
REVIEW SERIES

Oxidative stress in the cardiovascular center has
a pivotal role in the sympathetic activation
in hypertension

Yoshitaka Hirooka

Activation of the sympathetic nervous system has an important role in the pathogenesis of hypertension. However, the precise

mechanisms involved are not fully understood. Oxidative stress may be important in hypertension as well as in other

cardiovascular disorders. We investigated the role of oxidative stress, particularly in the rostral ventrolateral medulla (RVLM),

which is known as the cardiovascular center in the brainstem, in the activation of the sympathetic nervous system in

hypertension. We observed that the reactive oxygen species (ROS) production increases in the RVLM in hypertensive rats,

thereby enhancing the central sympathetic outflow, which leads to hypertension. Furthermore, the environmental factors of

high salt intake and a high-calorie diet may also increase the ROS production in the RVLM, thereby activating the central

sympathetic outflow and increasing the risk of hypertension. The activation of the nicotinamide adenine dinucleotide phosphate

oxidase via the angiotensin type 1 (AT1) receptors is suggested to be the major source of ROS production, and an altered

downstream signaling pathway is involved in the activation of the RVLM neurons, leading to enhanced central sympathetic

outflow and hypertension. Thus, the brain AT1 receptors may be novel therapeutic targets, and, in fact, oral treatment with

angiotensin receptor blockers has been found to inhibit the central AT1 receptors, despite the blood–brain barrier.
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INTRODUCTION

Recent studies in animals as well as humans support the importance of
the activation of the sympathetic nervous system in the pathogenesis
of hypertension, including the initial pathological events, the devel-
opment of hypertension and the end-organ damage.1–5 The activation
of the renin–angiotensin system is known to be involved in the
cardiovascular continuum.2,6

Although the kidney has an important role in the pathogenesis of
hypertension, the kidney function itself is influenced by renal
nerves.7,8 This is also evidenced in humans with the development of
hypertension after renal nerve ablation.9,10

There is accumulating evidence demonstrating that oxidative stress
has an important role in the various aspects of hypertension.11

However, the study of the role of brain oxidative stress in the
activation of the sympathetic nervous system and hypertension has
been limited.12–17 We investigated the role of oxidative stress in
the brain, particularly in the rostral ventrolateral medulla (RVLM)
in the brainstem, which is known as the cardiovascular center, in the
pathogenesis of hypertension.2,13,16,18–21 The RVLM neurons deter-
mine the basal central sympathetic outflow and integrate the inputs

from baroreceptors, chemoreceptors and visceral receptors via the
nucleus of the solitary tract (NTS).22–27 Importantly, it also receives
the inputs from the paraventricular nucleus of the hypothalamus,
which is known as a key nucleus of the central cardiovascular
regulation.22,28,29 Therefore, we focused on the RVLM in our studies.
Other investigators have also confirmed our initial observations, and
other details have been further investigated. In this review, we describe
the importance of oxidative stress in the brainstem, particularly in the
RVLM, on the neural regulation of the sympathetic activity and its
contribution to the pathophysiology of hypertension based on the
findings of our studies and those of others.

