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New insights into the renoprotective actions of the
renin inhibitor aliskiren in experimental renal disease

David L Feldman

The renin–angiotensin–aldosterone system (RAAS) has a central function in the regulation of blood pressure. Aliskiren, the first

direct renin inhibitor to be approved for the treatment of hypertension, blocks the RAAS at its point of activation. As renin

inhibition acts at the top of the RAAS cascade, this mechanism has been proposed to offer advantages over existing modes

of RAAS blockade. The RAAS is also considered to be a major factor in the pathogenesis of many renal diseases, especially

diabetic nephropathy (DN), the main cause of end-stage renal disease. Existing therapies to block the RAAS slow the

progression of DN, but they do not halt the disease. Therefore, more effective modes of interventions are needed. Studies to

determine the efficacy of aliskiren in human renal disease are in progress. This review summarizes in vivo studies in which the

efficacy of aliskiren was tested in experimental models of renal disease, and presents in vitro studies that provide insights into

the possible mechanisms by which aliskiren confers renoprotection in animals. These works are discussed in the framework of

the intrarenal RAAS and suggest that aliskiren may act by unique renoprotective mechanisms.
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INTRODUCTION

The renin–angiotensin–aldosterone system (RAAS) is an ancient
pathway1 that has evolved into a central mechanism by which
mammalian blood pressure (BP) and fluid homeostasis are
regulated. Research in this field started with the discovery in 1898
by Tigerstedt and Berman2 that a renal extract when injected into
rabbits induced a rapid increase in systemic BP. Subsequent work over
many years established the RAAS as a pivotal contributor to cardio-
renal diseases. Hence, inhibitors of the middle and distal portions
of the RAAS pathway, angiotensin-converting enzyme (ACE) inhibi-
tors (ACEI) and AT1 receptor blockers, respectively, have become
mainstay therapies for treating hypertension. In 2007, aliskiren, the
first direct renin inhibitor (DRI), was approved for the treatment of
hypertension. This heralded the therapeutic control of BP by inhibit-
ing the RAAS at its first and rate-limiting step. However, RAAS
blockade is also effective for treating renal disease3–6 and the efficacy
of aliskiren for this purpose is currently being investigated. Accord-
ingly, the subject of this review is to summarize the preclinical
evidence for renoprotection by aliskiren, and to discuss recently
published information on the possible mechanism(s) for these ben-
efits. As it is well recognized that there is a tissue as well as circulating
RAAS,7 the preclinical actions of aliskiren will be discussed in the
context of the intrarenal RAAS and the potential for its inhibition
by aliskiren.

INTRARENAL RAAS

Goormaghtigh8 first proposed that renin was produced just outside of
the glomerulus in juxtaglomerular (JG) cells. However, work over the
past several decades indicates a broader pattern of intra-glomerular
RAAS expression. Indeed, the kidney possesses a fully functional tissue
RAAS9–11 with expression along virtually the entire nephron.

Gene and protein expression of angiotensinogen (Aogen), renin and
ACE has been reported in cultured glomerular mesangial cells12–24 and
podocytes.25–28 Mesangial expression of Aogen and ACE has also been
documented in renal tissue sections.19,23

Mesangial cells synthesize Ang II22,24 and aldosterone, the latter
apparently through an Ang II-dependent mechanism.29 Podocytes
also produce Ang II25,26,28 and aldosterone.30 Angiotensin type 1
receptors are expressed on mesangial cells19,24,31 and podocytes26,28,32

and mineralocorticoid receptors are also expressed by both cell
types.29,33,34

The likely importance of the local glomerular RAAS relates to
the pathogenesis of glomeruloscleorsis and the loss of glomerular
permselectivity observed in many glomerular diseases. In cultured
mesangial cells, Ang II35–37 and aldosterone38,39 provoke synthesis of
extracellular matrix (ECM) proteins that accumulate in glomerulo-
sclerosis. In podocytes, Ang II has been shown to induce apopto-
sis,40,41 cytoskeletal rearrangement42 and nephrin loss43 in podocytes,
alterations that have been linked to albuminuria.44 Aldosterone can
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also damage podocytes by inducing apoptosis and reducing nephrin
gene expression.30,33,45 Thus, through autocrine or endocrine mechan-
isms, Ang II and aldosterone may induce damage and/or pro-fibrotic
pathways in mesangial cells or podocytes, and thus contribute to
glomerular damage.

