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Blood pressure and renal hemodynamic effects
of angiotensin fragments
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Angiotensin (Ang) II, the main effector peptide of the renin–Ang system, increases arterial blood pressure through Ang II

type 1A (AT1a) receptor-dependent arterial vasoconstriction and by decreasing renal salt and water excretion through extrarenal

and intrarenal mechanisms. AT2 receptors are assumed to oppose these responses mediated by AT1 receptors, thereby

attenuating the pressor effects of Ang II. Nevertheless, a possible role of AT2 receptors in the regulation of renal hemodynamics

and sodium homeostasis remains to be unclear. Several other Ang fragments such as Ang III, Ang IV, Ang-(1–7) and Ang A

have also been shown to display biological activity. In this review, we focus on the effects of these Ang on blood pressure,

renal hemodynamics and sodium water handling, and discuss the receptors involved in these actions.
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INTRODUCTION

The renin–angiotensin (Ang) system (RAS) plays a central role in the
control of arterial blood pressure and sodium water homeostasis.
Renin, a proteolytic enzyme secreted by the juxtaglomerular apparatus
of the kidney, cleaves angiotensinogen at the N terminus to form the
decapeptide, Ang I. The latter has no appreciable biological activity,
but is converted by the dipeptidyl carboxypeptidase, Ang-converting
enzyme (ACE), to the octapeptide Ang II (Asp-Arg-Val-Tyr-Ile-
His-Pro-Phe)1–3 (Figure 1). ACE is a membrane-bound enzyme
on the surface of endothelial cells and is particularly abundant in
the lung. ACE also inactivates bradykinin and a number of other
peptides. Ang II, the main effector peptide of the RAS, is degraded
by aminopeptidases A and N to Ang III and Ang IV, respectively
(Figure 1). These metabolites have long been considered of little
importance, but are now known to exert biological activity.4–6

This is also the case for other Ang fragments: the heptapeptide
Ang-(1–7), which is processed from Ang I by tissue endopeptidases,7

and the octapeptide Ang A, which is generated from Ang II by
enzymatic decarboxylation of Asp.1,8

The RAS was originally regarded as a circulating system; however,
the existence of ‘local’ or ‘tissue’ RAS has been identified in most
organs.9 ACE is indeed also present in other vascular tissues and
organs, including the heart, brain and kidney. Therefore, Ang II can be
formed locally in different vascular beds and can exert biological
effects independent of blood-borne Ang II. In the kidney, most of the
intrarenal Ang II is locally generated, rather than derived from
circulating Ang I or Ang II.10,11 Ang II and Ang III concentrations
in renal interstitial fluid are roughly 1000-fold higher than that in the
plasma.12

In this review, we focus on the effects of different Ang peptides
on blood pressure, renal hemodynamics and sodium excretion, and
discuss the receptors involved in these effects (Table 1).

ANGIOTENSIN II

AT1 and AT2 receptors
The biological functions of Ang II are mediated by at least two
pharmacologically distinct receptors, the Ang II type 1 (AT1) and
Ang II type 2 (AT2) receptors (Figure 2).13 Both are seven-trans-
membrane glycoproteins (G-protein-coupled receptors) with 30%
sequence similarity,13,14 and both are expressed in the kidney.15–18

AT1 receptors are abundantly expressed in cells of the renal
glomeruli, tubules, vasculature and interstitial space.18 In rodents,
two subtypes of the AT1 receptor have been identified, AT1a and AT1b

receptors,19 which share 95% sequence homology and exhibit similar
ligand binding affinities and signal-transduction properties, but differ
in their tissue expression. In the kidney, AT1a mRNA is present in
mesangial and juxtaglomerular cells, proximal tubules, vasa recta and
interstitial cells, whereas AT1b mRNA is found only in mesangial and
juxtaglomerular cells, and in the renal pelvis. AT1a receptors are more
abundant in the kidney than AT1b.20 AT1a receptors are also expressed
in the liver, adrenal gland, ovary, heart, aorta, lung, testis, brain,
adipose tissue and vascular smooth muscle, whereas AT1b receptors are
confined to the adrenal gland, brain and testis.21

AT2 receptors are highly expressed during fetal development and in
newborn mammalian kidneys, with very little expression in the adult
mammalian kidney.22 This has led to the suggestion that AT2 receptors
may be involved in development, differentiation and/or growth.23–25

In the adult kidney, AT2 receptors are mainly localized in the
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glomerular mesangial cells22,26,27 or the adventitia of the preglomer-
ular arcuate and interlobular arteries.28 AT2 receptors are upregulated
in the adult kidney in response to sodium depletion27 or kidney
damage29 in obese Zucker rats30 and spontaneously hypertensive
rats (SHRs).31 In other pathological conditions, such as stroke, an
increased AT2 receptor gene expression in the infarcted cortex was
reported.32

