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Inhibition of the renin–angiotensin system and
target organ protection
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The renin–angiotensin system (RAS) is involved in the pathological mechanisms of target organ damage, as well as in the

induction of hypertension. RAS inhibition by angiotensin converting enzyme (ACE) inhibitors and angiotensin (Ang) II receptor

blockers can prevent tissue damage by inhibition of Ang II type 1 receptor signaling. A beneficial effect of RAS inhibition on

the heart, vasculature and kidney in cardiovascular disease has been reported. However, RAS inhibition can also prevent

fibroproliferative diseases and damage of other tissues, such as brain, adipose tissue and muscle, because local RAS has an

important role in tissue damage compared with circulating RAS. Moreover, other players, such as Ang II type 2 receptor

signaling, aldosterone and ACE2 have been highlighted. Furthermore, there has also been a focus on the emerging concept of

regulation of RAS, such as receptor-interacting proteins and receptor modifications, in the new discovery of therapeutic agents

for tissue protection. The RAS has a pivotal role in various target organ damage, with complicated mechanisms; therefore,

blockade of RAS may be therapeutically effective in preventing organ damage, as well as in having an antihypertensive effect.
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INTRODUCTION

Hypertension is one of the most common chronic diseases, being
observed in one-fourth of the world’s population,1 and contributes
substantially to the burden of cardiovascular (CV) disease and end
organ damage. Although blood pressure lowering with antihyperten-
sive agents prevents CV events, such as stroke, myocardial infarction,
heart failure and kidney disease,2 accumulating evidence from large
clinical trials suggests that blockade of the renin–angiotensin system
(RAS) is more effective in the prevention of CV and target organ
damage compared with other hypertensive agents. Many tissues are
considered to be capable of local angiotensin (Ang) II production-
through the tissue-specific local RAS. In pathological conditions, the
local RAS is activated in various tissues, such as endothelium, vascular
smooth muscle and renal mesangium, leading to organ damage. RAS
is involved in all stages of the CV continuum,3 because the major
effector of RAS, Ang II, has a direct pathobiological effect on the heart,
brain, vessel wall, kidney and adipose tissue. Moreover, new evidence
has recently accumulated showing the existence of several novel
receptor-interacting proteins and various Ang II receptor activation
mechanisms beyond the classical actions of receptors for Ang II. Ang
II exerts its important physiological functions through two distinct
receptor subtypes: type 1 (AT1) and type 2 (AT2) receptors. These
associated proteins could contribute not only to Ang II receptors’
functions but also to influencing pathophysiological states. Moreover,
other players in RAS have been highlighted in recent CV research.

In this review, the major basic mechanisms of target organ damage
induced by RAS in each organ and the effect of blockade of RAS, such
as with angiotensin converting enzyme (ACE) inhibitors (ACEIs) and
Ang II receptor blockers (ARBs), on target organ damage are dis-
cussed, together with the recent paradigm of RAS.

NEW PARADIGM SHIFT OF RENIN–ANGIOTENSIN SYSTEM

Ang II is the principal vasoactive substance of RAS, having a variety of
physiological actions including vasoconstriction, aldosterone release
and cell growth.4 Ang II binds two major receptors: the AT1 receptor
and the AT2 receptor. The majority of well-known Ang II actions are
mediated through AT1 receptor stimulation, and RAS inhibition by
ACEIs and ARBs is expected to protect against CV disease. AT2

receptor stimulation by unbound Ang II could also be expected
during treatment with ARBs. Recent accumulating evidence has
suggested that the AT2 receptor not only opposes the AT1 receptor
but also has unique effects beyond an interaction with AT1 receptor
signaling. On the other hand, recent experimental studies have shown
the existence of proteins interacting with Ang II receptors, screened by
the yeast-based two-hybrid protein–protein interaction assay techni-
que, and have also revealed their functions.5–12 For the AT1 receptor,
AT1 receptor-associated protein could act as a negative regulator in
AT1 receptor-mediated cell proliferation and vascular remodeling, at
least in part by the enhancement of AT1 receptor internalization.13,14

On the other hand, the AT2 receptor-interacting protein seems to act
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as a novel early component of the growth inhibitory signaling cascade
of the AT2 receptor.12 Moreover, the AT1 receptor is also reported to
form homodimers or heterodimers, and undergo complex formation
with the AT2 receptor15 and other GPCRs, such as the bradykinin B2
receptor in patients with preeclampsia,16 the EGF receptor,17 dopa-
mine receptors,18–21 AT1-endothelin receptor type B22 and AT1-Mas
receptor.23 These dimerizations of Ang II receptors could possibly
indicate unknown effects of Ang II receptors’ functional aspects in CV
biology.

