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Nifedipine increases energy expenditure by increasing
PGC-1a expression in skeletal muscle

Zhe Tian1,2,5, Keishi Miyata1,3,5, Mitsuhisa Tabata1, Masato Yano1, Hirokazu Tazume1,2, Jun Aoi1,
Otowa Takahashi1, Kimi Araki4, Michio Kawasuji2 and Yuichi Oike1

Nifedipine, an L-type calcium (Ca) channel blocker, is one of the most widely used Ca channel-blocking medications for

hypertension. Previous studies have reported an association of nifedipine hypertensive treatment with decreased body weight in

obese hypertensive humans and rat models. However, the precise mechanism underlying how nifedipine functions metabolically

has not been elucidated. Here, we investigated the long-term effect of a non-hypotensive nifedipine dose using a mildly obese,

endothelial NO synthase-deficient mouse model. Treating these mice with nifedipine decreased their body weight gain ratio,

and white adipose tissue weight compared with the untreated controls. Metabolic analyses indicated that nifedipine treatment

upregulated whole-body energy expenditure through increasing oxygen consumption and reducing the respiratory exchange

ratio, suggesting that nifedipine promotes lipid oxidation rather than carbohydrate utilization. Furthermore, nifedipine treatment

upregulated the expression of the peroxisome proliferator-activated receptor-c coactivator -1a (PGC-1a) in skeletal muscle.

Overall, these results suggest that a non-hypotensive dose of nifedipine has pleiotropic effects on energy expenditure that

could ameliorate obesity.
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INTRODUCTION

Obesity, the most prevalent nutritional disorder in industrialized
countries, is a challenging medical problem associated with increased
risks of hypertension, cardiovascular disease, hyperlipidemia, diabetes
and mortality. Obesity is defined as excess body fat accumulation and
results from a daily energy imbalance, such as excess calorie intake and/
or decreased energy consumption. Thus, restoring energy expenditure is
considered as an efficient strategy for preventing or treating obesity.
Skeletal muscle is a massive organ accounting for 40–50% of the

total body mass and thus significantly expends whole-body energy
expenditure even under sedentary conditions. In particular, lipid
oxidation in skeletal muscle is critical and has received increased
attention for its role in obesity. Specifically, in obese subjects, skeletal
muscle has been described to reduce lipid oxidation.1 A decreased
ability to oxidize lipids has been linked with weight gain as well as a
propensity towards obesity. Thus, developing effective treatments that
can reverse and/or compensate for impaired lipid oxidation in the
skeletal muscle of obese subjects is important.
Calcium (Ca) channel blockers are commonly used to treat patients

with hypertension. Nifedipine, a widely used antihypertensive drug, is
thought to act mainly by blocking dihydropyridine receptor/L-type

Ca channels on vascular smooth muscle cells. Nifedipine treat-
ment reduces atherosclerotic plaques in cholesterol-fed rabbits,2,3

and suppresses development and progression of atherosclerosis in
hypertensive patients.4,5 Nifedipine has recently been reported to
have pleiotropic effects on endothelial cells,6,7 cardiac muscle cells,8,9

mesangial cells10–12 and neurons,13,14 through mechanisms indepen-
dent of blocking Ca channels. Previous studies have reported that
nifedipine treatment decreases body weight in obese hypertensive
humans15 and rat models.16 These data suggest that antihypertensive
doses of nifedipine alter fat metabolism associated with anti-obesity.
Interestingly, Iwai et al.17 recently reported that a non-hypotensive
dose of nifedipine decreased the weight of white adipose tissue (WAT)
and enhanced insulin sensitivity in obese diabetic KK-Ay mice,
suggesting that such treatment directly impacts fat metabolism.
Nonetheless, the mechanism through which nifedipine treatment
modulates energy expenditure has not been fully elucidated.
In this study, we examined the long-term effect of a non-hypotensive

dose of nifedipine on mildly obese model mice in which endothelial
NO synthase (eNOS) was deficient. Nifedipine treatment antagonized
weight gain, and increased whole-body energy expenditure and lipid
oxidation in skeletal muscle. Interestingly, we also observed an increase
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in peroxisome proliferator-activated receptor-g coactivator-1a (PGC-1a)
expression in skeletal muscle of nifedipine-treated eNOS-deficient mice.
These results indicate that nifedipine pleiotropically increases energy
expenditure and could thereby counteract obesity.