Renal tubular cells express all of the components of the RAAS.
Renin mRNA and protein are expressed in the proximal and con-
necting tubules, as well as the collecting ducts.19,46–54 Interestingly,
mechanisms for regulating tubular renin seem to be independent of
those in the JG cell.47,48,50,52 Proximal tubular cells express mRNA54–56

and protein53,57 for ACE and Aogen.58–61 In vivo evidence that
proximal tubular cells may synthesize Ang II has also been reported.62

The above studies indicate the presence of a functional renal tubular
RAAS, which likely has an important function in regulating sodium
and fluid balance, and hence BP. However, the tubular RAAS may also
be linked to the pathogenesis of tubulo-interstitial fibrosis. For
instance, Ang II induces epithelial-mesenchymal transformation in
tubular cells,63 a process thought to presage renal fibrosis.64

RENOPROTECTIVE EFFECTS OF RENIN INHIBITION

WITH ALISKIREN

Aliskiren is a competitive inhibitor of renin; it binds to the active site
of the enzyme and thereby prevents access to its substrate, Aogen. In
turn, activation of the RAAS cascade is blocked. Given the above
evidence that the primary and damaging effector molecule (Ang II) of
the RAAS is made at many sites throughout the kidney, and that
inhibition of renin blocks the RAAS at the first and rate-limiting step
in Ang II formation, it is reasonable to propose that a DRI may
provide distinct renoprotective benefits in a variety of renal diseases.
The ensuing discussion will outline the evidence that the DRI aliskiren
ameliorates renal damage in experimental renal disease. However, let
us first consider some aspects of aliskiren that bear on its use in
experimental settings.

Testing aliskiren in animal models
Certain important characteristics of aliskiren impact its use in animal
models. First, because aliskiren is a human renin inhibitor, it is a less
potent inhibitor of rodent renin than human renin65 (Table 1). Thus,
although rodent models of renal disease are very commonly used,
models that express rat renin are not ideal for testing aliskiren. This
issue can be circumvented by using a transgenic rat model with an
activated RAAS. The so-called double transgenic rat66 expresses the
human genes for renin and Aogen, and thereby provides a model in
which a human DRI can inhibit human renin in a rodent. A second
model, the TG(mRen-2)27 (mRen-2) rat expresses the mouse ren-2
gene,67 and takes advantage of the capacity of mouse renin to cleave
rat Aogen. Aliskiren is effective in this model as the IC50 of the drug
against mouse renin is relatively low (Table 1). The organ damage seen
in dTGR68 and mRen-2 rats69 is ameliorated by RAAS blockade,
giving relevance to testing aliskiren in these models.

A second relevant property of aliskiren is its low oral bioavailability
in rodents, in which oral dosing of this DRI does not result in good
efficacy. Rather, consistent efficacy is seen when aliskiren is adminis-
tered to rodents by subcutaneously implanted osmotic minipumps.

Aliskiren protects against experimental renal disease
Hypertensive renal disease. The first evidence for renoprotection by
aliskiren was reported in dTGR. The activated RAAS in these animals
leads to severe hypertension with renal damage, including albumi-
nuria, elevated serum creatinine, renal infiltration of macrophages,
and ECM deposition.68,70 In this model, aliskiren (0.3 or 3 mg kg–1 per
day) normalized the BP and reversed existing renal damage, evidenced
by normalizing albuminuria and serum creatinine levels. Furthermore,
glomerular collagen IV accumulation and renal macrophage and
lymphocyte contents were lowered.71 This paper also showed a
reduction in renal cortical Ang I and Ang II levels in aliskiren-treated
dTGR, thus documenting an inhibitory effect of this DRI on the
intrarenal RAAS. Moreover, Ang I-forming capacity of the sera from
these rats was also significantly reduced. A subsequent report by this
group72 showed that treatment with aliskiren inhibited complement
activation and cellular infiltration in kidneys of dTGR. These studies
showed the efficacy of aliskiren in high Ang II-induced renal injury
and suggested a beneficial effect of the drug in complement-dependent
renal disease. Notably, an earlier study of dTGR showed that when the
renin inhibitor remikiren and a non-RAAS blocking anti-hypertensive
therapy were compared at comparable BP-lowering doses, remikiren
showed stronger renoprotection,70 suggesting BP-independent effects
of renin inhibition.

In both the above studies,71,72 AT1 receptor blockers were included
as positive controls; they were not intended to be comparator agents.
These drugs were administered at different dosages and by different
routes of administration than aliskiren. Although comparable reno-
protective effects were observed with aliskiren and its comparator in
each of these studies, conclusions on comparative efficacy vs. aliskiren
could not be made.

