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Angiotensin II inhibits chemokine CCL5 expression
in vascular smooth muscle cells from spontaneously
hypertensive rats

Young Hyun Yun1, Hye Young Kim2, Byung Soo Do3 and Hee Sun Kim2

Angiotensin II (Ang II) exerts some of its effects on the vasculature by stimulating chemokines and 12-lipoxygenase (12-LO).

In addition, a high expression of chemokines by Ang II has been observed in vascular smooth muscle cells (VSMCs) in

spontaneously hypertensive rats (SHR). In this study, the action mechanism of Ang II on CCL5 expression in SHR VSMCs was

examined. Expression of CCL5 in SHR thoracic aorta tissues and VSMCs was lower than that in normotensive Wistar-Kyoto rats

(WKY) thoracic aorta tissues and VSMCs. Moreover, Ang II inhibited CCL5 expression in SHR VSMCs, but not in WKY VSMCs.

Inhibition of CCL5 by Ang II was mediated by both Ang II subtype 1 receptor (AT1R) and subtype 2 receptor (AT2R) activation in

SHR VSMCs. However, Ang II did not inhibit CCL5 expression in SHR VSMCs that were transfected with 12-LO small interfering

RNA. In addition, 12-LO metabolite, 12(S)-hydroxyeicosatetraenoic acid (HETE) inhibited CCL5 mRNA expression in SHR

VSMCs. The expression of Ang II-induced 12-LO was also blocked by both AT1R and AT2R inhibitors. Mitogen-activated protein

(MAP) kinase, extracellular signal-regulated kinase (ERK)1/2, p38 and Jun N-terminal kinase pathways all mediated the

inhibitory action of Ang II on CCL5 expression in SHR VSMCs. Taken together, the inhibitory action of Ang II on CCL5

expression was shown to be mediated by the 12-LO pathway through the activation of both of AT1R and AT2R and this process

was associated with MAP kinase pathways in SHR VSMCs. This result suggests that upregulation of 12-LO by Ang II leads to the

downregulation of CCL5 expression in SHR VSMCs.

Hypertension Research (2011) 34, 1313–1320; doi:10.1038/hr.2011.132; published online 4 August 2011

Keywords: angiotensin II; CCL5; 12-lipoxygenase; vascular smooth muscle cell

INTRODUCTION

Angiotensin II (Ang II) is a potent vasoconstrictor and blood pressure
regulator. In addition, Ang II has been shown to function as a
potential mediator of inflammation and was reported to exert some
of its effects on the vasculature by stimulating chemokines.1–7

Chemokines have an important role in Ang II-induced vascular
hypertension,8–11 and controlling chemokine production is important
for regulating inflammatory reactions in hypertensive vascular walls.
In fact, the suppression of chemokine-induced inflammatory cell
infiltration has been shown to ameliorate hypertension in experi-
mental animal models.12–15 Thus, up- and downregulation of chemo-
kines has been considered a therapeutic strategy for blocking disease
development or progress, including hypertension.16 However, the
molecular and cellular mechanisms of most chemokines are not yet
clearly understood.
The proinflammatory chemokine CCL5 (regulated upon activation,

normally T-cell expressed and presumably secreted; RANTES) is a
potent chemoattractant for monocytes/macrophages and memory T
lymphocytes, and its production has been described in various cell

types, including human aortic vascular smooth muscle cells
(VSMCs).17,18 It has a functional role in acute and chronic inflam-
matory responses in atherosclerosis, renal disease progression and
vascular wall remodeling in pulmonary arterial hypertension.2,3,19,20

However, CCL5 downregulates LPS-induced cytokines expression in
human peripheral blood monocytes,21 and has a possible neuropro-
tective role in the brains of patients with Alzheimer’s disease.22

Some chemokines upregulate Ang II-induced hypertension and a
high expression of chemokines has been detected in VSMCs isolated
from spontaneously hypertensive rats (SHR).8–11 The increase of
chemokine CCL2 or CXCL8 expression by Ang II has been shown
in SHR VSMCs and rat glomerular endothelial cells.6,8,9,23,24 The
increase of CCL5 expression by Ang II has been also demonstrated
in rat glomerular endothelial cells and the renal cortex.2,3 However,
CCL5 has been shown to inhibit the expression of Ang II-induced
12-lipoxygenase (LO), a hypertensive modulator in SHR VSMCs.25

Although the relationships between Ang II and some chemokines or
chemokine receptors, including CCL2 and CXCL8, in renal disease
and vascular hypertension have been studied,4,8,9,23,24 the relationship
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between Ang II and CCL5 has not yet been characterized and little is
known in SHR VSMCs. Therefore, as a first step to understand the
relationship between Ang II and CCL5 in Ang II-induced vascular
hypertension, the effect of Ang II on CCL5 expression was evaluated in
SHR VSMCs.