ROLE OF THE REACTIVE OXYGEN SPECIES (ROS) IN THE

RVLM IN HYPERTENSIVE RATS

We found that oxidative stress in the RVLM is increased and
contributes to the neural mechanisms of hypertension in stroke-
prone spontaneously hypertensive rats (SHRSPs).16 Oxidative stress
was evaluated by two methods. The levels of the thiobarbituric acid-
reactive substances, an end product of lipid peroxidation, were
increased in the whole brain, NTS and RVLM of the SHRSP compared
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with normotensive control Wistar–Kyoto (WKY) rats. Another
method used the electron spin resonance spectroscopy with the
nitroxide radical 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl as
a spin probe. The intensity of the electron spin resonance signals
decreased more rapidly in the RVLM of the SHRSP than in the WKY
rats. Functionally, we performed a microinjection of tempol, a
membrane-permeable superoxide dismutase (SOD) mimetic, into
the RVLM and measured blood pressure and heart rate. Microinjec-
tion of tempol into the RVLM decreased the blood pressure and heart
rate in the SHRSP, but not in the WKY rats. To confirm the role of
ROS production in the RVLM in hypertension in the awake state, we
transfected adenovirus vectors encoding the Mn-SOD gene into the
bilateral RVLM in SHRSP. MnSOD overexpression in the RVLM
decreased blood pressure, heart rate and urinary norepinephrine
excretion in the SHRSP, but not in WKY rats. We also found reduced
SOD activity in the RVLM of the SHRSP compared with the WKY
rats, which led to a decreased capability of scavenging superoxide
anions. Together, these findings indicated that oxidative stress in the
RVLM increased the blood pressure, which may have occurred via an
increase in sympathetic nerve activity, and this mechanism was
involved in the neural pathophysiology of hypertension in the
SHRSP. Consistent with our observations, it was reported that
increased superoxide anion in the RVLM contributed to hypertension
in spontaneously hypertensive rats (SHRs).17 There was an increase in
the intensities and numbers of cells in the RVLM with red fluorescent
ethidium bromide, which reflected the superoxide level, in SHR
compared with WKY rats. Microinjection of a membrane-permeable
SOD mimetic, Mn(III)-tetrakis-(4-benzoic acid) porphyrin, into the
RVLM elicited an enhanced depressor response in the SHR compared
with the WKY rats. The expression of Mn-SOD, but not Cu/Zn-SOD,
in the RVLM was reduced in the SHR. Chan et al.30 demonstrated that
the Cu/Zn-SOD, Mn-SOD and catalase expression levels (both protein
and mRNA) and their activities in the RVLM were reduced in the
SHR compared with the WKY rats, and this was also associated with
the increased superoxide and hydrogen peroxide production in the
SHR. In fact, overexpression of Cu/ZnSOD, MnSOD or catalase into
the RVLM reduced blood pressure and heart rate in the SHR. It is
interesting to note that every intervention tested led to a similar extent
of reduction of blood pressure and superoxide production in the SHR,
although it remains unknown whether the reduced expression and
activity of hydrogen peroxide is a major factor for stimulating ROS
production by a feed-forward mechanism. In addition, recent studies
suggest that hypertension and sympathoexcitation in renovascular
(two-kidney one-clip) hypertensive rats are associated with oxidative
stress in the RVLM and paraventricular nucleus of the hypothalamus
and with systemic oxidative stress.31,32 Because the two-kidney and
one-clip model is an angiotensin II-dependent hypertension model, it
is not surprising that oxidative stress was increased in this model.
However, it is important that the increased oxidative stress in the
autonomic brain regions, such as the RVLM and paraventricular
nucleus of the hypothalamus, was involved in the activation of the
sympathetic nervous system as one of the mechanisms of hypertension
in this model. The nicotinamide adenine dinucleotide phosphate
(NAD(P)H) oxidase subunits and angiotensin type 1 (AT1) receptor
mRNA expression levels in the RVLM were increased in this model,
and the microinjection of tempol or vitamin C into the RVLM
reduced the blood pressure and renal sympathetic nerve activity,
supporting this notion. Importantly, a recent study found that
ROS signaling in the RVLM had a major role in the enhanced
central sympathetic outflow in the two-kidney one-clip hypertensive
rats.33 In that study, transfection of an adenovirus vector encoding

the Cu/ZnSOD gene into the RVLM neurons was confirmed by
costaining with tyrosine hydroxylase and neuronal nuclei. Regarding
angiotensin II, the peripheral slow-pressor dose of angiotensin II
(600 ng kg�1 min�1 for 2 weeks) in mice led to a gradual development
of hypertension that was correlated with marked elevations in super-
oxide production.34 In this case, the authors emphasized the impor-
tance of the sub-fornical organ, in which the blood–brain barrier is
lacking and the AT1 receptors are rich. Angiotensinergic inputs in the
sub-fornical organ are delivered to the paraventricular nucleus of the
hypothalamus, and then it sends the neural information to the RVLM
neurons. Thus, the functional responses of the sub-fornical organ to
angiotensin II are the increases in drinking behavior and blood
pressure via the activation of the sympathetic nervous system and
vasopressin release.

