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The role of renal microvascular disease and interstitial
inflammation in salt-sensitive hypertension

Bernardo Rodriguez-Iturbe1 and Richard J Johnson2

Primary (essential) hypertension has been shown to be mediated by a relative impairment in sodium excretion by the kidney, but

the mechanisms responsible for this defect are still being clarified. Increasing evidence suggests a role for subtle acquired renal

injury in mediating this process. Microvascular injury is present in the majority of subjects with hypertension. The development

of arteriolosclerosis, primarily of the afferent arteriole, may interfere with glomerular autoregulation, whereas the loss of

peritubular capillaries may facilitate local ischemia. These changes favor the localization of T cells and macrophages into the

interstitium, which, coupled with local oxidative stress and angiotensin II generation, may contribute to the impaired pressure

natriuresis observed with salt-sensitive hypertension. Consistent with this hypothesis, therapies that are aimed at blocking the

immune response, including thymectomy, genetic alterations in mice resulting in impaired immune responses, or the use of

immunosuppressive agents, can protect against the development of hypertension in experimental models. Preliminary data in

humans also suggest that the inhibition of the renal inflammatory response may reduce blood pressure. The present

investigations are directed to gain insight in the role of the intrarenal T-cell reactivity and autoimmunity in driving the

tubulointerstitial inflammation and its participation in the pathogenesis of salt-sensitive hypertension.
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Hypertension (blood pressure X140/90 mm Hg) is present in nearly
one billion people, affecting 25–43% of the world population older
than 18 years, and is responsible for 7.1 million deaths and 64 million
disease-adjusted life-years.1 Overwhelming evidence supports the
relationship between dietary salt and blood pressure levels,2 and the
importance of salt restriction is underlined by the WHO report
indicating that two-thirds of the cerebrovascular accidents and half
of the coronary artery events are related to hypertension.3 It has
recently been estimated that a reduction of salt intake to 3 g per day
would save 10–24 billions in health care annually in the United States4

and reduction of the average sodium intake to 2300 mg (100 mmol)
per day would reduce the prevalence of hypertension by 11 million.5

The central role of the impairment in urinary sodium excretion in
the pathogenesis of hypertension was hypothesized almost half a
century ago by Borst and Borst-de Geuss,6 and the mechanisms
relating the physiology of renal sodium excretion with the long-term
control of blood pressure were presented by Guyton et al.7 Major
support for this hypothesis was firmly established by the finding that
hypertension ‘travels with the kidney’ in renal transplantation studies
involving genetically hypertensive and normotensive rats,8–11 as well as
in transplantation between normotensive donors and hypertensive
patients.12

Salt sensitivity, defined as abnormally pronounced variations of the
blood pressure in response to sodium loading and sodium restriction,

may be found in normotensive as well as hypertensive individuals, but
is a feature present in 80% of hypertensive patients older than 60
years.13 Salt-sensitive hypertension (SSHTN) results from a variety of
mechanisms that have in common the inability of the kidney to
respond to salt loading with an appropriate increment in natriuresis
(reviewed in Rodriguez-Iturbe et al.14). As postulated by Guyton,15 the
increase in blood pressure is an adaptive response necessary to
compensate for the impairment in pressure–natriuresis relationship.
The present review is focused on the role of interstitial inflammation
and renal microvascular disease in the development of an impaired
natriuresis, which is the key renal defect driving SSHTN.

RENAL MICROVASCULAR DISEASE AND INTERSTITIAL

INFLAMMATION ARE FEATURES OF EXPERIMENTAL AND

HUMAN HYPERTENSION

Hypertension and microvascular disease
The association of renal arteriolar disease with hypertension has been
recognized for a long time and fueled a debate on whether the
‘arteriocapillary fibrosis’ in the kidney was a cause or a consequence
of hypertension.16 The controversy initially centered on the association
of hypertension and vascular disease with ‘chronic’ Bright’s
disease,17–19 but it was soon recognized that hypertension could be
present without renal parenchymal damage. An important autopsy
study, published in the 1930s, reported that arteriolar disease
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(‘arteriolosclerosis’) was much more likely to be present in the kidneys
of hypertensive subjects than in other organs such as the spleen.20 This
led Goldblatt to hypothesize that the renal arteriolar disease might
have a primary role in causing hypertension, which he postulated was
by causing renal ischemia.21 Studies by several investigators22–24

evidenced renal microvascular changes in hypertension, but the
experiments of Goldblatt induced renal ischemia by clamping of the
renal artery25 and the arteriolar changes in the human appear
secondary to hypertension because they were more severe in subjects
whose blood pressure was higher or greater in duration.26 Further-
more, in 1948, Castelman and Smithwick24 evaluated renal biopsy
specimens of patients with essential hypertension obtained during
sympathectomy operations that were at the time performed as a
treatment for high blood pressure and found that 10–20% had only
mild renal microvascular disease. These data led to a general abandon-
ment of the Goldblatt hypothesis, and renal arteriolosclerosis has
generally been considered as a structural consequence to persistent
elevated blood pressure.