METHODS

Reagent
Trizol reagent for total RNA isolation was purchased from Invitrogen (Carls-

bad, CA, USA). Dulbecco’s phosphate-buffered saline, Dulbecco’s modified

Eagle’s medium, penicillin–streptomycin and fetal bovine serum were pur-

chased from Gibco/BRL (Life Technologies, Gaithersburg, MD, USA). Ang II

was obtained from Calbiochem (San Diego, CA, USA). Losartan was obtained

from MSD (Delaware, MD, USA). PD123,319 was obtained from Sigma

Chemical (St Louis, MO, USA). LightCycler FastStart DNA SYBR Green I

Mix was obtained from Roche (Mannheim, Germany). Bay11-7082 was

obtained from Merck (Merck KGaA, Darmstadt, Germany). Baicalein was

obtained from Sigma-Aldrich. 12(S)-HETE was purchased from Cayman

Chemical (Ann Arbor, MI, USA). PD98059, PD169316 and SP600125 were

purchased from Merck. The primer sequences for CCL5, 12-LO, AT1R, AT2R

and b-actin were purchased from Bioneer technology (Daejeon, South Korea).

The rat AT1R small interfering RNA (siRNA), AT2R siRNA, 12-LO siRNA,

ERK1 siRNA, ERK2 siRNA and Jun N-terminal kinase (JNK) siRNA sequences

were purchased from Bioneer technology. Rat p38 siRNA sequence was

purchased from Invitrogen. All other reagents were pure-grade commercial

preparations.

Experimental animals
Specific pathogen-free male inbred SHR or normotensive Wistar-Kyoto rats

(WKY), 12–16 weeks of age, were purchased from Japan SLC (Shizuka, Japan).

All experimental animals received autoclaved food and bedding to minimize

exposure to viral and/or microbial pathogens. Rats were cared for in accordance

with the Guide for the Care and Use of Experimental Animals of Yeungnam

Medical Center.

Immunohistochemistry
Aortic cross-sections were immunohistochemically stained for CCL5. To assess

CCL5 protein expression, slides fixed with aortic cross-sections were treated

with pepsin for antigen retrieval, and endogenous peroxidase was blocked with

3% H2O2. After blocking with normal blocking serum for 30min at room

temperature (RT), sections were incubated with the anti-CCL5 antibody (1:50)

for 1 h at RT and HRP-conjugated rabbit anti-mouse IgG antibody for 30min

at RT. The sections were then developed with the 3,3’-diaminobenzidine

substrate-chromogen system for 5min at RT.

VSMCs preparation
VSMCs were obtained from the thoracic aortas of 12–16 week-old-male SHR

and WKY using the explant method as described by Kim et al.8 VSMCs were

cultured in Dulbecco’s modified Eagle’s medium, which was supplemented

with 10% fetal bovine serum and 1% penicillin–streptomycin. Cells were

detached with 0.25% trypsin/EDTA and seeded onto 75-cm2 tissue culture

flasks at a density of 105 cellsml�1. All experiments were conducted between

cell passages 3–7. Before stimulation, 95%-confluent VSMCs were serum-

starved overnight by incubating in Dulbecco’s modified Eagle’s medium with

0.1% fetal bovine serum. Cell cultures were incubated in a humidified

incubator at 37 1C and 5% CO2 in the presence or absence of stimuli for the

indicated times.

Preparation of total RNA, reverse transcriptase-PCR and real-time
PCR
Total RNA was extracted using the Trizol reagent according to the manufac-

turer’s instructions. The quantity of total RNA obtained was determined by

measuring the optical density at 260 and 280 nm.