METHODS

Animals
All experimental protocols were approved by the Kumamoto University Ethics

Review Committee for Animal Experimentation. Male eNOS-deficient mice on

a C57BL/6N background were used for all experiments. All animals were bred

in a mouse house with automatically controlled lighting (12 h on, 12h off),

and a stable temperature of 231C was maintained throughout. Mice were fed

a normal diet (CE-2, CLEA, Tokyo, Japan).

Nifedipine treatment
Mice were divided into two groups (10 per group) and implanted with a

mini-osmotic pump (Alzet Corp. Mini-osmotic pump, Model 2002, Palo Alto,

CA, USA) in subcutaneous back tissue. Control mice were administrated a

vehicle solution (polyethylene glycol 400 (WAKO, Osaka, Japan), ethanol and

H2O in the ratio 15:15:70). Nifedipine was administered at doses of 1mg kg�1

per day in the vehicle solution (Bayer Yakuhin, Ltd, Osaka, Japan).

Metabolic measurements
Mice were subjected to metabolic analysis after 16 weeks of administration of

either nifedipine or control vehicle. Insulin and glucose tolerance tests (ITTand

GTT, respectively) were performed as previously described.18 For ITT, mice

were administered 1.0Ukg�1 of human insulin by intraperitoneal injection.

For GTT, mice were deprived of food for 16h and were injected with glucose

intraperitoneally at 1.25 g kg�1. Serum glucose was measured using the glucose

oxidase method (Sanwa Kagaku, Nagoya, Japan), and serum insulin was measured

using an insulin immunoassay (Morinaga, Yokohama, Japan). Insulin sensi-

tivity was determined using homeostatic model assessment-insulin resistance

(HOMA-IR).19 The HOMA-IR index is calculated from both fasting glucose

and insulin levels as follows: HOMA-IR index ¼ fasting glucose (mg dl�1) �
fasting insulin (mUml�1)/405. Mouse adiposity was assessed by computed

tomography scanning (LaTheta, Hitachi, Aloka Medical, Ltd, Tokyo, Japan) as

previously described.18 Blood pressure was monitored every 4 weeks using a

tail-cuff monitor (BP Monitor for Mice & Rats Model MK-2000, Muromachi

Co., Ltd, Tokyo, Japan). Oxygen consumption (VO2), carbon dioxide produc-

tion (VCO2), the respiratory exchange ratio (RER) and activity levels were

determined (Light time; 13:00–17:00, Dark time; 1:00–5:00, air flow rate

0.50 lmin�1) as previously described.18 For exercise experiments, mice were

allowed to adapt to an air-tight treadmill chamber (Model MK-680AT/02M,

Muromachi Co., Ltd) for 30min (air flow rate 0.90 lmin�1) at which point

VO2 and VCO2 were stable; measurements were then continued for another

30min while mice were in a sedentary state. Mice then exercised on a treadmill

at a speed of 10mmin�1, and VO2, VCO2 and RER were measured for 30min

as previously described.20

Quantitative real-time PCR
Total RNA was isolated using TRIzol reagent (Invitrogen Japan KK, Tokyo,

Japan). DNase-treated RNA was reverse transcribed using a PrimeScript RT

reagent Kit (Takara Bio, Shiga, Japan). PCR products were analyzed with a

Thermal Cycler Dice Real-Time system (Takara Bio), and relative transcript

abundance was normalized to that of b-actin mRNA. Oligonucleotides used for

PCR are listed in Table 1.