SOURCES OF ROS PRODUCTION IN THE RVLM IN

HYPERTENSION

For the sources of ROS production, there are several candidates,
such as NAD(P)H oxidase, xanthine oxidase, uncoupled nitric oxide
synthase and mitochondria. Among them, we demonstrated that the
activation of the NAD(P)H oxidase through AT1 receptors had a
major role in the ROS production in the brainstem including the
RVLM of the SHRSP (Figure 1).19 Regional expression of the
NAD(P)H oxidase and SOD has been demonstrated in the brain
including the NTS and RVLM.35–37 In addition, we showed that
Rac1 activation occurs in this process. Rac1 is a small G protein
involved in integrating the intracellular transduction pathways toward
NAD(P)H activation and requires lipid modifications to migrate
from the cytosol to the cell membrane. The inhibition of Rac1 caused
by the transfection of the adenovirus vectors encoding a dominant-
negative Rac1 into the RVLM or NTS decreased the blood pressure,
heart rate and urinary norepinephrine excretion in the SHRSP, but not
in the WKY rats.12,38 It was demonstrated that Nox2-containing
NAD(P)H oxidase followed by an influx of Ca2+ via the L-type Ca
channels was the source of the angiotensin II-induced ROS produc-
tion in the NTS neurons that were anterograde labeled from the vagal
afferents using DiA.39,40 Because azelnidipine could reduce oxidative
stress in the RVLM of SHRSP associated with sympathoinhibition, the
inhibition of the Ca2+ channel in the RVLM may have reduced
oxidative stress.21 Inhibition of Rac1 also reduced the NAD(P)H
oxidase activity and ROS production in the brainstem of SHRSP.
Thus, our findings indicate that the activation of the Rac1 in the
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Figure 1 Possible mechanisms involved in the ROS production in the RVLM

neurons of the brainstem in hypertension (modified from Nozoe et al.,19 with

permission). Ang, angiotensin; eNOS, endothelial NOS.
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RVLM or NTS produces ROS via the NAD(P)H oxidase in SHRSP. In
fact, it was demonstrated that the activation of the Rac1/NAD(P)H
oxidase was required in the pressor and dipsogenic actions of
angiotensin II in the brain.41

The brain renin–angiotensin system is upregulated in chronic
disease states such as hypertension and heart failure with enhanced
central sympathetic outflow.42–47 We also determined whether mito-
chondria-derived ROS mediates sympathoexcitation induced by
angiotensin II in the RVLM.19 It is well established that exogenously
administered angiotensin II into the RVLM elicits the pressor response
via the activation of the sympathetic nervous system.48,49 In contrast,
the inhibition of AT1 receptors in the RVLM by an AT1 receptor
blocker does not reduce blood pressure in normotensive rats.48,49

However, it reduces blood pressure with sympathoinhibition in
hypertensive rats such as SHR.18,48 We found that the overexpression
of MnSOD attenuated the angiotensin II-induced pressor response
and also suppressed the angiotensin II-induced ROS production in the
RVLM.19 In that study, we showed that angiotensin II increased
mitochondrial ROS production in vitro. Overexpression of MnSOD
and rotenone, a mitochondrial respiratory complex I inhibitor,
suppressed the angiotensin II-induced ROS production. The depletion
of extracellular Ca2+ with ethylene glycol bis-N,N,N¢,N¢-tetraacetate
and the administration of p-trifluomethoxycarbonylcyanyde phenyl-
hydrazone, which prevents Ca2+ uptake into the mitochondria,
blocked the angiotensin II-elicited mitochondrial ROS production.
Together, our findings indicate that angiotensin II increases mitochon-
drial ROS production in the RVLM, leading to sympathoexcitation.
Furthermore, NAD(P)H oxidase-derived ROS may trigger a Ca2+

influx, and the mitochondrial Ca2+ accumulation would lead to
mitochondrial ROS production. A recent study also demonstrated
that the ROS-induced impairment of the mitochondrial electron
transport chain complexes in the RVLM contribute to further chronic
oxidative stress, thereby leading to augmented central sympathetic
outflow and hypertension.50 In addition, it was demonstrated that
superoxide mediates the angiotensin II-induced influx of extracellular
Ca2+ in cultured neural cells.51 It should be noted that angiotensin II
regulates neuronal activity by reducing the potassium current, and the
increased superoxide production in neurons closes the potassium
channels to inhibit a delayed rectifying potassium current resulting
in membrane depolarization.52