Few studies have investigated the functional expression of AT2

receptors in human beings. They are expressed in human skin33,34

and in the coronary circulation.35 In the adult human renal cortex,
AT2 receptor mRNA is mainly expressed in interlobular arteries.36

Effects of Ang II on blood pressure and sodium–volume
homeostasis
Ang II increases arterial pressure via two principal effects. The first,
vasoconstriction, occurs very rapidly, within seconds, and very

intensely in the arterioles and to a considerably lesser extent in the
veins. The second is the effect on the kidneys to decrease the excretion
of both salt and water. This increases the extracellular fluid volume,
which then increases arterial pressure slowly over a period of hours
and days. This long-term effect, acting through the extracellular fluid
volume mechanism, is even more powerful than the acute vasocon-
strictor mechanism in increasing blood pressure.

Ang II causes the kidneys to retain salt and water through extrarenal
and intrarenal mechanisms.37 Ang II increases sympathetic nerve
stimulation, which increases renal tubular sodium reabsorption
directly or indirectly through renal vasoconstriction. Moreover, Ang
II stimulates the synthesis and secretion of aldosterone from the
adrenal cortex, and aldosterone in turn increases salt and water
reabsorption by the distal tubule.38,39 Within the kidney, Ang II
increases predominantly proximal tubular sodium reabsorption.
It also induces renal microvascular constriction, in particular of the
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Figure 1 Overview of the chemical structures and the enzymes involved in the synthesis of Ang II and its different fragments. ACE, angiotensin-converting

enzyme; ACE2, human angiotensin-converting enzyme homologue; Ang, angiotensin; APA, APB, APN, aminopeptidase A, B and N; DAP, dipeptidyl

aminopeptidases; PO, propyl oligopeptidase; PCP, carboxypeptidase; NEP, neprilysin; TO, thimet oligopeptidase.

Table 1 Main effects of Ang fragments in different animal models

Rodents Dogs Human

Ang II AT1 receptor-mediated increased BP, RVR, decreased RBF;

increased aldosterone secretion and increased sodium

reabsorption

AT2 receptor-mediated vasodilation and hypotensive effect

(conflicting results)

AT2 receptor-mediated natriuresis

Sodium retention at low doses and

pressure natriuresis at high doses

AT1 receptor-mediated increased BP,

RVR, decreased RBF; increased

aldosterone secretion and increased

sodium reabsorption

AT2 receptor-mediated vasodilation

(few studies)

Ang III AT1 receptor-mediated increased BP, RVR, decreased

RBF; increased aldosterone secretion

AT2 receptor-mediated natriuresis (SHR)

Increased aldosterone secretion Increased aldosterone secretion

Ang IV AT4 receptor-mediated increased RBF in some studies

(not confirmed by others)

AT1 receptor dependent increased BP, RVR, decreased

RBF

No effect on BP, sodium excretion or

aldosterone secretion

No effect on BP, sodium excretion

or aldosterone secretion

Ang-(1–7) Mas receptor-mediated decreased BP

Conflicting data on effects renal hemodynamics and

sodium excretion

No effect on BP, sodium excretion or

aldosterone secretion (increased sodium

excretion in another study)

No effect on BP, sodium excretion

or aldosterone secretion

Ang A AT1 receptor-mediated increased BP, RVR, decreased RBF;

Abbreviations: Ang, angiotensin; AT1, Ang II type 1A; BP, blood pressure; RBF, renal blood flow; RVR, renal vascular resistance; SHR, spontaneously hypertensive rats.
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efferent arterioles. This helps maintaining the glomerular filtration
rate and tends to increase sodium reabsorption by altering peritubular
capillary physical forces.40

During hypovolemia (for example, hemorrhagic shock) and in
sodium-deficient states, intrarenal Ang II levels are elevated and, in
turn, increase both renal sodium and water reabsorption, thereby
playing an important physiological role in maintaining circulating
volume and blood pressure.37,41

AT1 receptor-mediated blood pressure effects of Ang II
The role of Ang II in the regulation of blood pressure has been
extensively investigated using different animal models. In anesthetized
rats, systemic (intravenous, i.v.) or local (intrarenal, i.r.) administra-
tion of Ang II led to pressor effects, which could be blocked by AT1

receptor antagonists.13,42–45 Gene-targeting studies further pointed
out that these effects are mainly mediated by AT1a receptors.46,47