In this regard, we tested in mRen-2 rats the effects of 4 weeks of
treatment with aliskiren or enalapril, both administered through
osmotic minipumps to achieve constant plasma levels of each drug,
at doses that achieved comparable tail cuff BP control (Figure 1a)
(Avigdor, Hu, Jen, and Feldman, unpublished data). Compared with
vehicle controls, albuminuria was reduced similarly by both therapies
(Figure 1b), as were plasma levels of Ang II and aldosterone (Table 2)
at the end of the experiment. This study indicated that when drug
delivery and BP lowering were similar, aliskiren induced comparable
reductions in albuminuria and blockade of the circulating RAAS,
including lowering plasma aldosterone.

Endothelial nitric oxide synthase (eNOS) regulates renal hemody-
namics and renal function.73 Deficiencies in eNOS lead to accelerated
renal damage in models of renal disease,74 highlighting the importance
of nitric oxide in renal health. Recently, aliskiren was shown to inhibit
the renal disease that develops in eNOS�/� mice.75 Increases in
albuminuria, glomerulosclerosis and renal macrophage infiltration
observed in the vehicle-treated knockout mice were significantly
reduced by aliskiren treatment (25 mg kg–1), as were levels of glomer-
ular superoxide and renal NADPH oxidase. Importantly, hydralazine
given at a dose that lowered tail cuff BP similarly to aliskiren did not
show these beneficial effects. This work showed that the renoprotective
actions of aliskiren do not require eNOS-mediated pathways.
Moreover, this protection seems to result at least partially from effects
that are beyond BP control, possibly by inhibiting Ang II-induced
damaging effects in the kidney.

Table 1 Inhibitory activity of aliskiren against human and rodent

renin

Species IC50 (nM)

Human 0.6

Rat 80

Mouse 4.5

IC50: concentration of inhibitor that inhibits 50% of enzyme activity.
IC50 values: human, rat65 and mouse.87
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The anti-inflammatory effect of aliskiren observed in the kidneys of
dTGR71 and eNOS�/� 75 mice is not a renal-specific effect. Recently,
Ino and coworkers76 reported that at a non-BP-lowering dose,
aliskiren reduced leukocyte adhesion in a murine vascular injury
model. Furthermore, this effect of aliskiren was associated with a
reduction in the injury-induced up-regulation of adhesion molecules
on the vascular endothelium, pointing toward a possible mechanism
for the reductions in inflammatory infiltrates noted above in the
kidneys of dTGR71 and mice.75

Diabetic nephropathy. Diabetic nephropathy (DN) is the leading
cause of end-stage renal disease in the developed world.77 The
RAAS is thought to have a central function in the pathogenesis of
this disease, evidenced by numerous studies showing that RAAS
blockade by ACEIs and AT1 receptor blockers slows the progression
of DN.3–6 However, these treatments do not halt the progression of
this disease. Thus, the underlying mechanisms for progression of DN
continue even in patients treated with accepted therapies. The intrar-
enal RAAS is thought to be activated during diabetes, based on in vitro
and in vivo evidence.21,22,24,25,48,54,55,69,78 Therefore, the effect of renin
inhibition in diabetic conditions is of great interest.

In vitro effects of aliskiren in high glucose conditions. Albuminuria is
the first clinically detectable change in renal function in DN, resulting
from a reduction in permselectivity of the glomerular capillary wall.
The glomerular permeability barrier consists of three layers, the outer
most glomerular visceral epithelial cells (podocytes) that cover the
(middle) glomerular basement membrane, which is lined on its
luminal side by the inner layer, the fenestrated endothelium. Podo-

cytes seem to have a key function in preventing the escape of plasma
proteins across the glomerular capillary wall into the urine. Their
involvement in the development of albuminuria and glomerulosclero-
sis in DN is increasingly accepted.44,79

During diabetes, podocytes are exposed in vivo to high glucose
levels and stretch forces, the latter because of glomerular hypertrophy
and hyperfiltration. When these conditions are modeled in vitro in
mouse podocytes, the RAAS becomes activated. Indeed, podocytes
subjected to mechanical stretch show Ang II-mediated apoptosis.41

Aliskiren was tested for its effects on cultured mouse podocytes
exposed to high glucose levels.25 In such podocytes, high glucose
induced increased expression of renin mRNA and protein, and Ang II
formation was detected. The latter was not inhibited by the ACEI
captopril, but it was suppressed by aliskiren and the non-selective
chymase inhibitor chymostatin. These findings suggest that high
glucose conditions activated the podocyte RAAS at the level of
renin, leading to increased Ang II formation. If we can assume that
captopril actually entered the podocytes in this study, the results
further indicate that Ang II formation in these cells was mediated
primarily by non-ACE pathways (that is, chymase). To the extent that
the up-regulation of glomerular chymase in diabetic kidneys18 may
suggest a function for ACE-independent Ang II formation in DN,
renin inhibition may have a protective advantage over ACEI in
this disease. Thus, these in vitro results may be an example in
which blocking the RAAS at the top of the cascade (that is, at
renin) may achieve different outcomes than by inhibiting elsewhere
in the pathway.