A total of 1mg RNA per sample was reverse transcribed using Moloney

murine leukemia virus reverse transcriptase (Perkin Elmer, Norwalk, CT, USA)

and oligo dT priming at 42 1C for 15min according to the manufacturer’s

instruction. Amplification with specific primers was performed in a Gene Amp

PCR system 9600 (Perkin Elmer) for 35 cycles with a 30 s/94 1C denaturation,

30 s/62 1C annealing, 1min/72 1C extension profile in the case of CCL5; for 35

cycles with a 20 s/94 1C denaturation, 10 s/55 1C annealing, 40 s/72 1C extension

profile in the case of AT1R; for 35 cycles with a 20 s/94 1C denaturation, 10 s/

60 1C annealing, 40 s/72 1C extension profile in the case of AT2R; for 30 cycles

with a 20 s/95 1C denaturation, 30 s/60 1C annealing, 30 s/72 1C extension

profile in the case of b-actin. The mRNA of the housekeeping gene b-actin
was amplified and used as an internal quality standard. Amplified products

were electrophoresed on 1.5–2% agarose gel and stained with 0.5mgml�1

ethidium bromide. The primer sequences were as follows: b-actin (101bp)

sense, 5¢-TACTGCCCTGGCTCCTAGCA-3¢, antisense, 5¢-TGGACAGTGAG
GCCAGGATAG-3¢; CCL5 (110bp) sense, 5¢-CGTGAAGGAGTATTTTTACACC
AGC-3¢, antisense, 5¢-CTTGAACCCACTTCTTCTCTGGG-3¢; AT1R (445bp)

sense, 5¢-CACCTATGTAAGATCGCTTC-3¢, antisense, 5¢-GCACAATCGCCAT
AATTATCC-3¢; AT2R (65 bp) sense, 5¢-CCGTGACCAAGTCTTGAAGATG-3¢,
antisense, 5¢-AGGGAAGCCAGCAAATGATG-3¢.

12-LO, CCL5 was amplified by real-time PCR using the LightCycler (Roche).

RNA was reverse transcribed to cDNA from 1mg of total RNA and then

subjected to real-time PCR. PCR was performed in triplicate. The total PCR

volume was 20ml and the PCR consisted of LightCycler FastStart DNA SYBR

Green I mix (Roche), primer and 2ml of cDNA. Before PCR amplification, the

mixture was incubated at 95 1C for 10min, and the amplification step consisted

of 45 cycles of denaturation (10 s at 95 1C), annealing (5 s at the primer-

appropriate temperature) and extension (10 s at 72 1C) with fluorescence

detection at 72 1C after each cycle. After the final cycle, melting point analyses

of all samples were performed over a temperature range of 65–95 1C with

continuous fluorescence detection. b-actin expression levels were used for

sample normalization. Results for each gene were expressed as the relative

expression level compared with b-actin. The primers used for PCR were as

follows: 12-LO (312bp) sense, 5¢-TGGGGCAACTGGAAGG-3¢, antisense,

5¢-AGAGCGCTTCAGCACCAT-3¢; CCL5 (110 bp) sense, 5¢-CGTGAAGGAGT
ATTTTTACACCAGC-3¢, antisense, 5¢-CTTGAACCCACTTCTTCTCTGGG-3¢;
b-actin (101bp) sense, 5¢-TACTGCCCTGGCTCCTAGCA-3¢, antisense,

5¢-TGGACAGTGAGGCCAGGATAG-3¢. The levels of 12-LO and CCL5 mRNA

were determined by comparing experimental levels to standard curves and were

expressed as relative fold expressions.

Electrophoretic mobility shift assay
Cells were washed three times with cold phosphate-buffered saline, then