Knock out (�/�) of the AT1a receptor gene decreased baseline
blood pressure46,48 and abolished the pressor response to Ang II
infusion,46,49 whereas deletion of AT1b genes did not alter baseline
blood pressure, nor the pressor response to Ang II.46,50 Ang II induced
dose-dependent increases in blood pressure in AT1a (�/�) mice
pretreated with an ACE inhibitor, which were inhibited by AT1

receptor blockade.51 Therefore, the AT1b receptor may contribute to
the cardiovascular effects of Ang II in the absence of the AT1a receptor,
and presumably is subsidiary to the major AT1a subtype in normal
animals. This notion is supported by data obtained in mice with a
double AT1a (�/�) and AT1b (�/�), which have a more severe
phenotype with a significant lower body weight, kidney weight,
blood pressure and heart rate than mice lacking only the AT1a

receptor.46,52

AT1 receptors are expressed in many organ systems, including the
circulatory system, the central nervous system and the urinary system,
and so on,53 which are presumed to play key functions in blood

pressure homeostasis. Interestingly, a cross-transplantation study
between genetically matched AT1 (�/�) and wild-type mice revealed
that, for the development of Ang II-induced hypertension and cardiac
hypertrophy, renal AT1 receptors are required.54

In man, Ang II also exerts vasoconstriction, sodium retention and
aldosterone secretion through AT1 receptor stimulation, and drugs
inhibiting Ang II formation or selectively blocking the AT1 receptor
are highly effective antihypertensive agents.55,56

AT1 receptor-mediated renal effects of Ang II
Systemic administration57 and i.r. administration58–61 of Ang II
produced dose-dependent decreases in total renal blood flow (RBF)
and renal cortical blood flow (CBF), and increases in renal vascular
resistance and renal cortical vascular resistance, which were blocked by
AT1 receptor antagonists.47,62 Within the microvasculature, Ang II
constricted both the afferent and efferent arterioles,63,64 although the
efferent arterioles are much more sensitive.40 Blockade of the AT1

receptor elicited increases in RBF, indicating a role of Ang II in
maintaining renal vascular tone.57

I.r. infusion of Ang II in dogs at rates chosen to increase renal
arterial concentration by only 10–15 pg ml, a level that is still within
the physiological concentrations of Ang II, markedly reduced sodium
excretion,40 indicating that physiological levels of Ang II are capable of
inducing antinatriuretic effects. Olsen et al.65 compared the responses
with various rates of Ang II infusion in normal dogs in which renal
perfusion pressure was permitted to increase and in the same dogs
when renal arterial pressure was servo-controlled during Ang II
infusion. These experiments showed that, in normal dogs, low doses
(5–45 ng kg�1 min�1, i.v.) of Ang II decreased sodium excretion,
whereas infusion rates of 135–1215 ng kg�1 min�1 i.v. caused natriur-
esis and diuresis related to the increase in blood pressure. This
phenomenon is commonly referred to as ‘pressure natriuresis’.66–69

In contrast, when renal arterial pressure was servo-controlled, Ang II
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Figure 2 Angiotensin fragments and their actions on the different receptors.
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infusion at all infusion rates (5–1215 ng kg�1 min�1, i.v.) in the same
dogs decreased urinary sodium excretion.65 Therefore, in animal
experiments, depending on the dose of the Ang II as well as the
magnitude of the blood pressure responses, both antinatriuresis and
natriuresis can occur. Consistent with this notion, micropuncture and
microperfusion studies showed that Ang II modulated proximal
tubular sodium reabsorption effects in a dose-dependent and biphasic
manner70–73 through apical sodium channels.74 The physiological
significance of this pressure natriuresis is uncertain, although it is
probably involved in certain pathological conditions such as malig-
nant hypertension.40

AT2 receptor-mediated renal and blood pressure effects
of Ang II?
The function of the AT2 receptor is less well understood, possibly
because the AT2 receptor has a low degree of expression compared
with that of the AT1 receptor. In general, it is assumed that AT2

receptors oppose the responses mediated by AT1 receptors.35,75,76

Although the AT1 receptor is involved in pressor, vasoconstrictor
and antinatriuretic effects, the AT2 receptor appears to mediate
depressor effects, vasodilation and natriuresis.77,78 AT2 receptor sti-
mulation could increase the production of NO and cGMP either by
increasing bradykinin production and bradykinin B2 receptor stimu-
lation or by direct activation of NO production.79 AT2 receptor-
mediated vasodilation has been shown in small resistance arteries of
the mesenteric, uterine, adrenal, coronary and peripheral circulations
in a wide variety of animal models and, in human beings, in large
capacitance vessels such as the aorta and in the fetal circulation.79 AT2

receptor-mediated vasodilation in the renal vasculature has so far not
been shown. AT2 receptors were reported to be upregulated and
to contribute to Ang II-induced vasodilation in resistance arteries of
hypertensive type 2 diabetes patients treated with AT1 receptor
blockers.80 AT2 (�/�) mice have elevated basal blood pressure and
exaggerated pressor responses to exogenous Ang II as compared with
wild-type litter mates, which is line with the hypothesis that AT2

receptors counteract AT1 receptor-mediated responses.46,75,76,81,82

Moreover, AT2 (�/�) mice have increased prostaglandin E2 and
prostacyclin levels, suggesting that these vasodilator prostanoids
might be important in preventing hypertension in this model.83