Additional evidence against the renal arteriolosclerosis hypothesis
was published in the mid-1950s. A key study was performed by
Sommers et al.,27 who evaluated 1766 renal biopsy specimens of
1350 patients with different stages of hypertension, including some of
the same patients from the earlier study by Castelman and Smith-
wick.24 In this detailed study, some degree of arteriolar thickening was
present in over 98% of the biopsy specimens, with evidence for renal
ischemia in 99% of cases. Although the blood pressure of these
patients and the duration of disease were not mentioned, in a separate
report of these patients28 it was indicated that the severity of arteriolar
changes was associated with the severity of hypertension and with the
age of the patient. Patients with normal renal arterioles had a mean
preoperative diastolic blood pressure of 100 mm Hg. Therefore,
although renal arteriolosclerosis was indeed a feature of severe
hypertension, it was not present in the few cases with milder elevation
of blood pressure and the authors concluded that hypertension
precedes the changes in renal vasculature.27

Although these studies argued that arteriolosclerosis was not the
cause of hypertension, the presence of these changes was thought to be
a key element in causing chronic ischemia within the kidney and
thereby triggering and accentuating glomerular sclerosis and post-
glomerular ischemia, oxidative stress, upregulation of vasoconstricting
mediators and tubulointerstitial damage.29 Therefore, the develop-
ment and the severity of lesions in the medium and small renal arteries
could be a mechanism for inducing renal injury, reducing GFR and
causing renal vasoconstriction, which could have a role in reducing
filtered sodium and impairing pressure natriuresis in SSHTN.

In 1997, Johnson and Schreiner30 called attention to the role of the
integrity of the peritubular capillaries in the pressure natriuresis
mechanism and suggested a role for loss and rarefaction of interstitial
capillaries resulting from acquired tubulointerstitial injury. According
to this hypothesis, episodic increments in blood pressure could result
in transient increased pressure, especially in the outer medullary
region of the kidney, where it might induce endothelial cell injury.
The peritubular capillaries consist of only endothelial cells and the
basement membrane, and are devoid of the protection afforded by
smooth muscle and pericytes. The deleterious effects of increased
pressure on the postglomerular capillary network are reinforced by
local vasoconstriction and oxidative stress associated with increased
angiotensin or catecholamine activity, which are known to reduce
interstitial blood flow of the vasa rectae.31 In fact, both norepinephrine
and angiotensin are known to increase peritubular capillary pressure.32

Eventually, peritubular capillaries are permanently damaged and

reduced in number, thus causing ischemia, increasing the oxidative
stress, and mediating tubulointerstitial inflammation and impairment
of pressure diuresis. In support of this hypothesis, a reduction in
peritubular capillary density was demonstrated in experimental
models of SSHTN33–35 and in humans with essential hypertension.36

Hypertension and tubulointerstitial inflammation
Although not emphasized in the 1958 classical study of Sommers
et al.,27 inflammatory infiltration was a constant feature in the renal
biopsies of hypertensive patients and, more importantly, the authors
did note ‘collections of lymphocytes’ in the renal interstitium in about
20% of the hypertensive patients that had minimal or no arteriolar
changes. The relevance of this finding in the pathogenesis of hyper-
tension is now becoming more evident. First, accumulation of
immune-competent cells such as lymphocytes and macrophages in
tubulointerstitial areas of the kidney is a universal finding in experi-
mental models of hypertension. Second, and more significantly, the
inhibition of the interstitial infiltrates with immunosuppressive agents
either prevents or ameliorates the development of hypertension
(reviewed in Rodriguez-Iturbe et al.14).

The importance of the immune system in hypertension was first
suggested by studies performed by Svendsen more than 30-years ago.37

Specifically, Svendsen found that the salt-dependent phase of DOCA-
salt hypertension did not develop in athymic ‘nude’ mice. However,
if the thymus gland was transplanted into these athymic mice, then the
capacity for developing salt-driven hypertension was restored.
Svendsen then showed that the thymus was also necessary for the
chronic phase of the hypertension that follows partial renal infarc-
tion.38 Subsequently, Norman and co-workers,39 working in the same
model, reported that the immunosuppressive agent, cyclophospha-
mide, also had antihypertensive effects. Anti-thymocyte serum has
also been reported to transiently reduce the blood pressure in
spontaneously hypertensive rats.40 Additional studies suggested that
hypertension in this model was associated with altered immune
reactivity, as evidence by impaired blastogenic responses and altered
cellular immune reactivity.41