Table 1 Primer sequences used in quantitative RT-PCR

Gene Sequences

b-Actin Forward 5¢-CATCCGTAAAGACCTCTATGCCAAC-3¢
Reverse 5¢-ATGGAGCCACCGATCCACA-3¢

CD31 Forward 5¢-CCGAAGCAGCACTCTTGCAG-3¢
Reverse 5¢-CTGCAACTATTAAGGTGGCGATGA-3¢

PGC-1a Forward 5¢-CCGTAAATCTGCGGGATGATG-3¢
Reverse 5¢-CAGTTTCGTTCGACCTGCGTAA-3¢

PGC-1b Forward 5¢-GTGCCAGGTGCTGACGAGAA-3¢
Reverse 5¢-AGTGTATCTGGGCCAACGGAAG-3¢

PPARa Forward 5¢-ACGCTCCCGACCCATCTTTAG-3¢
Reverse 5¢-TCCATAAATCGGCACCAGGAA-3¢

PPARd Forward 5¢-CAGATGACCCTTGTGCTGCCTA-3¢
Reverse 5¢-TCTGACCCTGGGACCTAAGTGTG-3¢

Tie2 Forward 5¢-TGCCCAGATATTGGTGTCCTTAAAC-3¢
Reverse 5¢-TCCGCAGGGCAGTCAATTC-3¢

UCP2 Forward 5¢-GCAAGCATGTGTATGGCACAGTAAC-3¢
Reverse 5¢-AAATGTGGGCCTTCGGTCAG-3¢

UCP3 Forward 5¢-GTGGTAAAGCCATGCACACCTG-3¢
Reverse 5¢-CCTGCTGCTTTGAACTGATGGA-3¢

VE-cadherin Forward 5¢-TGGCTTGTCGAATTTGAAGCA-3¢
Reverse 5¢-TCTGGTGAGTGGGTTAGAGGCTATC-3¢

CD36 Forward 5¢-GATGGCCTTACTTGGGATTGGA-3¢
Reverse 5¢-GGCTTTACCAAAGATGTAGCCAGTG-3¢

FATP1 Forward 5¢-GCAGCATTGCCAACATGGAC-3¢
Reverse 5¢-GTGTCCTCATTGACCTTGACCAGA-3¢

ACSL1 Forward 5¢-TTTGCCTGCAGCGAGTGTG-3¢
Reverse 5¢-GCCCTCGACTATCCCTATGGTAAGA-3¢

FABP3 Forward 5¢-TGGCTAGCATGACCAAGCCTACTAC-3¢
Reverse 5¢-GTTCCACTTCTGCACATGGATGA-3¢

CPT1-b Forward 5¢-GAGACAGGACACTGTGTGGGTGA-3¢
Reverse 5¢-AGTGCCTTGGCTACTTGGTACGAG-3¢

ACADS Forward 5¢-AAGTTTGGATCCGCACAGCAG-3¢
Reverse 5¢-CAAGCTTTGGTGCCGTTGAG-3¢

ACADM Forward 5¢-CGAGTATGTTATCAACGGCCAGAA-3¢
Reverse 5¢-GCGGGTACTTTAGGATCTGGGTTAG-3¢

ACADL Forward 5¢-GGACTCCGGTTCTGCTTCCA-3¢
Reverse 5¢-TGCAATCGGGTACTCCCACA-3¢

ACOX1 Forward 5¢-AAGATGGATCCTAAGCCAGCTGAA-3¢
Reverse 5¢-CAGCTTACCACAAAGCCAGCTACTC-3¢

ACOX2 Forward 5¢-CTGGGCTCAGATGAGCAGATTG-3¢
Reverse 5¢-ACTCCTGGGTGGTTGCATCATAG-3¢

Acaa1a Forward 5¢-TTCACGGCAGAAGCAGGATG-3¢
Reverse 5¢-CACAATCTCAGCACGGAAGCA-3¢

MFP2 Forward 5¢-GCAGCATGGGACCATATGAAGA-3¢
Reverse 5¢-ATGCCCAGCTTTGCAGCAC-3¢

Abbreviations: Acaa1a, acetyl-CoA acyltransferase 1A; ACADL, acyl-CoA dehydrogenase, long chain;
ACADM, acyl-CoA dehydrogenase, medium chain; ACADS, acyl-CoA dehydrogenase, short chain;
ACOX, acyl-CoA oxidase; ACSL1, acyl-CoA synthetase long-chain family member 1; CD, cluster
of differentiation; CPT1b, carnitine palmitoyl-transferase 1B; FABP, fatty acid binding protein;
FATP1, fatty acid transport protein 1; MFP2, multifunctional protein 2; PGC1, proliferator-activated
receptor-g coactivator -1; PPAR, peroxisome proliferator-activated receptor; UCP, uncoupling
protein; VE-cadherin, vascular endothelial cadherin.