Alternatively, the enhanced pressor response to Ang II in AT2 (�/�)
mice could also be due to the upregulation of AT1 receptors triggered
by AT2 receptor deficiency.84,85 AT2 receptor-mediated vasodilator and
depressor actions of Ang II appear more easily when AT1 receptors are
blocked by AT1 receptor antagonists.79,86,87 This might be due to the
predominance of the AT1 receptor over the AT2 receptor expression in
blood vessels.79 It was suggested that hypotensive responses to AT1

receptor blockade are mediated, at least in part, by AT2 receptor
activation. The vasodilator effects mediated by AT2 receptors are also
facilitated when the RAS is activated by dietary Na+ restriction,79 or
when AT2 receptors are upregulated as in SHR.31,86–89

AT2 receptor-mediated inhibition of Na+ transport in rabbit prox-
imal tubule cells has been shown in an in vitro study.90 AT2 (�/�)
mice were shown to display antinatriuretic hypersensitivity to exo-
genous Ang II and a shift to the right (less sensitive) in their pressure–
natriuresis curves.82,91 Direct renal interstitial microinfusion of a
selective AT1 receptor antagonist did not influence systemic hemody-
namics and did not induce any hormonal changes, but induced a
natriuretic response that was abolished by intrarenal co-infusion of the
AT2 receptor antagonist PD-123319 (ref. 92), suggesting that the
natriuretic response to AT1 receptor blockade is mediated by AT2

receptor activation.

Effect of Ang II on medullary RBF
Ang II elicits a paradoxical medullary vasodilatation in normotensive
animals, mediated by a secondary activation of vasodilator paracrine
agents such as prostaglandins, kinins and NO, rather than to a direct
action via AT2 receptors.42,93,94 Sarkis et al.95 observed a biphasic
medullary blood flow following i.v. injection of Ang II in normo-
tensive rats characterized by an initial rapid and short-lasting
(o1 min) decrease (vasoconstrictor component), followed by a
marked and longer-lasting (42 min) increase (AT1 receptor-depen-
dent vasodilator component) in medullary blood flow. The vasodilator
component was mainly due to the release of prostaglandins and, to
a lesser extent, of nitric oxide (NO) and kinins.95 In SHR and Lyon
genetically hypertensive rats, the vasoconstrictor component was more
pronounced, and/or the vasodilator component was attenuated after
stimulation with Ang II.95,96

ANGIOTENSIN III

Ang III is generated from Ang II by the enzyme aminopeptidase A
(Figure 3),97 or from Ang I, which can be converted directly to Ang III
by ACE.98 Like Ang II, Ang III displays similar affinity for AT1 and AT2

receptors (Figure 2),99 but it is more sensitive to aminopeptidase N.100

Ang III reduces RBF after systemic administration.101 I.v. Ang III or
Ang II achieving the same plasma concentrations in conscious dogs
had equipotent AT1 receptor-dependent effects on blood pressure and
sodium excretion, but the metabolic clearance rate of Ang III was five
times that of Ang II.102 This study supports earlier conclusions that
Ang II is the main effector of the ‘circulating RAS’. However, data
obtained in SHR point to Ang III as an important effector peptide.
Ang III- and Ang II-induced dose-dependent increases in renal
perfusion pressure were both enhanced in SHR compared with
WKY rats,103 but kidneys of SHR displayed higher activity of amino-
peptidase A, the principal enzyme that hydrolyzes Ang II to Ang III,104

suggesting that Ang III could contribute to the enhanced renal
response to Ang II in the SHR. Moreover, Ang III, but not Ang II,
induced natriuresis through AT2 receptor activation during AT1

receptor blockade in SHR.92 This natriuresis was augmented by the
blockade of aminopeptidase N, an enzyme metabolizing Ang III to
Ang IV,105 suggesting an important role of Ang III in sodium
excretion. Further research is required to clarify a possible role of

Figure 3 Metabolic conversion of angiotensin (Ang) II, via Ang III–IV. EC33

and PC18 are selective inhibitors of aminopeptidase A (APA) and

aminopeptidase (APN), respectively.
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Ang III in the regulation of the renal hemodynamics and sodium
excretion.