scraped and harvested by centrifugation. Cell pellets were resuspended and

incubated on ice for 15min in 400ml of hypotonic buffer A (10mmol l�1

HEPES, 10mmol l�1 KCl, 1.5mmol l�1 MgCl2, 0.5mmol l�1 Dithiothreitol ,

0.1mmol l�1 phenylmethylsulfonyl fluoride, 10mgml�1 pepstatin, 10mgml�1

leupeptin, 10mgml�1 autipain and 10mgml�1 aprotinin). Nonidet P-40 was

then added to a final concentration of 2.5%, and the cells were vortexed for

10 s. Nuclei were separated from the cytosol by centrifugation at 12 000 g for

15 s. Pellets were resuspended in 40ml of hypotonic buffer C (20mmol l�1

HEPES, 25% glycerol, 0.4mol l�1 NaCl, 1mmol l�1 EDTA, 1mmol l�1 ethylene

glycol tetraacetic acid, 0.5mmol l�1 Dithiothreitol , 0.1mmol l�1 phenylmethyl-

sulfonyl fluoride, 10mgml�1 pepstatin, 10mgml�1 leupeptin, 10mgml�1 auti-

pain and 10mgml�1 aprotinin). Samples were sonicated for 2–3 s, then

centrifuged for 10min at 4 1C. The nuclear protein concentration was measured

using the Bradford assay (Bio-Rad, Richmond, CA, USA). The consensus

sequence of the NF-kb DNA binding site (5¢-AGTTGAGGGGACTTTAGGC-3¢)
(sc-2505; Santa Cruz Biotechnology, Santa Cruz, CA, USA) was labeled with

(a-32P)dCTP using a random-primed DNA labeling kit (Roche). The mutant

NF-kb binding sequence was identical to sc-2505 except for a ‘G’-‘C’

substitution in the NF-kb DNA binding motif (sc-2511; Santa Cruz Biotech-

nology). The labeled DNA was purified over a S-200 HR column (Pharmacia,

Piscataway, NJ, USA) to remove unbound nucleotides. Nuclear protein extracts

were incubated at RT for 20min with B50 000 c.p.m. of labeled oligonucleo-

tides that were suspended in a binding buffer (200mmol l�1 HEPES,

500mmol l�1 KCl, 10mmol l�1 EDTA, 50% glycerol, 10mmol l�1 Dithiothrei-

tol, 1mgml�1 BSA and 1mgml�1 poly (dI-dC)). Following this incubation step,
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the samples were resolved on 4% polyacrylamide gels at 140V and exposed

to film.

Small interfering RNA
VSMCs were plated on 24-well plates and grown to 90% confluence. VSMCs

were then transfected with AT2R siRNA oligomers (50 nmol l�1) using lipo-

fectamine 2000 in accordance with the manufacturer’s instructions. After 24h

of incubation, VSMCs were placed in growth medium for 24h before the

experiments. Cells were then cultured in the presence or absence of stimuli for

4 h. The sense and antisense oligonucleotides used in these experiments were as

follows: AT1R siRNA sense, 5¢-GUCACUGUUACUACACCUA-3¢, antisense,

5¢-UAGGUGUAGUAACAGUGAC-3¢; AT2R siRNA sense, 5¢-GAGUGUUGAUAG
GUACCAA-3¢, antisense, 5¢-UUGGUACCUAUCAACACUC-3¢; 12-LO siRNA

sense, 5¢-GUGUGUGACUAUGUUCCAA-3¢, antisense, 5¢-UUGGAACAUAG
UCACACAC-3¢; ERK1 siRNA sense, 5¢-CUAUGAUCCGACAGAUGAA-3¢,
antisense, 5¢-UUCAUCUGUCGGAUCAUAG-3¢; ERK2 siRNA sense, 5¢-CAGG
AAAGCAUUACCUUGA-3¢, antisense, 5¢-UCAAGGUAAUGCUUUCCUG-3¢;
JNK siRNA sense, 5¢-GAGCAAAAGCAAGGUAGAU-3¢, antisense, 5¢-AUCUA
CCUUGCUUUUGCUC-3¢; p38 siRNA sense, 5¢-UACAUUUGCGAAGUUC
AUCUUCGGC-3¢, antisense, 5¢-GCCGAAGAUGAACUUCGCAAAUGUA-3¢.

Statistical analysis
Results were expressed as means±s.e.m. from at least three or four indepen-

dent experiments. For comparisons between multiple groups, statistical sig-

nificance was determined by the Mann–Whitney test using SPSS version 17.0.

RESULTS

Ang II suppresses chemokine CCL5 expression in SHR VSMCs
First, CCL5 expression in SHR and WKY thoracic aorta tissues and
VSMCs was examined. Expression of CCL5 in SHR thoracic aorta
tissues and VSMCs was lower than that in WKY thoracic aorta tissues
and VSMCs (Figure 1a). The expression of CCL5 mRNA by Ang II
was then examined in SHR and WKY VSMCs. Ang II inhibited CCL5
mRNA expression in SHR VSMCs, but did not inhibit CCL5 expres-
sion in WKY VSMCs (Figure 1b). A decreased CCL5 level was also
detected in SHR VSMCs that had been treated with Ang II (100nM)