Table 2 Body weight and systolic blood pressure before (pre) and

after nifedipine administration

Pre

(8-week-old)

2 months

(16-week-old)

4 months

(20-week-old)

Body weight (g)

Control 23.0±0.3 26.7±0.6 27.9±0.8

Nifedipine 23.2±0.1 26.9±0.5 26.2±0.4

Systolic blood pressure (mmHg)

Control 115.7±2.2 117.4±3.7 118.3±6.3

Nifedipine 112.3±1.8 116.8±4.0 121.1±5.5

Nifedipine was administered at 1mgkg�1 per day for 4 months via an implanted osmotic pump.
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Statistical analysis
All data are expressed as the means±s.e.m.’s in the text and in figures. A value

of Po0.05 was considered statistically significant.

RESULTS

Nifedipine treatment reduces adipose tissue weight and volume
After 16 weeks of nifedipine treatment (1mg kg�1 per day), neither
the systolic blood pressure (Table 2) nor the heart rate (data not
shown) changed significantly in eNOS-deficient mice compared with
the control mice. After 16 weeks of treatment, the overall body weight

of the nifedipine-treated mice did not differ significantly from the
control mice, although 16 weeks of nifedipine administration trended
towards a reduction (P¼0.090, Table 2). Indeed, the body weight gain
ratio (increased weight per mouse body weight) of nifedipine-treated
mice was significantly less than the control mice (P¼0.018, Figure 1a),
suggesting that nifedipine treatment antagonizes body weight
increases. Significant reductions in the weight of epididymal WAT
and brown adipose tissue proportional to body weight were observed
in nifedipine-treated mice (P¼0.0038 and P¼0.0016, respectively,
Figure 1b), whereas the skeletal muscle weight relative to body weight
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was unchanged. Computed tomography scans indicated that the
body fat volume of nifedipine-treated mice significantly decreased
(P¼0.021, Figures 1c and d), whereas the lean body weight remained
unchanged (Figure 1e). Moreover, significant reductions in both
visceral adipose and subcutaneous adipose volume per body weight
were observed in nifedipine-treated mice (P¼0.017 and P¼0.047,
respectively, Figures 1f and 1g, respectively). Taken together, these
results indicate that nifedipine treatment antagonizes increases in
body fat mass.

Nifedipine treatment enhances oxygen expenditure and reduces
the RER
To investigate the mechanism by which nifedipine promotes WAT
mass reduction, we analyzed basal metabolic rate, locomotor activity
and food intake in eNOS-deficient mice (Figure 2). Nifedipine-treated
mice exhibited a significant increase in whole-body VO2 rates in dark-
time measurements (P¼0.027, Figure 2a) relative to control mice,
whereas no significant changes were observed in VCO2 rates
(Figure 2b). Furthermore, the RER (VCO2/VO2) of nifedipine-treated
mice was significantly decreased in dark time, suggesting a greater fat
utilization as an energy source (P¼0.025, Figure 2c). Nifedipine-
treated mice exhibited a significant increase in locomotor activity

compared with control mice, particularly in dark time (P¼0.044,
Figure 2d). No significant change was observed in food intake per
body weight (Figure 2e) or rectal temperature (data not shown).
Taken together, these results suggest that nifedipine treatment
increases energy expenditure. We further investigated whether nifedi-
pine treatment alters the oxygen consumption and carbon dioxide
production during treadmill-induced exercise (Figure 3). To accom-
plish this, we monitored VO2, VCO2 and RER during 10 mmin�1

treadmill running. Although no significant change was observed
in VO2 (Figure 3a), the VCO2 of the nifedipine-treated mice was
significantly decreased (25–30min exercise; P¼0.013, Figure 3b) com-
pared to controls. Interestingly, after 10min of exercise, the RER of
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nifedipine-treated mice significantly decreased compared with control
mice (25–30min exercise; P¼0.0005, Figure 3c). These results agree
with a spontaneous activity analysis showing reduced RER in nifedi-
pine-treated mice (see Figure 2c). We also investigated the effect of
nifedipine treatment on exercise tolerance (Supplementary Figure S1)
and observed no significant change in endurance capacity compared
with control mice. Overall, our findings suggest that nifedipine
treatment increases lipid utilization rather than carbohydrates as an
energy source during both spontaneous and treadmill-induced exercise,
likely leading to decreased fat tissue weight.