Ang III is also a potent stimulator of aldosterone secretion. In the
rat57,106 and in anesthetized dogs,107,108 infusion of Ang III stimulated
aldosterone release similarly to Ang II, although it appeared less
potent. On the other hand, in a study in conscious dogs during
double blockade of the RAS (combined ACE inhibition and aldoster-
one receptor blockade), Ang III was significantly more potent than
Ang II in increasing aldosterone release55,109 and also produced a very
potent antinatriuretic effect already at a dose not producing an
increase in blood pressure.109 In healthy human beings under acute
combined ACE inhibition and aldosterone receptor antagonism,
Ang III infusion increased blood pressure and markedly elevated
plasma aldosterone without affecting renal sodium excretion. These
changes were observed in the absence of a measurable increase in Ang
immunoreactivity, suggesting that Ang III is more potent than Ang II
in stimulating aldosterone secretion.109 On the basis of these experi-
ments, these two groups of investigators raised the question of a
specific receptor for Ang III, which has so far, however, never been
established.55,109

ANGIOTENSIN IV

Ang IV is formed by removing the first NH2-terminal amino acid
(Arg2) from Ang III by aminopeptidase N and/or aminopeptidase B
(Figure 3).14,110–113 Ang IV is then quickly further cleaved into smaller
inactive peptide fragments.114 Ang IV has low affinity for AT1 and AT2

receptors (EC50 within the micromolar range).99,115 The plasma
clearance of Ang III is substantially higher than that of Ang II.55,109

Yet, Ang IV displays certain biological effects already at nanomolar
concentrations, which are not blocked by AT1 and AT2 receptor
antagonists (Figure 2). This, together with the discovery of high-
affinity binding sites for [125I]Ang IV in the central nervous, vascular
and renal systems,16,116,117 has led to the concept of a novel Ang
receptor subtype: the ‘AT4 receptor’,14 which was convincingly shown
to be ‘insulin-regulated aminopeptidase (IRAP)’, a membrane-
anchored zinc-dependent metallopeptidase.118

Autoradiographic and radioligand binding experiments have loca-
lized AT4 binding sites on microvilli and cell bodies of rat proximal
convoluted and straight tubules,17 cultured rat mesangial cells,111

cultured opossum proximal tubule cells,119 apical and basolateral
membranes of rabbit cortical tubules,119 cultured rabbit120 and
human collecting duct cells121 and cultured human proximal tubule
epithelial cells.122 In the brain, the AT4 binding sites are prominent in
structures important to cognitive processing and sensory and motor
functions.123 The distribution of AT4 binding sites in the human brain
has been shown to be clearly different from that of AT1 receptors.124

AT4 binding sites are also present in other peripheral tissues, including
vascular smooth muscle cells, bladder, heart, spleen, prostate, adrenal
gland and colon.14

Blood pressure and renal responses to Ang IV
In anesthetized rats, i.v. Ang IV infusion at picomolar to nanomolar
concentration caused dose-dependent increases in blood pressure,
although with less potency than Ang II. This pressor response was
completely abolished by AT1 receptor blockade.44,47,62,125

Studies on the effects of Ang IV in the kidney have yielded
conflicting results. Infusion of Ang IV directly in renal arteries was
reported to increase renal CBF in anesthetized rats as measured by
laser Doppler flowmetry,60,126 an effect blocked by the specific ‘AT4

receptor’ antagonist, Divalinal-Ang IV, but not by selective AT1 and
AT2 receptor antagonists. L-NAME, an NO synthase inhibitor, also

blocked this vasodilator response.60 In the same line, studies on the
pulmonary and cerebral vasculature also suggested that Ang IV
produced an endothelium-dependent vasodilatation associated with
increased endothelial NO and cGMP production.127–129 In addition,
Ang IV was reported to promote the release of vasodilating prosta-
glandins.130 Taken together, the ‘AT4 receptor’ was suggested to
mediate renal NO and/or prostaglandin-dependent vasodilation. In
contrast, systemic and intrarenal administration of Ang IV reduced
RBF in rats when measured using pulsed Doppler flow probes placed
around the renal artery, and this response was prevented by AT1

receptor blockade.44,131,132 Infusion of LVV-H7, a more stable ligand
with a high affinity (Ki B73 nM) for the AT4 receptor, but no affinity
for AT1 receptors,133 failed to alter RBF.132 One study in anesthetized
rats reported that intrarenal Ang IV produced an AT1 receptor-
dependent biphasic response with an immediate dose-dependent
vasoconstriction, followed by a prolonged vasodilation.59