Our group has hypothesized that the benefit of immunosuppression
on salt sensitivity may relate in part to a direct inhibition of the
inflammatory response that occurs in the kidneys in SSHTN. Indeed,
we have noted a remarkable relationship between the presence of
T cells and macrophages in the interstitium with salt-sensitive blood
pressure in numerous models.42–44 More importantly, we also found
that the reduction of the renal inflammatory response by myco-
phenolate mofetil could prevent the salt-dependent hypertension
that occurs following subcutaneous angiotensin infusion,42 following
the temporary inhibition of nitric oxide synthase43 and the hyperten-
sion that occurs with protein overload nephropathy.44 Subsequently, a
large number of studies from several laboratories, including our own,
found that treatments directed to suppress renal inflammation are
associated with prevention or amelioration of hypertension. Table 1
summarizes the studies that have demonstrated that immune suppres-
sion prevents or ameliorates hypertension.37–40,42–62 Of interest, these
models include experimentally induced (acquired models) SSHTN,
prenatally programmed hypertension and genetic models of hypertension.
Treatments used include means that can block intrarenal lymphocyte
localization or function, lymphocyte depletion strategies, inhibition of
NF-kB activation and several categories of immunosuppressive drugs.

Recent clinical studies also suggest an association between renal
inflammation and essential hypertension. Patients with grade I
hypertension and normal renal function who received mycophenolate
mofetil for the treatment of psoriasis or rheumatoid arthritis had a
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significant reduction in blood pressure concomitant with a reduction
in urinary excretion of inflammatory cytokines.57 Hughson et al.63

also examined renal autopsies of hypertensive and normotensive
White and African-American subjects, and their data show that
macrophage infiltration is more intense in hypertensive individuals
and that the intensity of the macrophage accumulation was strongly
correlated with the severity of hypertension.

In these studies there are both T cells and macrophages present in
the interstitium. Most of the immunosuppressive therapies will reduce
both populations, and hence it is unclear if both cell types are required
or if there is a role for either the T cell or the macrophage. However, a
key role for the T cell in experimental hypertension has recently been
reported by Guzik et al.,47 who showed that Rag�/� mice without
lymphocytes were resistant to the hypertensive effects of angiotensin II
and the adoptive transfer of T cells from the wild-type mice conferred
a normal hypertensive response.

Recent work by Titze and co-workers64 have uncovered a new
system that permits buffering the effects of salt intake on the blood
pressure. Sodium is bound to proteoglycans in the interstitial

space under the skin, where the local hypertonicity drives an increase
of the lymphatics as a consequence of the production of vascular
endothelial growth factor-C by the macrophages activated by the
tonicity-responsive enhancer binding protein. The ‘third’ space thus
formed by the hyperplasia of the lymphatic network serves to
ameliorate the increment in blood pressure that would otherwise
result from a high-salt diet.

IMPAIRMENT IN SALT EXCRETION AS A CONSEQUENCE

OF RENAL MICROVASCULAR DISEASE AND

TUBULOINTERSTITIAL INFLAMMATION

Impairment in the pressure natriuresis is an expected consequence of
reduced peritubular capillary network and accumulation of lympho-
cytes and macrophages in tubulointerstitial areas of the kidney.
Reduced microvascular surface, increased interstitial space and
eventual development of fibrosis reduce and separate the surface
areas of sodium transfer and impair diffusion capacity in the inter-
stitial space.

In addition to these physical effects, tubulointerstitial inflammation
drives a tendency to sodium retention resulting from a combination of
reduction in filtered sodium in the glomeruli and stimulation of
sodium reabsorption in tubular areas. These effects depend on the
constant association of inflammation, angiotensin II and oxidative
stress in tubulointerstitial areas of the kidney.65 The reduced filtration
of sodium would result not only as a consequence of the vasoconstric-
tion caused by angiotensin II in the glomerular circulation but also as
a result of angiotensin II-induced upregulation of the tubuloglomer-
ular feedback mechanism.30 As angiotensin II is also one of the most
potent humoral factors that stimulate proximal tubular sodium
reabsorption,66 the net result of increased angiotensin II activity is a
strong tendency to sodium retention. Interstitial inflammation and
angiotensin activity are also inevitably associated with oxidative stress
that, in itself, is a significant influence that impairs sodium excretion.
The role of oxidative stress in the renal medulla driving sodium
retention has been extensively investigated by Cowley et al.67,68

Impaired pressure natriuresis and stimulated tubuloglomerular feed-
back have also been demonstrated in patients with hypertension.69

The long-term effects of tubulointerstitial inflammation may also
have a role in the progression of chronic renal disease. Tubulointer-
stitial inflammation is associated with proliferative changes that result
in rearrangement of extracellular matrix proteins in the vascular
smooth muscle and reduction in its response to contractile stimuli.70