The ligand-independent activation of GPCRs has been highlighted,
especially in the potential new discovery of drug targets.24 Mechanical
stress activates the AT1 receptor independently of Ang II.25 This
activation can be inhibited by an inverse agonist of the AT1 receptor;
therefore, ARBs can be classified into competitive antagonists and
inverse agonists.26 Moreover, agonistic antibodies against the second
extracellular AT1 receptor loop have been shown in women with
preeclampsia27 and in renal transplant recipients during an episode of
rejection.28,29

Moreover, another recent topic is new players in RAS (Figure 1).
The counter-regulatory axis of the RAS, such as ACE2, Ang-(1–7) and
its receptor, Mas, is potentially important for promoting vasoprotec-
tive effects. The balance between the ACE–Ang II–AT1 receptor and
the ACE2–Ang-(1–-7)–Mas axis is considered to play an important
role in organ damage, related directly to hypertension and associated
diseases; therefore, the regulation of ACE2 offers a novel target for
CVD therapeutics.30 On the other hand, brain Ang III, which is
converted in vivo from Ang II by aminopeptidase A, controls vaso-
pressin release and increases blood pressure. Although the true effector
of Ang III is totally unknown, Ang III could constitute a putative
central therapeutic target for the treatment of hypertension.31 Ang
(1–12), an intermediate precursor derived directly from angiotensinogen,

was identified recently by Nagata et al.32 Although Ang (1–12) may be an
alternate precursor substrate for the formation of bioactive angiotensin
peptides, its detailed function is an enigma. Furthermore, cross-talk of
Ang II and aldosterone has also received attention. We earlier reported
the interaction between Ang II and aldosterone on vascular smooth
muscle cell proliferation, and the interaction between Ang II and Aldo on
vascular smooth muscle cell proliferation33 and senescence.34 These
results provide evidence that blockade of both Ang II and aldosterone
could be of therapeutic benefit for vascular disorders.

Although the correlation between the emerging concept of RAS and
pathophysiological conditions has not been elucidated in detail,
further investigation of the functional regulation of Ang II recept
or-interacting proteins, receptor modification and new players in RAS
could be useful for new drug discovery for ameliorating the enhanced
tissue RAS.

TISSUE RENIN–ANGIOTENSIN SYSTEM

Vascular remodeling, atherosclerosis and senescence
Ang II is generated by ACE secreted from endothelial cells, and
constricts blood vessels through AT1 receptors that are expressed in
them.35,36 In blood vessels, RAS induces pathophysiological disorders
after an increase in oxidative stress, mediated mainly by NAD(P)H
oxidase.37–39 In endothelial cells, the NAD(P)H oxidase induces
production of superoxide (�O2

�), which oxidizes tetrahydrobiopterin
(BH4), a co-factor of the enzyme endothelial nitric oxide (NO)
synthase. In the presence of a high BH4 concentration, endothelial
NO synthase is dimerized and produces NO. Reduced availability of
BH4 causes uncoupling of endothelial NO synthase , leading to
production of �O2

�, reduced availability of NO and generation of
peroxynitrate (�ONOO�) as a result of the action of �O2

� on NO.40

Production of increased reactive oxygen species also leads to the
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activation of redox-sensitive pro-inflammatory transcription factors,
such as NF (nuclear factor)-kB and Ets-1, which trigger and/or
potentiate the inflammatory cascade.41–43 Reactive oxygen also pro-
motes the expression of VCAM-1 (vascular cell adhesion molecule-1)
and ICAM-1 (intercellular adhesion molecule-1) in endothelial cells,
and that of VCAM-1, MCP-1 (monocyte chemotactic protein-1) and
IL-6 (interleukin-1) in smooth muscle cells.44,45 Therefore, AT1-
receptor-induced oxidative stress may cause NO inactivation, lipid
oxidation and activation of redox-sensitive genes, such as chemotaxis
and adhesion molecules, pro-inflammatory cytokines and matrix
metalloproteinases, all of which are involved in the initiation and
progression of endothelial dysfunction and which manifest athero-
sclerosis. Although apolipoprotein E-deficient mice with a high-
cholesterol diet show marked arteriosclerosis, administration of an
ACEI or ARB to these mice suppresses the development of arterio-
sclerosis.46,47 Moreover, activation of RAS is also related to the
formation of thrombus, because Ang II activates plasminogen acti-
vator inhibitor type 1 (PAI-1) in endothelial cells.48 Thus, when the
vascular RAS is activated by hypertension, not only the development
of coronary artery plaque but also the formation of thrombus is
accelerated, and this is considered to be involved in the destabilization
of arteriosclerotic plaque. Therefore, the HOPE (Heart Outcomes
Prevention Evaluation) study proved clinically that RAS inhibition not
only decreases blood pressure but is also vasoprotective49 (Figure 2).

On the other hand, vascular senescence mediated by AT1 receptor
stimulation has been highlighted recently,50 and ARBs have been shown
to prevent vascular disorders associated with aging.51,52 Recently, it was
reported that the senescence of smooth muscle cells was increased by
persistent Ang II stimulation.34 This senescence was suppressed by an
ARB. A similar result was also obtained by the administration of
aldosterone. Although senescence was not seen in smooth muscle
cells treated with low-concentration Ang II or aldosterone added
individually, senescence was induced by adding low-concentration
Ang II and aldosterone simultaneously. This result suggests that Ang
II and aldosterone have an interaction in vascular smooth muscle cells.