When discussing the role of ROS in the regulation of sympathetic
activity, we need to consider the role of nitric oxide (NO) because NO
and ROS interact. In general, NO in the brain, including the RVLM,
inhibits sympathetic activity.53,54 In fact, we found that an increase in
NO in the RVLM reduces blood pressure, heart rate, and sympathetic
activity in the WKY rats and SHRSP.55 Moreover, the magnitude of the
decreases in these variables were greater in the SHRSP than in the WKY
rats, suggesting a deficiency in the NO bioavailability in SHRSP. Our
important finding was that overexpression of the inducible NO synthase
(iNOS) in the RVLM elicited blood pressure elevation and sympathoex-
citation in the WKY rats and that this was caused by an increase in
oxidative stress.56 This may have been caused by the so-called uncou-
pling of the NO synthase function because of the deficiency of the
precursor of L-arginine and/or the cofactor tetrahydrobiopterin. We
found that the micoinjection of the L-arginine reversed the blood
pressure elevation elicited by the overexpression of iNOS in the
RVLM. Importantly, we have found that the iNOS expression in the
RVLM is enhanced in the SHR compared with the WKY rats, and
the micoinjection of the iNOS blockers into the RVLM reduced the
blood pressure only in the SHR.57 A recent study also suggested that the
upregulation of AT1 receptors and iNOS in the RVLM was important

for the maintenance of high blood pressure and renal sympathetic
activation in the two-kidney one-clip hypertensive rats.58

SIGNALING PATHWAYS OF AT1 RECEPTOR ACTIVATION

AND ROS PRODUCTION IN THE BRAIN

Recently, we found that the AT1 receptor activates caspase-3 through
the Ras/mitogen-activated protein kinase/extracellular signal-regulated
kinase (ERK) in the rostral ventrolateral medulla, which is involved in
the sympathoexcitation in SHRSP.20 The activities of Ras, p38 mito-
gen-activated protein kinase, ERK and caspase-3 in the RVLM were
elevated in the SHRSP compared with those in the WKY rats. The
phosphorylation of the proapoptotic protein Bax and Bad, which
releases cytochrome c in the mitochondria, leads to caspase-3 activa-
tion.20 In contrast, the phosphorylation of the antiapoptotic protein
Bcl-2 inhibits the caspase-3 activation. Intracerebroventricular infu-
sion of a caspase-3 inhibitor reduces blood pressure, heart rate and
sympathetic activity in the SHRSP, but not in the WKY rats.
Intracerebroventricular infusion of an AT1 receptor blocker also
reduced the blood pressure, heart rate, and sympathetic activity and
also reduced the activities of Ras, p38 mitogen-activated protein
kinase, ERK and caspase-3 in the RVLM of SHRSP, suggesting that
these pathways exist downstream to the AT1 receptor activation in the
RVLM of SHRSP and are related to blood pressure elevation and
sympathoexcitation of SHRSP. In that study, we did not examine the
effect of ROS reduction in the RVLM on caspase-3 activity in SHRSP.
In support of our findings, it was reported that the NAD(P)H oxidase-
derived superoxide anion mediates the activation of p38 mitogen-
activated protein kinase or ERK but not the stress-activated protein
kinase/Jun N-terminal kinase by angiotensin II in the RVLM and
pressor response.59 Furthermore, in a later study, the authors sug-
gested that the activation of the NAD(P)H oxidase/ERK in the RVLM
induced the phosphorylation of the transcriptional factor cyclic
adenosine monophosphate response element-binding protein and
c-fos induction, thereby contributing to the long-term pressor
response triggered by angiotensin II.60 It is also important to note
that the activation of the activator protein 1 and the Jun N-terminal
kinase may occur in rabbits with rapid pacing-induced heart failure.61

Thus, the signaling pathway followed by the activation of the ROS
production may differ between hypertension and heart failure because
of the advancement of the disease state. Further studies are required to
clarify the mechanisms involved.