The loss of podocytes from the glomerular capillary wall is
associated with the development of albuminuria80 and glomerulo-
sclerosis,81 and apoptosis of podocytes has been suggested as a
mechanism for such loss.44 Phillips and coworkers82 reported that
aliskiren attenuated the high glucose-induced increase in cleaved
caspase-3 in cultured mouse podocytes, suggesting a protective effect
of aliskiren against podocyte apoptosis in a high glucose milieu. More-
over, these authors showed that aliskiren inhibited the high glucose-
induced increase in fibronectin mRNA and protein in these cells.

The above two in vitro studies in podocytes have potential clinical
significance because they suggest that aliskiren can induce effects that
relate directly to protecting the glomerular filtration barrier. Aliskiren
has a molecular weight (551.8) small enough to be filtered by the
glomerulus, and indeed the drug appears in the urine.83 Thus, in vivo
exposure of podocytes to aliskiren is predicted. As podocytes express a
functional RAAS,25–28 renin inhibition in these cells by aliskiren may
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Figure 1 Effect of aliskiren and enalapril on blood pressure (a) and albumin excretion (b) in mRen-2 rats. mRen-2 rats were treated with aliskiren or

enalapril by subcutaneous osmotic minipumps. Blood pressure was measured by the tail cuff method and urinary albumin levels were measured by ELISA.

*Po0.05 vs. vehicle.

Table 2 Effect of aliskiren enalapril on plasma Ang II and aldosterone

levels in mRen-2 rats

Plasma

Group N Ang II (pgml–1) Aldosterone (nM)

Sprague–Dawley Mollegard 8 11.06±0.55* 0.59±0.10*

mRen-2+vehicle 6 25.3±2.84** 1.32±0.19**

mRen-2+enalapril 3.5mgkg–1 per day 8 6.9±0.57 0.43±0.04

mRen-2+aliskiren 30mgkg–1 per day 8 7.8±1.01 0.51±0.09

*Po0.05 vs. all mRen-2 groups and **Po0.05 vs. other mRen-2 groups. Plasma was sampled
at the end of the experiment; values are±s.e.m.
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provide a cellular mechanism (that is, podocyte protection) for the
anti-albuminuric effect observed in human beings84,85 as well as
animals.71,75,86–88

In vivo effects of aliskiren in experimental DN. Transgenic mRen-2
rats with superimposed STZ-induced diabetes develop albuminuria,
glomerulosclerosis and tubulo-interstitial fibrosis,69 similar features as
in human DN. Aliskiren (10 mg kg–1 per day) and the ACEI perindo-
pril (0.2 mg kg–1 per day) were compared for their renoprotective
effects in this model.88 The chosen dose of perindopril lowered tail
cuff BP 36 mm Hg more than in aliskiren-treated STZ-mRen-2 rats.
However, despite this difference, aliskiren attenuated albuminuria and
glomerulosclerosis to similar degrees as perindopril. Interestingly,
levels of albuminuria correlated well with BP in vehicle- and perindo-
pril-treated mRen-2 rats, but not in aliskiren-treated rats. Moreover,
histological evaluation showed that aliskiren conferred significantly
greater protection against tubulo-interstitial fibrosis than perindopril.
These two differential effects of aliskiren vs. perindopril may reflect a
BP-independent renoprotective effect of aliskiren, possibly by inhibit-
ing the intrarenal RAAS to a greater extent than the ACEI.

In another study with diabetic mRen-2 rats in which BP was
monitored continuously by telemetry, aliskiren at 10, 30 and
60 mg kg–1 per day dose dependently reversed existing hypertension
and prevented the development of albuminuria over the 10 weeks
study.87 At the end of this study, renal cortical gene expression of
collagen I and the pro-fibrotic growth factor, transforming growth
factor-b (TGF-b), in the mRen-2 rats were significantly reduced in the
aliskiren vs. the vehicle group.

