEH in each strain. CAN, candesartan; HYD,

hydralazine; TLM, telmisartan; VEH, vehicle.
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these results in SHRSPs despite having similar depressor effects. These
results indicate that orally administered TLM might inhibit the AT1R
in the RVLM. These effects are independent of its depressor effects
and are not class effects of ARBs.

The mechanisms by which sympathoinhibition, through the
reduction of oxidative stress via inhibition of AT1R in the RVLM, is
different between orally administered TLM and CAN should be
discussed. In the present study, oxidative stress and NAD(P)H oxidase
activity in the RVLM are reduced in the TLM-treated SHRSPs but not
in the CAN-treated SHRSPs. The pressor effect caused by the
microinjection of angiotensin II into the RVLM and the depressor
effect caused by the microinjection of tempol or apocynin into the
RVLM are significantly smaller in TLM-treated than in CAN-treated
SHRSPs. These results suggest that the pathway of AT1R-NAD(P)H
oxidase-oxidative stress in the RVLM is blocked by orally adminis-
tered TLM but not by CAN. A previous study demonstrated that,

following peripheral administration, TLM penetrates the blood-brain
barrier in a dose- and time-dependent manner to inhibit centrally
mediated effects of angiotensin II because of the high lipophilicity of
TLM.26 Previously, we also demonstrated that orally administered
TLM inhibits SNS activation through the inhibition of AT1R in the
brain of hypertensive rats.16 We posit that orally administered TLM
(2 mg kg�1 per day) can penetrate the blood-brain barrier and reach
the RVLM of SHRSPs, whereas CAN (2 mg kg�1 per day) cannot.
Furthermore, previous studies have demonstrated differences between
TLM and CAN.36–39 Both TLM and CAN show clear efficacies.36

However, the efficacy of CAN is linked to the presence of a carboxyl
group at its imidazole-derived moiety, whereas TLM is efficacious
despite the absence of a carboxyl group.36 Moreover, in terms of
inverse agonist activity, previous studies have demonstrated that CAN
can stabilize AT1R in an inactive state, therefore acting as an ‘inverse
agonist,’ in the absence of angiotensin II, whereas TLM does not have
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Figure 3 (a) Thiobarbituric acid-reactive substance (TBARS) levels in the rostral ventrolateral medulla (RVLM) of each group of stroke-prone spontaneously

hypertensive rats (SHRSPs) (n¼5 each), (b) nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase activity in the RVLM of each group (n¼5

each) of SHRSPs, (c) TBARS levels in the RVLM of each group of Wistar–Kyoto (WKY) rats (n¼5 each) and (d) NAD(P)H oxidase activity in the RVLM of

each group of WKY rats (n¼5 each). *Po0.05 vs. VEH in each strain. CAN, candesartan; HYD, hydralazine; TLM, telmisartan; VEH, vehicle.
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Figure 4 (a) Changes in mean arterial pressure caused by the microinjection of angiotensin II into the rostral ventrolateral medulla (RVLM) of each group of

stroke-prone spontaneously hypertensive rats (SHRSPs) (n¼5 each) and (b) changes in mean arterial pressure caused by the microinjection of angiotensin
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such an effect.37–39 In terms of the agonist activity of peroxisome
proliferator-activated receptor (PPAR)-g, a previous study suggested
that orally administered rosiglitazone, a PPAR-g agonist, promotes a
central antihypertensive effect via upregulation of PPAR-g and
alleviation of oxidative stress in the RVLM of SHR.40 Although
both TLM and CAN function as partial agonists of PPAR-g, only
TLM achieves this effect at therapeutic doses.41 Further studies are
necessary to investigate the differences in central effects elicited by the
various ARBs in terms of efficacy, inverse agonist activity and PPAR-g
agonist activity.

Several studies have suggested that orally administered CAN causes
sympathoinhibition and attenuates the central effects of angiotensin II
in the brain.22,24,25,28 Direct inhibition of AT1R in the RVLM or other
areas of the brain inhibits SNS activation,15,18–20 and superfusion with
CAN decreases the electrophysiological activity of RVLM neurons
examined using the patch-clamp technique.42 In previous studies
demonstrating sympathoinhibition caused by orally administered
CAN in hypertensive rats, the doses of CAN were greater (4,(ref. 22)

5,(ref. 24) or 10,(ref. 25) mg kg�1 per day) than those in the present study
(2 mg kg�1 per day). However, Sakata et al.28 demonstrated that
1 mg kg�1 per day of CAN for 2 weeks causes sympathoinhibition in
SHR. Although blood pressure of SHRs in their study is lower than
that of the SHRSPs in the present study, and the heart rate of the
SHRs were similar to that of the WKY rats in their study, these
previous studies suggested that the difference in sympathoinhibition
between TLM and CAN in the present study may not be due to the
dose of CAN. We hypothesize that orally administered CAN
(2 mg kg�1 per day) was not sufficient to penetrate the blood-brain
barrier of SHRSPs.