INFLUENCE OF SALT AND OBESITY ON OXIDATIVE STRESS

IN THE BRAIN AND SYMPATHETIC FUNCTION IN

HYPERTENSION

A high salt intake is an important environmental factor for the
development of hypertension.62 Increasing evidence suggests that
central nervous system mechanisms are involved in salt-induced
hypertension, although the kidney also has a key role in salt-induced
hypertension.63–66 We sought to determine whether high salt intake
increases hypertension in the SHR and whether the increased ROS
production in the RVLM contributes to this mechanism.18 High salt
intake augmented the development of hypertension in the SHR
beginning at the age of 6–12 weeks. There was greater ROS production
in the RVLM of the SHR with high salt intake than in those with a
regular salt intake. The scavenging of the produced ROS by tempol
injected into the RVLM elicited a greater reduction of blood pressure in
the SHR with a high salt intake than in those with a regular salt intake.
We suggested that the increased AT1 receptors and NAD(P)H oxidase
expression levels in the RVLM were responsible for the increased ROS
production and blood pressure in SHR with a high salt intake
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compared with those with a regular salt intake. The enhanced
depressor response to an AT1 receptor supported this suggestion.
Consistent with our findings, increased oxidative stress was involved
in the blood pressure elevation through an enhanced central sympa-
thetic outflow in Dahl salt-sensitive rats.67 In that study, the activation
of the NAD(P)H oxidase in the brain, particularly in the hypothala-
mus, was also suggested to be a source of ROS production. It is possible
that the enhanced neuronal activity in the hypothalamus, such as the
paraventricular nucleus, conveyed the input to the RVLM, thereby
augmenting the RVLM neuronal activity. It is interesting that the
RVLM neuronal activity was enhanced in rats with a high-salt diet.
However, on the basis of our findings, oxidative stress in the RVLM
itself causes the increased central sympathetic outflow, thereby con-
tributing to the development of hypertension with a high-salt diet.

It has also been demonstrated that the sympathetic activation has
an important role in obesity-related hypertension, including the
metabolic syndrome.68–73 Insulin or leptin increases the sympathetic
activity, thereby causing increased blood pressure; however, with
obesity or metabolic syndrome, there is insulin or leptin resistance.
In addition, it has been demonstrated that the RVLM neurons are
activated in obesity-induced rats.73 A recent study suggested that
oxidative stress, particularly in the hypothalamus, was involved in the
activation of the sympathetic nervous system in obesity-induced
rats.74 The importance of the RVLM is also suggested in this regard.75

EFFECTS OF AT1 RECEPTOR BLOCKERS ON OXIDATIVE

STRESS IN THE BRAIN AND SYMPATHETIC FUNCTION

IN HYPERTENSION

As described above, the upregulation of AT1 receptors in the brain has
an important role in the pathophysiology of hypertension.22,24,42 It is
interesting to note that AT1 receptors are rich in the specific brain
nuclei that regulate the sympathetic activity such as the anteroventral
third ventricle, paraventricular nucleus of the hypothalamus, NTS and
the RVLM in the brainstem.46,47,76 It has been demonstrated that the
peripheral administration of the AT1 receptor blockers penetrate the
blood–brain barrier and blocks the AT1 receptors within the brain as
well as outside of the brain, although the extent of the blocking action
within the brain varies among the AT1 receptor blockers when they are
administered peripherally.77 There are two important observations in
this regard. First, the peripheral treatment with AT1 blockers attenu-
ates or nearly blocks the pressor response to centrally administered
angiotensin II.78–80 This is also observed with the microinjection of
angiotensin II into the RVLM in SHR that are orally treated with
olmesartan.81 Second, the central nervous system blockade by the
peripheral administration of AT1 receptor blockers has been docu-
mented by autoradiographic binding studies.77 It should be noted that
the high density of AT1 receptors is present in brain regions that are
involved in the regulation of the autonomic nervous system such as
the circumventricular organs (for example, the sub-fornical organ, the
organum vasculosum laminae terminalis and area postrema) outside
of the blood–brain barrier where peripherally administered AT1
receptor blockers are able to access without considering the existence
of the blood–brain barrier as well as inside of the blood–brain barrier
(paraventricular nucleus of the hypothalamus, NTS and the RVLM).76