In this experiment, treatment of diabetic mRen-2 rats with the
high-dose (60 mg kg–1 per day) aliskiren was discontinued about 3
weeks into the study, but the animals were monitored for the
remainder of the 10 weeks experiment (Webb, Zhou, Feldman,
unpublished data). Withdrawal of aliskiren treatment was accompa-
nied by an increase in BP and the development of albuminuria. The
rise in BP was gradual, taking about 10 days to reach vehicle-control
levels. Moreover, at the end of 10 weeks, gene expression of renal
cortical TGF-b was still suppressed, despite stopping treatment with
aliskiren about 7 weeks earlier. It is unknown whether this suppression
of TGF-b reflects a continued presence or persistent effect of aliskiren
in the kidneys, or whether RAAS inhibition early in the development
of the hypertensive phenotype of this model confers long-term effects
on growth factor expression.

Aliskiren has also shown renoprotective effects in db/db mice, a
model of type 2 diabetes.86 In this study, treatment with aliskiren
ameliorated the albuminuria and glomerulosclerosis seen in the
vehicle-treated mice. These benefits were accompanied by reductions
in expression of TGF-b, collagen IV and nephrin, as well as p22phox
and NADPH oxidase activity.

Collectively, the above in vitro and in vivo studies suggest that the
functional and structural renoprotection conferred by aliskiren in
experimental renal disease may be explained by inhibition of the
intrarenal RAAS, which may result in BP-independent renoprotective
mechanisms (for example, anti-inflammatory, anti-oxidant) that
reduce ECM accumulation and possibly mitigate against cellular (for
example podocyte) damage. These studies also provide hints of
persistent renoprotective effects of this DRI.

POTENTIAL NOVEL MECHANISMS OF ALISKIREN’S

RENOPROTECTIVE ACTIONS

Given that aliskiren blocks renin, it is not surprising that this drug has
renoprotective effects in the experimental settings described above.

Rather, the intriguing question is: ‘does a DRI, by blocking the RAAS
at the first and rate-limiting step, impart a specific renoprotective
mechanism?’ New evidence is emerging that suggests this may be the
case.

Aliskiren localizes in the kidney
The kidney is the main source of renin; this organ contains a fully
functional RAAS distributed over virtually all regions of the nephron,
as described earlier. Consequently, as this pathway has been linked
closely with renal damage, a distinct renoprotective advantage is
expected from blocking the intrarenal RAAS. For a drug to inhibit
the intrarenal RAAS and protect against organ damage, an obvious
requirement is that it partitions to an appropriate renal compartment.
On the basis of the experiments discussed below, this requirement
seems to be met by aliskiren.

Sprague–Dawley rats were treated with 10 mg kg–1 per day aliskiren
for 2 weeks by osmotic minipumps, and their plasmas and kidneys
were studied for the presence of the drug. Renal levels of aliskiren were
46-fold over plasma levels, indicating that renal localization of
aliskiren occurred, but was not due simply to equilibration from the
plasma.87 Other renin inhibitors have shown a similar renophilic
property.89 Although this study showed that aliskiren partitions to the
kidney, it did not indicate the renal compartment in which aliskiren
localized.

Therefore, in another experiment, the renal topographical localiza-
tion of aliskiren was explored by administering 14C-aliskiren intrave-
nously to normotensive rats and harvesting their kidneys 2 h
afterward. By light microscopy, cryostat sections revealed heavy
autoradiographic labeling in 100% of glomeruli on each renal section,
indicating extensive partitioning of aliskiren throughout these struc-
tures87 (Figure 2a). Moreover, images suggestive of the presence of
aliskiren in JG cells of the afferent arterioles were obtained, although
such localization was not identified conclusively in these relatively
thick cryostat sections. However, the possibility that aliskiren can enter
vascular structures was shown clearly by the presence of label in larger
caliber intrarenal arteries in these kidneys (Figure 2b), and preliminary
evidence from recent studies suggests that in fact, aliskiren may
localize in the afferent arterioles (Feldman et al., paper in prepara-
tion). However, in contrast to glomeruli, autoradiographic evidence
for the presence of aliskiren in the tubulo-interstitium was not
observed within the short duration of exposure in this experiment.87

The above studies show that aliskiren partitions to the kidneys and
localizes in the renal vasculature, possibly in structures known to
contain renin. Moreover, extensive partitioning of aliskiren to the
glomeruli suggests that it can access mesangial cells and podocytes,
potentially inhibiting the RAAS in these cells and conferring structural
and functional renoprotection observed in rodents.71,75,86–88 Light
microscopic studies with labeled aliskiren have not been conducted
in disease models in which changes in (extraglomerular) vascular
permeability may facilitate permeation of the drug to the tubulo-
interstitium, with potential access to tubular cells and fibroblasts.
However, it seems reasonable to speculate that this may occur, and it
may have relevance to the extent that enhanced expression of tubular
renin may be linked to the development of tubulo-interstitial
fibrosis.47