Tubulointerstitial inflammation in salt-sensitive hypertensive models
is also associated with phenotypic alterations in afferent arteriolar
morphology, which appears to alter the normal autoregulatory
response involved in glomerular hemodynamics.71 A consequence of
the afferent arteriolar disease is glomerular hypertension, which is
known to have a hemodynamic role in renal disease progression.69

Local cytokines and growth factors may contribute to these changes, as
noted by the dose-dependent impairment of protective afferent
vasoconstriction induced by transforming growth factor-b.72 Progres-
sive nephron loss, with diminished capacity for sodium excretion,
is the consequence of the loss of these important autoregulatory
processes.73

IMMUNE REACTIVITY AND HYPERTENSION

Although there is mounting evidence supporting the contention that
tubulointerstitial inflammation and reduction in the peritubular
capillary network are a final common pathway in the development
of salt-driven hypertension (reviewed in Rodriguez-Iturbe et al.14 and
Johnson et al.29), scarce information exists on the mechanisms

Table 1 Studies associating immune depletion with amelioration

or prevention of hypertension

Treatment/condition Experimental model Reference

Lymphocyte depletion

Nude mice DOCA-salt hypertension 37

Neonatal thymectomy Renal infarction (chronic phase) 38

Lyon hypertensive rats 45

Hypertensive NZB mice 46

Rag�/� mice Angiotensin II-induced hypertension 47

Anti-lymphocyte serum SHR 40

Cytokine depletion

Interleukin-6 knockout mice Angiotensin II-induced hypertension 48

Inhibition of proinflammatory transcription factors

Inhibition of NF-kB SHR 49

dTGF rats 50

Immunosuppressive treatment

Mycophenolate mofetil SHR 51

Dahl-salt sensitive 52,53

AII infusion 42

NOS inhibition 43

Chronic lead toxicity 55

Overload proteinuria 44

Cellophane-wrapped kidney 55

Prenatally programmed hypertension 56

Grade I hypertension (humans) 57

Cyclosporin A dTGF rats 58

Cyclophosphamide SHR 59

Black New Zealand mice 46

Renal infarction (chronic phase) 39

Reduction of oxidative stress (studies specifically looking for reduction in

inflammation associated with lowering of BP)

Antioxidant diets SHR 60

Mineralocorticoid hypertension 61

Melatonin SHR 62

Abbreviations: BP, blood pressure; SHR, spontaneously hypertensive rat.
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of development and long-term maintenance of the inflammatory
reactivity. We have raised the possibility that autoimmune reactivity
could be responsible for the low-grade tubulointerstitial inflammation
in the kidney that, in concert with local angiotensin II generation and
oxidative stress, would provide the critical intrarenal milieu that
would favor the chronic impairment in pressure natriuresis that
underlies SSHTN.74

Previous studies that examined the immune reactivity in
hypertension have given conflicting results. In contrast with the
experimental data that indicate that suppression of the immune
system ameliorated hypertension, Tuttle and Boppana75 reported
that interleukin 2 had antihypertensive effects and it was suggested
that activation of the immune system could be an adaptive response
directed to suppress what otherwise could be life-threatening incre-
ments in blood pressure.40 Kristensen and Andersen76 reported that
hypertensive patients have increased levels of serum autoantibodies
and delayed-type hypersensitivity reactions against vascular antigens.
Investigations on the relationship between immune reactivity and
hypertension were then largely abandoned. In 1990, Dzielak77 com-
mented that ‘immune dysfunction is rarely mentioned in discussions
on arterial hypertension’ and suggested that this omission should be
reconsidered in view of the ‘body of evidence that implicates altered
immunological function in the development of some forms of
hypertension.’

Recently we have focused on heat shock proteins (HSPs) as self-
antigens that might trigger and sustain interstitial inflammation in
SSHTN. HSP70 is localized in the major histocompatibility complex,
but no evidence of linkage between the HSP70 gene locus and blood
pressure has been demonstrated.78 However, Hamet et al.79 have
shown that HSP70 mRNA is increased in hypertensive rats and
HSPs are known to be able to induce autoimmune reactivity,80,81

and Ishizaka et al.,82 as well as our group,83 have documented the
overexpression of HSP70 in the kidney in models of salt-sensitive
hypertension. Spontaneously hypertensive rats that are 30 weeks old
present increased renal abundance of HSP70 (but not HSP60, HSP32
and HSP25) and plasma anti-HSP70 antibodies (Figure 1), and
increased serum antibody levels to HSP70 and HSP65 have also
been reported in patients with hypertension.84 HSP70 levels have
also been found to predict the development of atherosclerosis.85

Furthermore, experimental induction of SSHTN is associated with a
proliferative response of splenocytes to HSP70.86 These studies raise
the interesting possibility that autoimmune reactivity involving self-
antigens such as HSP70 may have a role in the pathogenesis of
hypertension.
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