It was suggested that these conflicting results might be explained by
differences in the methods used to assess flow and the site of
measurement.126 Reports of AT1-dependent, Ang IV-induced
decreases in flow measured total RBF, whereas the studies that
observed increases in flow attributed to IRAP/AT4 receptor stimula-
tion, involving laser Doppler methods, which measured superficial
CBF. It was argued that Ang IV could induce selective shunting of
blood to surface nephrons,134 with only small concomitant overall
changes in flow.126 However, simultaneously monitored RBF and CBF
responses after i.v. administration of Ang IV, Ang II and the dopamine
receptor agonist fenoldopam showed a high correlation between RBF
and CBF measurements, excluding the above possibility.62 Using
simultaneous monitoring of RBF and CBF in rats, Ang IV elicited
total and cortical renal vasoconstrictor effects after systemic adminis-
tration through stimulation of AT1 receptors, but with lower potency
than Ang II.62 Direct intrarenal infusion of Ang IV also induced dose-
dependent AT1 receptor-mediated pressor and renal vasoconstrictor
effects. Ang IV significantly reduced RBF and CBF also when admi-
nistered intrarenally at subpressor doses. These results are in line with
other recent studies showing that Ang IV can induce renal cortical
vasoconstrictor effects through AT1 receptor-activated signaling at
nanomolar concentrations.44 In the same line, AT1 receptor-mediated
vasoconstrictor effects of Ang IV were shown in rat renal interlobular
arteries and in afferent and efferent arterioles of isolated perfused
hydronephrotic kidneys, also at concentrations several fold higher
than those required for Ang II.135

Our experiments in rats with Ang IV and with more selective ‘AT4-
ligands’, LVV-H7 and AT4–16, did not reveal any putative AT4/IRAP-
mediated vasodilator response neither after systemic nor after renal
administration, and also not after AT1 receptor blockade.62

Using transgenic mice, we showed pressor and renal vasoconstrictor
responses to Ang IV to be mediated by the AT1a receptor subtype.47

The responses were indeed almost completely absent in AT1a (�/�)
mice, whereas responses in AT1b (�/�) mice were comparable to
those in corresponding wild-type mice. IRAP/AT4 receptor (�/�)
mice had comparable baseline blood pressure and CBF, and compar-
able responses to Ang IV as their corresponding wild-type mice,
confirming that the putative IRAP/AT4 receptor is not involved in
the pressor and renal hemodynamic effects of Ang IV.47

Ang IV has been reported to increase whole kidney urinary sodium
and water excretion independent of sympathetic innervation in one
study.122 In line with this natriuretic effect, Ang IV has been shown to
produce a dose-dependent inhibition of tubular sodium reabsorp-
tion.17 Pretreatment with the specific AT4 receptor antagonist,
Divalinal-Ang IV, blocked this effect.126 Taken together, these results
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supported the hypothesis that Ang IV may act as a natriuretic
agent via the ‘AT4 receptor’.126 However, we did not confirm an
AT4-mediated natriuretic response to Ang IV in rats, although we
were able to document a natriuretic response to fenoldopam, which
was used as a positive control.62,125

In both conscious dogs and in normal human beings, i.v. infusion
of low-dose Ang IV during acute double blockade of the RAS did not
modify blood pressure and sodium excretion and did not increase
plasma aldosterone concentration.55,109

ANGIOTENSIN-(1–7)

Ang-(1–7) is generated directly from Ang II by ACE2, another isoform
of ACE, or from Ang I, via Ang-(1–9), a pathway that utilizes both
ACE2 and ACE.136 Ang-(1–7) may also be generated from Ang I by
various protease enzymes, including neprilysin, thimet oligopeptidase
and prolyl oligopeptidase (Figure 1). Ang-(1–7) has a shorter half-life
than Ang II; it can be catabolized by ACE into the biologically inactive
pentapeptide, Ang-(1–5), or by aminopeptidases into inactive frag-
ments.100,137 The G-protein-coupled Mas receptor was reported to
mediate some of the effects of Ang-(1–7).138 Alternatively, other effects
of Ang-(1–7) appeared to be mediated by AT1 and AT2 receptors as
they were inhibited by the AT1 and AT2 receptor-selective antagonists
(Figure 2),139 although radioligand binding assays suggested that these
were low-affinity interactions.140