after a reaction time of 1 and 4h (Figure 1c). The time course of
Ang II-induced CCL5 inhibition was then determined in SHR VSMCs
over a 0–16-h time period. In this experiment, inhibition of CCL5
mRNA induced by Ang II was detected 1 h after treatment and
was sustained for up to 8 h after treatment and this effect disappeared
at 16 h. The inhibition levels of CCL5 by Ang II were almost
same from 1h after treatment to 8 h after treatment (Figure 2a).
The dose response of Ang II-induced CCL5 inhibition was also
observed. Inhibition of CCL5 expression was initially detected from
at a Ang II concentration of 10nM Ang II. Although the inhibition by
Ang II was shown in all three concentrations of 10, 100 and 1000nM,
there were no statistical differences among these concentrations
(Figure 2b).
To understand the nature of the inhibitory effect of Ang II on CCL5

expression in SHR VSMCs, the role of NF-kb activation was exam-
ined. Bay11-7082 is known to selectively block the phosphorylation of
IkBa; thus, preventing activation and nuclear translocation of NF-kB.
Real-time PCR, (enzyme-linked immunosorbent assay) and electro-
phoretic mobility shift assay were performed on VSMCs after they had
been treated or not treated with Ang II (100 nM) in the absence or
presence of Bay11-7082 (10mM) for 1 h. Bay11-7082 prevented Ang II
from inhibiting CCL5 mRNA expression, and the protein levels of
CCL5 correlated to the mRNA levels (Figure 2c, upper). Increased NF-
kb activity in SHR VSMCs treated with Ang II alone disappeared in
cells treated with Ang II and Bay11-7082 (Figure 2c, lower).
To examine whether inhibition of CCL5 expression by Ang II was

mediated by the Ang II subtype 1 receptor (AT1R) or subtype 2
receptor (AT2R), SHR VSMCs were treated or not treated with Ang II
(100nM) in the presence or absence of an antagonist of the AT1R,
losartan (10mM) or an antagonist of the AT2R, PD123,319 (10mM) for
1 or 4 h, and the total RNAs were analyzed by reverse transcriptase-
PCR. Protein levels of CCL5 in the cell supernatants were evaluated by
(enzyme-linked immunosorbent assay). The inhibitory effect of Ang II
on CCL5 mRNA expression was not observed in the presence of both
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total RNAs were isolated from SHR or WKY VSMCs, real-time PCR was performed. Bars represent means±s.e.m. from three independent experiments.
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*Po0.05 vs. untreated SHR VSMCs. A full color version of this figure is available at the Hypertension Research journal online.
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losartan and PD123319 (Figure 3a) and the CCL5 levels increased to
the CCL5 levels observed in the supernatant of untreated cells
(Figure 3b). To further confirm these results, real-time PCR was
performed in samples treated with AT1R or AT2R-directed siRNA.

Successful transfection of AT1R or AT2R siRNA into the SHR VSMCs
was observed by reverse transcriptase-PCR and the inhibitory action
of Ang II on CCL5 mRNA expression was not detected in SHRVSMCs
transfected with AT1R or AT2R siRNA (Figure 3c).
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The inhibitory effect of Ang II on CCL5 expression is mediated
by 12-LO
Ang II is a potent positive regulator of 12-LO expression and activation
in porcine and human VSMCs.26,27 In a previous study, CCL5 was
shown to inhibit Ang II-induced 12-LO expression in SHR VSMCs.25

Thus, to examine whether the inhibitory action of Ang II on CCL5
expression was related to 12-LO activation, SHRVSMCs were treated or
not treated with Ang II (100nM) and/or baicalein (a 12-LO inhibitor,
10mM) for 1 or 4h. The inhibitory effect of Ang II on CCL5 mRNA
expression was reduced in the presence of baicalein and the protein level
of CCL5 increased significantly in the supernatant of cells treated with
Ang II and baicalein together (Figure 4a). To further confirm these
results, real-time PCR was performed on SHR VSMCs treated with 12-
LO-directed siRNA. Successful transfection of 12-LO siRNA into SHR
VSMCs was observed by reverse transcriptase-PCR and the inhibitory
effect of Ang II on CCL5 mRNA expression was not observed in SHR
VSMCs that had been treated with 12-LO-directed siRNA (Figure 4b).
The activities of 12-LO and the 12-LO metabolite, 12(S)-hydro-

xyeicosatetraenoic acid (12(S)-HETE) were shown to be higher in
SHR,10,28 thus, to further understand the involvement of 12-LO in the
inhibition of CCL5 expression in SHR VSMCs by Ang II, the direct
effect of 12(S)-HETE on CCL5 expression was examined in SHR

VSMCs. 12(S)-HETE inhibited CCL5 mRNA expression in SHR
VSMCs (Figure 4c). In addition, the expression of Ang II-induced
12-LO was decreased by both AT1R and AT2R inhibitors (Figure 4d).