Nifedipine treatment increases PGC-1a mRNA levels and
b-oxidation in skeletal muscle
To determine the molecular basis for metabolic changes seen in
nifedipine-treated mice, we undertook quantitative real-time PCR
analysis to examine mRNA levels of factors regulating energy expen-
diture and metabolic activity in skeletal muscle using eNOS-deficient
mice (Figure 4). PGC-1a expression was significantly increased in the
soleus muscle of nifedipine-treated mice (P¼0.0051, Figure 4). The
expression of fatty acid transport protein 1 and acyl-coenzyme A
oxidase 1, a peroxisomal b-oxidation-related gene, was significantly
increased in nifedipine-treated mice compared with control mice
(P¼0.016 and P¼0.008, respectively, Figure 4), suggesting that nife-
dipine-induced PGC-1a in skeletal muscle may activate fat utilization
by enhancing fatty acid transport and b-oxidation. Expression levels of
blood vascular markers, including CD31, Tie2 and VE-cadherin, in the
soleus muscle were equivalent in nifedipine-treated and untreated
mice, suggesting that non-hypotensive drug doses do not induce
blood vessel formation in skeletal muscle (data not shown).

Nifedipine treatment increases insulin sensitivity
It has recently been reported that nifedipine administration signifi-
cantly suppresses serum insulin levels in KK-Ay mice, suggesting that

nifedipine treatment improves hyperinsulinemia.17 Therefore, we
investigated whether serum insulin or glucose levels would be altered
by nifedipine treatment at the dosages outlined in the Methods
section. Although nifedipine-treated mice exhibited no change in
serum glucose levels, they did show lower serum insulin levels than
control mice both after fasting and under ad libitum feeding condi-
tions (P¼0.024 and P¼0.0032, respectively, Figure 5a). The HOMA-
IR index was also significantly lower in nifedipine-treated mice
(P¼0.030, Figure 5b) than in control mice. These results
indicate that nifedipine treatment promotes greater insulin sensitivity.
To confirm this finding, we conducted ITT and GTT tolerance tests,
and found a tendency toward increased insulin sensitivity in nifedi-
pine-treated mice (P¼0.089, Figures 5c and d). Serum glucose levels
after glucose injection were significantly improved in nifedipine-
treated mice compared with control mice (P¼0.021 and P¼0.024,
respectively, Figures 5e and f). These results suggest that the attenua-
tion of hyperinsulinemia by nifedipine treatment may contribute to its
beneficial effects on energy expenditure.

DISCUSSION

In this study, we demonstrated that long-term treatment with non-
hypotensive doses of nifedipine enhances whole-body energy expendi-
ture by increasing oxygen consumption, resulting in reduced body fat
gain in mildly obese mice. In a clinical trial, Tuck et al.15 showed a
significant decrease in body weight after nifedipine treatment (30–
180mg per day orally for 3 months) in patient groups classified as
obese (BMI430) or overweight (25pBMIp30) with mild-to-moder-
ate hypertension, whereas patients of normal weight (BMIo25) did
not show decreases in body weight. By contrast, nifedipine reduced
blood pressure equally well in all hypertensive patient groups. Radin
et al.16 also reported that nifedipine treatment (average dose
114mg kg�1 per day in rat chow for 3 months) decreased body weight
and abdominal and subcutaneous fat masses of SHHF/Mcc-facp/facp