Some studies suggest that Ang-(1–7) may have a hypotensive
activity.139,141 Untreated essential hypertensive patients exhibited
lower urinary concentrations of Ang-(1–7) than normotensive con-
trols.141,142 Ang-(1–7) inhibited Ang II-induced pressor responses in
SHR, an effect reduced by blockade of the Mas receptor, cycloox-
ygenase inhibition or NOS inhibition, suggesting a role for Mas
receptor-mediated release of prostaglandins and NO in this blood
pressure-lowering effect of Ang-(1–7).143 In conscious SHR treated
with the AT1 receptor antagonist candesartan, Ang-(1–7) evoked a
depressor response via activation of the AT2 receptor, involving the
bradykinin-NO cascade.139,144 Hypertensive animals treated with ACE
inhibitors had a 25- to 50-fold increase of circulating levels of Ang-
(1–7), suggesting that Ang-(1–7) might contribute to the antihyper-
tensive effects produced by ACE inhibitors.145–147

The role of Ang-(1–7) in the regulation of kidney function is not
well understood and conflicting data were reported. Some groups
failed to detect effects of Ang-(1–7) on RBF in rats,145,148 but others
observed a renal vasodilator response, and reported afferent arteriolar
dilatation mediated by NO.149 In contrast, in isolated perfused
hydronephrotic rat kidneys, Ang-(1–7) at high concentrations
activated the AT1 receptor, thereby inducing renal microvascular
constriction in small interlobular arteries, afferent arterioles and
efferent arterioles.135

The data on the role of Ang-(1–7) in the regulation of salt and water
excretion are also difficult to reconcile. In anesthetized rats, admin-
istration of Ang-(1–7) increased urinary flow rate and sodium excre-
tion, an effect abolished by the Ang-(1–7) receptor antagonist A-779
(ref. 146). However, the increase in urinary sodium and water
excretion after intrarenal infusion of Ang-(1–7) in dogs was reduced
by AT1, but not AT2 receptor blockade, suggesting a role for Ang-(1–
7)-mediated signaling via the AT1 receptor.150 In contrast, in water-
loaded rats, infusion of Ang-(1–7) decreased urine volume, an effect
reversed by Mas receptor blockade.140 In conscious dogs and in
normal human beings, i.v. infusion of a low dose of Ang-(1–7) during
acute double blockade of the RAS did not modify blood pressure and
sodium excretion and did not increase plasma aldosterone concentra-
tion.55,109 Other studies in man have shown a slight pressor response

after infusion of a higher dose of Ang-(1–7) in healthy volunteers,151

whereas infusion into the brachial artery of patients with heart failure
treated with an ACE inhibitor did not induce significant forearm
blood flow changes.152

In conclusion, Ang-(1–7) mediates its effects by binding to kidney
Mas receptors, although some actions may occur via AT1 or AT2

receptors. The role of this peptide in the physiological and pathophy-
siological regulation of blood pressure and renal function awaits
clarification.

ANGIOTENSIN A

Ang A, a newly discovered Ang-derived peptide, was detected in
plasma of healthy human beings and, in increased concentrations,
in patients with renal failure.8 In the presence of mononuclear
leukocytes, Ang A appears to be generated from Ang II by enzymatic
decarboxylation of Asp1 (ref. 8). Jankowski et al.8 claimed that Ang A
is a partial agonist with the same affinity for the AT1 receptor as Ang
II, but a higher affinity for the AT2 receptor (Figure 2). More recent in
vitro binding studies of Ang A in CHO-hAT1 and to CHO-AT2 cells
did not confirm this, and showed that Ang A has similar binding
affinity for the AT1 receptors and the AT2 receptors as Ang II. The
reason for this discrepancy may be due to the different experimental
conditions. Moreover, in experiments with AT1-mediated IP accumu-
lation, Ang A produced a similar maximal effect as Ang II, indicating
that it is a full AT1 receptor agonist.153

Jankowski et al.8 also claimed that Ang A may modulate the
harmful effects of Ang II because of more pronounced effects at the
AT2 receptor.8 However, in the isolated perfused rat kidney, Ang A
induced dose-dependent vasoconstriction, which was abolished by
AT1 receptor blockade, but not by the AT2 receptor antagonist
PD123319 (ref. 8). In the same line, Ang A induced, although with
lower potency than Ang II, pressor and renal vasoconstrictor responses
(with maximal responses of the same magnitude as Ang II) in
normotensive rats and SHR, which were abolished by AT1 receptor
blockade, but not modified by AT2 receptor blockade.153,154 Further-
more, by using transgenic mice, we showed that the AT1a receptor
subtype mediates these pressor and renal vascular effects of Ang A. No
putative AT2 receptor-mediated vasodilator effects of Ang A were
detected in normotensive rats, SHR and mice, and also not under
conditions of AT1 receptor blockade.153

Overall, in contrast to earlier observations, Ang A is not a partial
agonist with greater affinity for AT2 receptors than Ang II, but displays
similar in vitro and in vivo properties as Ang II. This is in line with the
hypothesis that the N-terminal aspartate residue of Ang II does not
play an important function in binding to and stimulating these
receptors.99,155 There are no published data on the effects of Ang A
on sodium handling and aldosterone secretion nor on effects in
human beings, but based on the above findings, it can be speculated
that exogenous Ang A administration would produce effects similar to
Ang II.