Inhibitory action of Ang II on CCL5 expression is mediated
through MAPK signaling pathways in SHR VSMCs
The role of MAPK signaling pathways in the inhibitory effect of Ang II
on CCL5 mRNA expression in SHR VSMCs was also examined. After
SHR VSMCs were pretreated with the ERK1/2 inhibitor PD98059
(10mM), the p38 mitogen-activated protein (MAP) kinase inhibitor
PD169316 (10mM) or the JNK inhibitor SP600125 (25mM) for 0.5 h,
the cells were treated or not treated with Ang II (100 nM) for 1 h. Real-
time PCR and (enzyme-linked immunosorbent assay) were then
performed. PD98059, PD169316 and SP600125 blocked the inhibitory
action of Ang II on CCL5 mRNA expression in SHR VSMCs
(Figure 5a). These (enzyme-linked immunosorbent assay) results
showed the same patterns that were observed for gene expression
(Figure 5b). In addition, to further confirm these results, real-time
PCR was performed on SHR VSMCs treated with ERK1/2, p38 or
JNK-directed siRNA. Inhibitory effect of Ang II on CCL5 mRNA
expression was not observed in SHR VSMCs transfected with ERK1/2,
p38 or JNK siRNA (Figure 5c).
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DISCUSSION

In naive SHR thoracic aorta tissues, the expression of CCL5 was lower
than that in naive WKY thoracic aorta tissues. Although some
chemokines are constitutively transcribed and translated, constitutive
production of most chemokines is usually low or absent. CCL5
transcription has been known to occur relatively late after the
activation of naive cells and is coincident with the upregulation of
cytolytic granules in cytotoxic T-cells.29 However, CCL5 mRNA is
constitutively transcribed and translated in peripheral blood natural
killer cells30 and the expression of CCL5 mRNA has been observed in
naive WKY VSMCs.25 Thus, constitutive expression of a chemokine
may be dependent on cell type.
In this study, the low expression of CCL5 was demonstrated in SHR

thoracic aortic tissues and VSMCs compared with WKY thoracic
aortic tissues and VSMCs, and Ang II suppressed CCL5 expression in
SHR VSMCs, but not in WKY VSMCs. However, high expression of
CCL5 was demonstrated in pulmonary arterial hypertension and the
endothelial cells within the pulmonary arterial wall were reported to
be a major source of CCL5 production.19 Dorfmüller et al.19 reported
that CCL5 may have a key role in arterial inflammatory processes,
such as glomerulonephritis, Kawasaki disease and Takayasu’s arteritis,
including pulmonary arterial hypertension. Furthermore, Ang II was
shown to increase CCL5 expression in rat glomerular endothelial cells
from Sprague-Dawley rats and the renal cortex of Wistar rats.2,3 Thus,
they suggested that Ang II-mediated induction of CCL5 may have an

important role in glomerular infiltration of monocytes/macrophages.
Wolf et al.3 demonstrated that although Ang II increased CCL5
expression in rat glomerular endothelial cells, it did not induce
CCL5 mRNA in mesangial cells. These discrepancies could be due
to the different cell types and/or different experimental animals or the
pleiotropic action of Ang II as a vasoactive cytokine.7