Recent studies suggest that the systemic administration of the AT1
receptor blockers also act on the AT1 receptors within the brain,
thereby reducing blood pressure in hypertensive rats.80–82 The extent
of the actions of the AT1 receptor blockers within the brain depends
partly on the lipophilicity and pharmacokinetics.77,78 However, even
the hydrophilic AT1 receptor blockers are able to block the AT1
receptors within the blood–brain barrier.79 The mechanism(s)

involved remain unknown. It is an important question because the
brain AT1 receptors are now considered to be novel and pleiotropic
therapeutic targets for hypertension and related cardiovascular dis-
eases. Thus, it is conceivable that oral treatment with an angiotensin
receptor blocker may block the AT1 receptors in the brain, particularly
in the RVLM, thereby reducing the ROS production and reducing the
blood pressure via inhibiting the sympathetic activity. Treatment with
telmisartan orally reduced the blood pressure and urinary norepi-
nephrine excretion in SHRSP, and it was associated with a reduction
of ROS production in the brainstem including the RVLM.12 The
reduction of oxidative stress was evaluated with thiobarbituric acid-
reactive substance levels, electron spin resonance spectroscopy and
2,3-dihydroxybenzoic acid measurements. In another study, treatment
with olmesartan was carried out in SHRSP, and brain oxidative stress
was evaluated by using the in vivo electron spin resonance spectro-
scopy method.83 It did not induce reflex-mediated sympathoexcita-
tion, despite the fact that blood pressure reduction was 450 mm Hg.
In contrast, treatment with hydralazine or a combination of hydrala-
zine and hydrochlorthiazide elicited a reflex-mediated sympathoexci-
tation and a blood pressure reduction that was similar in extent to the
reduction observed with the treatment with telmisartan or olmesartan.
Importantly, the antihypertensive treatment with hydralazine or a
combination of hydralazine and hydrochlorthiazide did not reduce
oxidative stress in the brain including the RVLM.12,83

PERSPECTIVES

Considering the importance of the AT1 receptors in the brain,
particularly in the autonomic regulatory regions, such as the RVLM,
NTS and paraventricular nucleus of the hypothalamus, it should be
noted that these areas contain a high density of AT1 receptors in
human.84 The AT1 receptor blockers are widely used in the treatment
of hypertension.85 The inhibition of the brain AT1 receptors may have
a significant role in the sympathoinhibitory effect via the reduction of
oxidative stress in humans. It is also suggested that AT1 blockers may
have neuroprotective effects, reducing the incidence of stroke and
improving cognition function.85,86 In addition, renal afferent nerves
may also contribute to the blood pressure elevation according to the
recent findings of the renal nerve ablation in patients with resistant
hypertension.8,10 Renal afferent nerves project directly to many areas
in the central nervous system controlling the sympathetic nervous
system activity such as the NTS and hypothalamus.87–89 It is demon-
strated that oxidative stress mediates the stimulation of the sympa-
thetic nerve activity in the phenol renal injury model of hypertension
in which the renal afferent nerves are stimulated.90 In this model, the
brain AT1 receptor and NAD(P)H oxidase are activated. It is suggested
that the increased ROS production and reduced neuronal NOS
expression may be involved in this mechanism(s), which leads to
the alteration of cytokines in the brain.90,91 It is interesting and
important to consider AT1 receptors and the related ROS production
in the brain as novel therapeutic targets for the treatment of hyperten-
sion, which are focused on the aspects of sympathetic activation.
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