Not only does aliskiren partition to the kidneys in rats, its renal
presence is prolonged. Two lines of evidence support this concept.
First, dTGR were treated with aliskiren (3 mg kg–1 per day) for 2
weeks, during which time BP (tail cuff) and albuminuria were
significantly reduced vs. vehicle controls. After a 3-week washout
period, renal and plasma levels of aliskiren were measured. Aliskiren
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was not detectable in the plasma from these rats, but drug levels in the
kidney were still above the IC50 for inhibiting human renin.90 Second,
Vaneckova and coworkers91 treated mRen-2 rats with aliskiren
(10 mg kg–1 per day) for 4 weeks, during which time BP (telemetry)
was normalized. At the end of this treatment period, plasma and renal
Ang II levels were lowered to those in non-hypertensive vehicle
controls, confirming the observations in dTGR71 that treatment
with aliskiren reduces renal Ang II content. At this time, aliskiren
treatment of mRen-2 rats was stopped for 12 days washout. Impor-
tantly, after the washout period, plasma and renal Ang II levels were
still reduced to vehicle-control levels.

Taken together, the above studies showed that aliskiren partitions to
the kidney and exhibits a prolonged renal residence. These studies also
suggest that aliskiren inhibits the intrarenal RAAS, and that such
inhibition is enduring. In view of the growing evidence that 24-h BP
control predicts better outcomes for target organ protection,92–94 such
long-acting inhibition of the intrarenal RAAS may be especially
important in conditions in which this pathway is activated, such as
believed to occur in DN.78

Aliskiren may bind to intrarenal renin
The autoradiographic images discussed above87 provoke questions
regarding the intracellular fate of aliskiren. Whether labeled aliskiren
found in the kidneys of rats represents renin-bound inhibitor is an
important issue. It seems doubtful that all of the labeled aliskiren
observed in glomeruli in these studies was bound to renin: it is highly
unlikely that so much renin was present in the glomeruli of the
normotensive rats used in this study.69,95,96 Moreover, it seems
similarly implausible that exposure to aliskiren for 2 h in normoten-
sive rats could have induced recruitment of such high levels of
glomerular renin, as has been shown in pre-glomerular vessels after
chronic RAAS blockade,97 especially as aliskiren is a relatively weak
inhibitor of rat renin (Table 1). However, some of the label seen in
glomeruli may have reflected aliskiren bound to renin that possibly
was present in the mesangial matrix. In addition, as aliskiren can
penetrate cultured cardiomyocytes,98 the drug may have entered
mesangial cells and podocytes, both of which express renin20,24–26

to which aliskiren could bind. Furthermore, the unequivocal evidence
for labeled aliskiren in the walls of renal vessels prompts the proposal
that this DRI can enter JG cells, and possibly incorporate into forming
or formed renin granules. Recent in vitro studies provide evidence for
the latter possibility.

Cultured JG cells do not store renin,99 making them unsuitable for
studying the intracellular renin-binding capacity of aliskiren. However,

a human mast cell line synthesizes and secretes (pro)renin.100 Krop
and coworkers101 used these cells to ask whether aliskiren can
incorporate into renin granules. They found that mast cells that had
been incubated for 7 days with aliskiren secreted renin that displayed
inhibited enzyme activity (that is, inhibited Ang I-forming capacity).
These data show that aliskiren can access intracellular renin, bind or
incorporate into renin granules, and remain associated with the
enzyme through the secretory process. Similar results were seen with
prorenin, which is constitutively released from HMC-1 cells.102 This
study lays the groundwork for understanding the intracellular fate of
aliskiren. Moreover, the implications from this work and the auto-
radiographic data are that aliskiren may provide an unusual example
in which an inhibitor incorporates into its (still intracellular) target
even before the latter is secreted. In this case, (pro)renin would be
secreted from JG cells to the plasma or the tubulo-interstitium103 in an
already inhibited state. The renin activity in this (pro)renin-aliskiren
complex would be inhibited: this renin (or prorenin, which may
undergo activation at tissue sites) could not cleave Aogen, and the
tissue and systemic RAAS cascades would not be activated. As this
mechanism should operate independently of plasma drug levels,101 it
may help to explain the prolonged BP benefits observed in rats
discussed earlier, and in patients in whom aliskiren treatment has
been stopped.104

Aliskiren, prorenin and the (pro)renin receptor
The recent discovery of a receptor for renin and prorenin, the
(P)RR,105 has added an important new dimension to the tissue
RAAS.106–108 In the kidney, gene and/or protein expression of the
(P)RR has been reported in the glomerular mesangium,109 vascular
wall87,109 and tubular cells.87,110 Gene and protein expression for the
(P)RR has also been reported in podocytes.111–113