Ang II has two subtype receptors, the AT1R and the AT2R, and the
density of the AT2R is lower than that of the AT1R in VSMCs.31 Ang II
has been reported to increase AT1R expression in SHR VSMCs, but
Ang II was shown to only slightly affect AT2R expression in SHR
VSMCs.8 AT1R mediates the major stimulatory actions of Ang II,
including vasoconstriction, cell proliferation, aldosterone secretion
and sodium retention.32 In contrast, AT2R has been reported to
antagonize the vascular actions of AT1R. However, several studies
have reported growth and proinflammatory actions of AT2R in
VSMCs.31,33,34 Moreover, a positive role of the AT2R in Ang II-
induced CCL5 expression has been demonstrated in rat glomerular
endothelial cells and the rat renal cortex.2,3 The inhibitory action of
CCL5 on Ang II-induced 12-LO expression is also mediated through
AT2R in SHR VSMCs.25 In this study, the inhibition of CCL5
expression by Ang II in SHR VSMCs was found to be mediated
through both AT1R and AT2R activation.
Ang II is a potent positive regulator of 12-LO expression and

proliferation in porcine and human VSMCs.26,27 The activities of
12-LO and the 12-LO metabolite 12(S)-HETE are increased in
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SHR,10,28 and many studies have demonstrated that 12-LO and 12(S)-
HETE have an important role in the pathogenesis of hyperten-
sion.10,28,35,36 This study demonstrated that the inhibitory action of
Ang II on CCL5 expression in SHR VSMCs was mediated through 12-
LO activation. Ang II did not inhibit CCL5 expression in 12-LO
siRNA-transfected SHR VSMCs. In addition, the 12-LO metabolite,
12(S)-HETE directly inhibited CCL5 expression in SHR VSMCs.
Moreover, the expression of Ang II-induced 12-LO mRNA was
decreased by both AT1R and AT2R inhibitors. Taken together, these
results suggest that activation of Ang II receptors by Ang II leads to the
expression of 12-LO, which then acts to inhibit CCL5 in SHR VSMCs.
Namely, the lower expression of CCL5 in SHR VSMCs compared with
WKY VSMCs is likely because of the activity of 12-LO in SHRVSMCs.
Vascular structural changes in Ang II-induced hypertension are

associated with cell proliferation and increased deposition of inflam-
matory cells and extracellular matrix components. Mechanisms under-
lying these processes are not still clear; however, the role of MAP
kinases may be important. Ang II stimulates the activation of MAP
kinases, including ERK1/2, p38 and JNK in VSMCs.31,37,38 Ang II-
induced ERK1/2 and p38 activation is increased in SHR vasculature39

and ERK1/2 and p38 activation have important roles in Ang II-
induced VSMCs proliferation.37,40,41 In these previous studies, the
downregulatory effect of CCL5 on Ang II-induced SHR VSMCs
proliferation was mediated by inactivation of p38,25 and the expres-
sion of CXCL8 by Ang II was mediated by ERK1/2 MAP kinase
activation.8 A potent JNK-activating effect of Ang II was demonstrated
in rat aortic cells including VSMCs.40 Glomerular JNK activity was
shown to be increased in Ang II-induced hypertension42 and cardiac
JNK was found to be activated more sensitively than ERK1/2 in Ang
II-induced hypertension.43 However, Touyz et al.39 reported that Ang
II has no effect on JNK phosphorylation in SHR or WKY VSMCs.
This discrepancy may be due to the relative distribution of Ang II
receptors, where the density of the AT2R is lower than that of the AT1R
in VSMCs,31 namely, Ang II-induced JNK activation occurs through
AT2R. Another reason for this discrepancy may be the different
experimental reaction times; namely, JNK activation by Ang II is
slower than ERK1/2 and p38 activation.44,45 In this study, all three

MAPK signaling pathways were shown to be involved in the inhibitory
action of Ang II on CCL5 mRNA expression in SHR VSMCs. The
inhibitory effect of Ang II on CCL5 mRNA expression was blocked in
SHR VSMCs transfected with ERK1/2, p38 or JNK siRNA.
These combined results indicate that the inhibitory action of Ang II

on CCL5 expression was mediated by the 12-LO pathway through the
activation of both AT1R and AT2R and was associated with MAP
kinases, ERK1/2, p38 and JNK, pathways in SHR VSMCs (Figure 6).
In SHR VSMCs, CCL5 downregulates Ang II-induced 12-LO expres-
sion and VSMCs proliferation25 and has an upregulatory effect on
DDAH-1 expression, which is a regulator of nitric oxide activity (data
not shown). On the other hand, Ang II suppresses CCL5 production
through 12-LO activity in SHR VSMCs. Taken together, CCL5 is
more likely to have a negative role at some stages, but not a positive
role as an inflammatory chemokine, in Ang II-induced vascular
hypertension.
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