A well-validated nano-liquid chromatography-tandem mass spec-
trometry method,156 which has limits of quantification for Ang
fragments in the low pM range, failed to detect Ang A in the plasma
of rats, suggesting that the endogenous plasma levels of Ang A in rats
are very low compared with plasma concentrations of Ang II. This is
in line with the reportedly lower plasma concentrations of Ang A vs.
Ang II in healthy subjects and end-stage renal failure patients.8

CONCLUSION

Ang II, the main effector peptide of the RAS, increases arterial pressure
through arterioral vasoconstriction and by decreasing renal salt and
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water excretion through extrarenal and intrarenal mechanisms. Both
effects are largely mediated through stimulation of AT1 receptors,
resulting in renal cortical vasoconstriction (but vasodilation of the
medullary vessels) and sodium reabsorption. The inhibition of these
deleterious AT1 receptor-mediated effects through ACE inhibitors or
Ang receptor blockers (and more recently the direct renin inhibitor
aliskiren) largely explains as to why the two former classes of
antihypertensive drugs have become the ‘gold standard’ of antihyper-
tensive therapy.157

Although it is generally assumed that AT2 receptors oppose the
responses mediated by AT1 receptors, and therefore may attenuate the
pressor effects of Ang II, a possible role of AT2 receptors in the
regulation of renal hemodynamics and sodium homeostasis remains
to be unclear. The recent availability of Compound 21, the first orally
active selective AT2 receptor agonist, opens the possibility to explore
whether AT2 receptor stimulation could be a valuable concept for an
innovative antihypertensive therapy.56,158,159 However, so far contro-
versial results have been reported regarding its effect on blood
pressure, depending on the species and the experimental conditions,
and it is therefore difficult to predict the effects of long-term AT2

receptor stimulation in human beings.159 The current knowledge does
rather suggest that AT2 receptor stimulation will not become another
antihypertensive strategy. However, there appears to be other more
immediate indications for the clinical drug development of Com-
pound 21, such as heart failure, nephroprotection, stroke and anti-
inflammation.158 Nevertheless, the availability of this new selective
compound will certainly help to better understand the physiological
and pathophysiological role of the AT2 receptor, and the complex
interactions between the two Ang receptor subtypes.

Ang III also increases blood pressure and reduces RBF through
activation of AT1 receptors, but is more rapidly cleared from the
plasma than Ang II. Ang III may be a relatively more important
regulator of renal hemodynamics and sodium homeostasis in SHR.
The observation that Ang III is more potent than Ang II in stimulating
aldosterone secretion may suggest the possibility of the existence of a
specific receptor for Ang III, which, however, awaits identification.

Ang IV has AT1 receptor-dependent pressor renal vasoconstrictor
effects, but with lower potency than Ang II. The possibility of a role of
the IRAP/AT4 receptor in the regulation of renal hemodynamics and
renal sodium handling suggested by earlier reports has not been
confirmed by more recent research. Current evidence does not suggest
that this peptide plays a significant role in the control of blood
pressure or renal function.

Ang-(1–7) may have a hypotensive activity through interaction with
the Mas receptor, resulting in prostaglandin and NO release. Studies
on the possible role of this peptide in the regulation of renal
hemodynamics and sodium excretion have yielded conflicting results.
Overall, the currently available evidence does not suggest that this
peptide plays a major role in the regulation of blood pressure and
renal function, although it may act as a modulator of Ang II-mediated
effects under certain conditions.

Studies on the effects of Ang A, a recently discovered novel human
Ang-derived peptide, where only the N-terminal amino acid is
different from Ang II, have also yielded conflicting results. One
group of investigators suggested a role for Ang A as a naturally
occurring peptide counteracting the Ang II-mediated vasoconstrictor
effects via a predominant AT2 receptor-mediated effect. This was,
however, not confirmed by more recent research, indicating that Ang
A displays similar in vitro and in vivo properties as Ang II.
These findings, together with the very low plasma concentrations
of Ang A, do not provide evidence for a physiological role of Ang

A as a naturally occurring peptide, possibly counteracting the
Ang II-mediated vasoconstrictor effects.
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