Stimulation of the (P)RR initiates Ang II-dependent and -indepen-
dent effects. The former include a gain in catalytic activity for renin
bound to the (P)RR (vs. unbound renin). This effect amplifies the
formation of Ang II at the cell surface.109 Furthermore, on binding to
the (P)RR, prorenin, which is normally inactive, becomes catalytically
active (it can cleave Aogen to form Ang I), possibly because of a
conformational change induced by the binding.109,114–116 The Ang II-
independent effects of (P)RR stimulation include activation of
extracellular signal-regulated kinase1/2,109,117,118 and heat shock
protein 27119 and phosphatidylinositol-3 kinase p85a120 pathways.
The production of TGF-b and plasminogen-activator-1 is also
increased, as are gene expression and production of collagen I and
fibronectin, respectively.117,121 Thus, through the (P)RR, renin and

G
G

Figure 2 Autoradiographic localization of aliskiren in rat kidneys. Hanover–Wistar rats were injected intravenously with 14C-aliskiren and 2 h later the

kidneys were removed for autoradiography. (a) Two glomeruli (G) show extensive autoradiographic labeling, indicating the presence of aliskiren. (b) A renal

cortical artery (arrow) shows extensive autoradiographic labeling in vascular wall. (Reproduced with permission from Lippincott Williams & Wilkins.87)
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prorenin can induce direct effects on cells. Continuing work on this
receptor has led to the isolation and characterization of a soluble form
of the (P)RR,111 the significance of which remains to be elucidated.

As the (P)RR can activate prorenin, it has been suggested that this
receptor may have an important function in the activation of prorenin
at tissue sites, with consequent Ang II-mediated tissue damage.122

Prorenin is inactive because a 43 amino-acid prosegment covers the
enzyme’s active site. Incubation of prorenin with a renin inhibitor
under the appropriate conditions permits access of the inhibitor to the
active site of prorenin, while the prosegment, in equilibrium between
‘covering’ and ‘lifted’ conformations, is lifted from its position cover-
ing the active site.123 In vitro studies showed that when incubated with
prorenin, aliskiren binds to the active site of the enzyme87 and can
inhibit Ang I formation that would normally occur from non-
proteolytic [(P)RR-mediated] activation of prorenin.116 This finding
is significant because activation of prorenin at tissue sites might occur
by (P)RR-mediated mechanisms or by proteolytic cleavage of the
prosegment. The latter may occur in tissues in which inflammatory or
dead/dying parenchymal cells may release proteases such as cathepsin
G or elastase,124 which are capable of cleaving the prosegment. In
either case, the Ang I-forming capacity of prorenin and the subsequent
formation of Ang II (in the presence of ACE or chymase) would be
blocked by bound aliskiren. The ability of aliskiren to inhibit prorenin
activation has additional relevance because circulating levels of pro-
renin are about 10-fold those of renin.125 This represents high
potential renin activity. In addition, plasma prorenin levels can be
substantially elevated in diabetes126 and are strongly associated with

microvascular complications of this disease.127 Thus, to the extent that
activation of prorenin at tissue sites may contribute to local Ang II
formation and tissue damage, aliskiren may provide tissue-protective
effects. However, it must be noted that the concept of prorenin-
induced tissue injury is not fully established; in two models of
prorenin over-expressing mice, cardio-renal damage was not
observed.128,129

The potential clinical significance of the (P)RR is highlighted in a
set of studies by Ichihara and coworkers (reviewed elsewhere130) that
suggest a central function for this receptor in the pathogenesis of DN.
This body of work is particularly provocative because the authors have
reported dramatic benefits in STZ-diabetic rats with a putative (P)RR
blocker. However, attempts by other investigators to reproduce the
cellular effects of the blocker, and its in vivo benefits (although in non-
diabetic models of renal damage), have largely been unsuccess-
ful.115,118,131,132 Replication by others of the experimental designs
used by Ichihara and coworkers may clarify some of the questions
on the function of the (P)RR in DN and in tissue damage in general.