rats, which are a spontaneous rat model of hypertension, obesity,
insulin resistance, glucose intolerance and hyperlipidemia. These
reports indicate that antihypertensive doses of nifedipine treatment
can decrease body weight in obese hypertensive subjects. However, it is
possible that nifedipine’s activity as a vasodilator at these doses
promotes blood flow into skeletal muscle and enhances the fatty acid
supply as an energy source to these tissues. Therefore, we investigated
whether nifedipine treatment directly suppresses body weight without
an antihypertensive effect. The present study revealed that non-
hypotensive doses of nifedipine (a dose of 1mg kg�1 per day via
infusion pump for 4 months) significantly reduced epididymal WAT
and body weight gain, suggesting that the nifedipine has an anti-
obesity effect. In agreement, Russell et al.21,22 reported that nifedipine
treatment (a dose of 15mg kg�1 per day in food pellets for 7.5 months)
moderately decreased the body weight of JCR:LA-cp/cp rats, a normo-
tensive obese rat model with marked hyperlipidemia and insulin
resistance, indicating that nifedipine directly affects weight loss. Iwai
et al.17 also reported that non-hypotensive doses of nifedipine (average
dose 1.5mg kg�1 per day in lab chow for 5 weeks) significantly
decreased epididymal WAT weight and moderately decreased whole-
body weight of obese diabetic KK-Ay mice by stimulating adipocyte
differentiation. This observation strongly suggests that non-hypoten-
sive doses of nifedipine treatment enhance fat metabolism.
The dihydropyridine receptor, a target of nifedipine, is expressed in

skeletal muscle cells23 although its function in those tissues remains
unknown. A previous study reported that nifedipine treatment
increases fatty acid oxidation in C2C12 myotubes.24 Thus, nifedipine
may directly inhibit the dihydropyridine receptor expressed in skeletal
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expenditure and fat metabolism in soleus muscle. Comparison of gene

expression levels in control and nifedipine-treated mice (n¼8 per group).

Values were normalized to that of b-actin. *Po0.05, **Po0.01 vs. control.
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synthetase long-chain family member 1; CD, cluster of differentiation;
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FATP1, fatty acid transport protein 1; MFP2, multifunctional protein 2;
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muscle cells and may contribute to increased energy expenditure and
fatty acid oxidation, although the detailed mechanism by which non-
hypotensive doses of nifedipine impact obese subjects remains unclear.
Another dihydropyridine Ca antagonist, benidipine hydrochloride,

an L-type Ca channel blocker, reportedly reduces blood pressure and
inhibits weight gain in rats and dogs.25,26 Benidipine treatment also
seemingly decreases body weight and body fat in obese mice models
after pretreatment with monosodium-L-glutamate.27 However, only
nifedipine and benidipine have been reported to have anti-obesity
effects among Ca channel blockers. Therefore, the anti-obesity effect of
both the drugs may be unique to these Ca channel blockers.
Peroxisomal b-oxidation reportedly functions in thermogenesis,

because the first oxidation step catalyzed by fatty acyl-CoA oxidase
is not coupled to ATP production, and thus energy is released as
heat.28 In this study, we found that PGC-1a and acyl-coenzyme A
oxidase 1 expression levels were increased by nifedipine treatment.

It has recently been reported that PGC-1a regulates factors required
for peroxisomal b-oxidation, such as acyl-coenzyme A oxidase 1.29

Therefore, nifedipine may exert an anti-obesity effect by upregulating
PGC-1a, thus increasing thermogenesis mediated by acyl-coenzyme A
oxidase 1 in skeletal muscle. In addition, we also observed fatty acid
transport protein 1 upregulation in skeletal muscle of nifedipine-
treated mice, suggesting that nifedipine enhances fatty acid transport
into skeletal muscle cells.
Recently, studies have suggested that nifedipine pleiotropically

activates the eNOS pathway.7,30 Indeed, Iwai et al.17 reported that
nifedipine treatment reduced superoxide levels by increasing eNOS
activity. However, in our study of eNOS-deficient mice, we found that
the nifedipine has eNOS-independent effects on increasing the energy
expenditure in skeletal muscle and insulin sensitivity. Thus, it remains
unclear whether nifedipine-induced eNOS upregulation is a major
pathway for countering obesity and improving insulin resistance.
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Finally, we found that nifedipine treatment enhances energy expen-
diture by increasing PGC-1a expression in skeletal muscle. However,
it is unclear whether nifedipine-induced PGC-1a upregulation has a
direct effect on insulin sensitivity. Previous studies have reported that
expression of PGC-1a is upregulated by prolonged exercise in rats31

and that moderate PGC-1a overexpression in rat skeletal muscle
in vivo improves insulin sensitivity.32 Future investigations could
address whether prolonged exercise combined with nifedipine treat-
ment could synergistically elevate PGC-1a mRNA levels and improve
insulin sensitivity in patients with obesity and/or type 2 diabetes.
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