Interestingly, in the present study, sympathoinhibition through
reduction of oxidative stress via inhibition of AT1R in the RVLM was
not obtained in WKY rats. These results are compatible with our
previous studies.11,15 In those studies, overexpression of superoxide
dismutase in the RVLM or direct infusion of ARBs into the brain did
not reduce oxidative stress and did not inhibit SNS activation in WKY

rats.11,15 From these results, two explanations are possible. First, orally
administered TLM (2 mg kg�1 per day) could not penetrate the
blood-brain barrier, which is not as damaged in WKY rats. In
hypertensive rats, the blood-brain barrier is damaged;43,44 thus, orally
administered TLM can easily penetrate the blood-brain barrier of
SHRSPs. This possibility would also support our results that orally
administered ARB-induced sympathoinhibition through the
reduction of oxidative stress via inhibition of the AT1R in the
RVLM is dependent on the penetration of the blood-brain barrier.
Second, the role of AT1R-induced oxidative stress on the regulation of
SNS activation may differ between SHRSPs and WKY rats.

The increase in the number of hypertensive patients is a health
problem because hypertension is considered to be a risk factor for
cardiovascular diseases.33 ARBs are widely used in hypertensive
patients because of their powerful blood pressure-lowering effects
and organ-protective effects.33 However, one of the important
treatment targets for hypertension is inadequate SNS activation,
and it has not been determined whether ARBs have beneficial
effects on SNS activation in hypertension. In the present study, we
demonstrated that orally administered TLM, but not CAN, inhibits
SNS activation through the reduction of oxidative stress via inhibition
of AT1R in the RVLM of SHRSPs. These results are compatible with a
previous clinical study, which indicated that TLM (40 mg per day)
causes sympathoinhibition to a greater extent than losartan (50 mg
per day) in hypertensive patients with diabetic nephropathy.29 We also
previously demonstrated that orally administered atorvastatin,
azelnidipine or amlodipine also causes sympathoinhibition through
the reduction of oxidative stress in the RVLM of SHRSPs.45–47

However, the results of the present study could not directly
elucidate the clinical benefits of TLM in hypertensive patients
because the dose of TLM in the present study is not a clinical dose,
and there are no clinical trials demonstrating the same reduction in
heart rate obtained in the present study. Furthermore, damage to the
blood-brain barrier may be much more significant in SHRSPs than in
hypertensive human patients. To determine whether the benefits of
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Figure 5 (a) Changes in mean arterial pressure caused by the microinjection of tempol into the rostral ventrolateral medulla (RVLM) of each group of stroke-
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TLM observed in the present animal study could be obtained in
humans with hypertension, further clinical studies are necessary to
examine brain oxidative stress, concentrations of ARBs in the brain
and the permeability of the blood-brain barrier in hypertensive
patients treated with clinical doses of ARBs.

There are several limitations to the present study. First, we
examined the AT1R-NAD(P)H oxidase-oxidative stress pathway only
in the RVLM. In addition to the RVLM, some important foci are
involved in cardiovascular regulation, such as the nucleus tractus
solitarii and the hypothalamus.6 AT1R is rich in the specific brain
nuclei that regulate SNS activation, such as the anteroventral third
ventricle, paraventricular nucleus of the hypothalamus, nucleus
tractus solitarii and RVLM.48–50 Moreover, a high density of AT1R
is present in the brain regions involved in the regulation of SNS
activation, such as the circumventricular organs outside of the blood-
brain barrier, where peripherally administered ARBs are able to effect
change without consideration of the blood-brain barrier, as well as
inside of the blood-brain barrier.50 The reduction of oxidative stress
via inhibition of AT1R caused by orally administered TLM may not be
a phenomenon unique to the RVLM. However, in the regulation of
the SNS activation, the RVLM is the most important site.5,6

Furthermore, in the RVLM, oxidative stress is considered to be the
most important sympathoexciting factor.11,15–17 For these reasons, the
RVLM is the focus of the present study. Second, we did not examine
the dose-dependency of sympathoinhibition caused by orally
administered TLM or CAN and the long-term effect of orally
administered TLM or CAN in the present study. Our previous
study and the present study suggest that the degrees of
sympathoinhibition and the depressor effects caused by orally
administered TLM are significantly smaller in the present study
(2 mg kg�1 per day) than in our previous study (5 or 10 mg kg�1per
day).16 Third, we could not directly demonstrate that TLM penetrates
the blood-brain barrier to reach the RVLM; in future studies we will
measure the concentration of TLM in the brain tissue.

In conclusion, in the present study, orally administered TLM
inhibits SNS activation through the reduction of oxidative stress via
inhibition of AT1R in the RVLM of SHRSPs, and the effects are
independent of its depressor effect and are not class effects of ARBs.
These results suggest that orally administered TLM might have the
potential to be a novel treatment for hypertension resulting from
sympathoinhibition through the reduction of oxidative stress via
inhibition of AT1R in the RVLM.
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