What is the effect of aliskiren on the function of the renal (P)RR?
Aliskiren does not inhibit binding of (pro)renin to the (P)RR,87,118

nor does it prevent (pro)renin-induced cell signaling.87,118,120 How-
ever, in STZ-diabetic mRen-2 rats treated with aliskiren for 10 weeks,
in situ hybridization on renal sections revealed a clear reduction in
gene expression of the (P)RR in the glomeruli and tubular cells
compared with vehicle-control diabetic mRen-2 rats.87 Interestingly,
in vitro studies showed that aliskiren did not affect gene expression of
(P)RR in mesangial cells. These data suggest that aliskiren can

Aliskiren partitions to the kidney

Inhibition of Ang II
formation on cell surface(116)

Persistent tissue
RAAS blockade(91)

Long renal
residence time(90)

• Decreased (P)RR synthesis

• No activation of prorenin
   when it binds to (P)RR(116)

• No gain in catalytic activity
   when renin binds to (P)RR

Renal protection
(71,72,75,86,87,88)

Incorporates into
renin granules(101)

(Pro)renin secreted
as inhibited enzyme(101)

Efficient renin inhibition(101)

No chance to cleave Aogen

Inhibition of Ang II formation(71)

In tissue & plasma

Glomerular
localization(87)

Inhibition of
mesangial,

podocyte(25)

RAAS

JG cells(∗)

Figure 3 In this working model of the renoprotective actions of aliskiren, outcomes for which in vitro or in vivo evidence exists are referenced (see

References); no reference indicates a logical, but still speculative outcome. Solid arrows indicate the existence of in vitro or in vivo evidence to support a

causal link between the events. Dotted lines denote a logical, but as yet, unproven causal link between events. * indicates Feldman DL et al., manuscript in

preparation. Once aliskiren localizes in the kidney (for example, JG cells), it may incorporate into renin granules or prorenin and stay in these cells until

released with (pro)renin. This renal localization would lead to a longer renal residence time than if unbound, and ultimately would lead to prolonged local

RAAS blockade. Aliskiren that deposits in the glomeruli may inhibit mesangial and podocyte renin, inhibiting Ang II-mediated glomerular ECM accretion and

loss of permselectivity. Renin or prorenin bound to aliskiren in JG cells would be released as inhibited enzymes and would theoretically have no abilities to

cleave Aogen. The formation of Ang II would be inhibited, maintaining a quiescent local (tissue) and systemic RAAS. If aliskiren reduces synthesis of the

(P)RR as a result of suppressing its gene expression, lower receptor density on the cell surface would be expected, reducing the opportunity for (pro)renin to

bind to diminished numbers of receptors. Once released from JG cells, inhibited renin could still bind to the (P)RR, but could not gain the amplified
catalytic activity that has been described after such binding. Similarly, prorenin released as bound to aliskiren could not become activated by proteolytic or

non-proteolytic mechanisms. These actions on renin and prorenin would reduce Ang II formation at the cell surface. Extrarenal tissues that take up already

inhibited renin would also theoretically derive protection from these mechanisms. Finally, in addition to the mechanisms described here, renoprotection

would also derive from aliskiren binding to (pro)renin in the plasma.
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suppress mesangial cell gene expression of the (P)RR in vivo, but
probably not through a direct cellular effect. Regardless, if this reduced
gene expression also leads to lower (P)RR density at the cell surface, a
reduction in Ang II-dependent and -independent effects could be
expected from administration of aliskiren. This topic deserves more
investigation.

In addition to suppressing gene expression of the (P)RR, treatment
of diabetic mRen-2 rats with aliskiren also led to a reduction in renal
cortical mRNA abundance for TGF-b and collagen I.87 It is tempting
to invoke a causative relationship between reductions in gene expres-
sion of the (P)RR, TGF-b and collagen I in the above study. Indeed,
elegant in vitro experiments by Huang and coworkers18 established a
strong link between renin-induced production of TGF-b and ECM
production in cultured mesangial cells, whereas blockade of the (P)RR
with siRNA significantly inhibited this response. However, a similar
causative conclusion from the in vivo study87 awaits a more robust
proof.

Working model of renoprotective mechanism of action of aliskiren
From the data presented heretofore, it is possible to propose a working
model for the mechanism(s) by which aliskiren protects the kidneys in
experimental settings (Figure 3). Although this model is necessarily
speculative, it provides testable hypotheses.

Summary
Although the idea to inhibit renin as a means of blocking the RAAS
originated from studies that were conducted over 100 years ago,2 it is
only recently that the effects of inhibiting this enzyme have been
studied in depth. There is still much to learn about the mechanism of
action of renin inhibition, and how it differs from those of ACEI and
AT1 receptor blockers. The possibility that aliskiren binds to intracel-
lular (pro)renin, leading to release of already inhibited enzyme seems
to be a novel mechanism. However, it still must be documented that
this occurs in vivo, and in fact that such a mechanism confers a benefit
for organ protection. Toward this end, preclinical studies offer the
means by which aliskiren’s mode of action can be revealed more fully,
thus generating hypotheses that can be tested in patients.
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