Heart
Although diuretics and cardiotonic agents were used mainly for the
medical treatment of heart failure till 1980, they were not associated
with a marked improvement in prognosis.53–58 Entering the 1980s,
research on neurohumoral factors, such as the sympathetic nerve RAS
progressed, and the beneficial effects of ACEIs in heart failure were
proved by large clinical trials, such as the CONSENSUS (Cooperative
North Scandinavian Enalapril Survival Study)59 and the SOLVD
(Studies of Left Ventricular Dysfunction),60 and they were used as
the first-line drug. In the Valsartan Heart Failure Trial (Val-HeFT),61

together with the standard treatment, an ARB was proved to reduce
CV events in heart failure patients. Moreover, the CHARM (Cande-
sartan in Heart Failure Assessment of Reduction in Mortality and
Morbidity) study also showed that the ARB candesartan was generally
well tolerated and significantly reduced CV deaths and hospital
admissions for heart failure.62

Ang II receptors are expressed in the human heart,63 and their
expression is changed in the failing heart. Haywood et al.64 showed
that AT1 receptor expression decreased in the failing human ventricle,
whereas AT2 receptor expression was unaffected. Moreover, especially
in human primary pulmonary hypertension hearts, the AT1 receptor
was downregulated only in the failing right ventricle,65 suggesting that
Ang II receptors may be regulated differentially in the failing heart.
Basic research has also shown the role of RAS in the heart. The mice
have two AT1 receptor subtypes: AT1a and AT1b. Ang II acts mainly
through AT1a receptors. In AT1a receptor-deficient mice with myo-
cardial infarction, cardiac muscle remodeling was less marked and the
survival rate was higher compared with those in wild-type mice.66 In
contrast, overexpression of the AT1 receptor in cardiomyocytes
induced significant cardiac hypertrophy and remodeling, with
increased expressions of ventricular atrial natriuretic factor and
interstitial collagen deposition, and the mice died prematurely of
heart failure67 showing upregulation of gene expression, such as c-Jun
N-terminal kinase and c-fos.68 Upregulation of c-fos in cardio-
myocytes by Ang II administration activates protein kinase C and
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extracellular signal-regulated kinase, and results in cardiac hypertro-
phy.69,70 Moreover, cardiac myocytes have the ability to sense mechan-
ical stretch and convert it into intracellular growth signals, resulting in
cardiac hypertrophy. Mechanical stretch stimulates the rapid secretion
of Ang II from neonatal rat cardiac myocytes.71 Furthermore, recently,
mechanical stretch was reported to activate the AT1 receptor inde-
pendently of Ang II.25 This activation can be inhibited by some ARBs,
which are inverse agonists of the AT1 receptor, indicating a therapeutic
effect of RAS inhibitionthrough multiple mechanisms dependent and
independent of the AT1 receptor (Figure 2).

Aldosterone has recently been implicated as playing a major role in
the progression of heart failure. Major clinical trials designed to
analyze clinical outcomes of heart failure using an aldosterone
antagonist, such as spironolactone or eplerenone, have been con-
ducted. The first, the RALES (Randomized Aldactone Evaluation
Study), showed that an aldosterone antagonist, spironolactone, sig-
nificantly reduced mortality in symptomatic chronic advanced heart
failure patients compared with that in placebo.72 The second was the
EPHESUS (Eplerenone Post myocardial infarction Heart failure Effi-
cacy and SUrvival Study), which showed a significant reduction in
mortality and hospitalization in post-myocardial infarction patients
with heart failure by a selective mineralocorticoid receptor blocker,
eplerenone.73 These trials showed a beneficial effect of an aldosterone
antagonist in chronic advanced heart failure patients, as well as post-
myocardial infarction heart failure patients with reduced ejection
fraction.

Kidney
The RAS has been developed for maintaining the sodium and
electrolyte balance so that land animals can maintain body fluid. In
recent times, however, the excess intake of sodium chloride has
contributed to the development of hypertension, the metabolic
syndrome and other lifestyle-related diseases.

All components of RAS are expressed in the kidney, and it appears
that most renal AT1 receptors are exposed to locally generated Ang II
rather than to Ang II from circulation.74 Ang II acts on the renal
tubules, promotes the reabsorption of sodium, and has an effect that

increases blood pressure. Gene-modification mice, which are double
transgenic with human angiotensinogen and human renin in the
proximal tubule, have significantly increased blood pressure, suggest-
ing that activation of RAS in the kidney influences blood pressure.
Moreover, as Ang II has a greater constrictive effect on the efferent
arteriole than the afferent arteriole through AT1 receptor stimulation,
excess pressure in the glomerular endothelial cells and the mesangial
cells leads to nephropathy and renal dysfunction. Therefore, RAS
inhibition increases renal blood flow beyond antihypertensive effects.
Other beneficial roles of RAS inhibition in the kidney have been
reported (Figure 2). For example, administration of an ARB in a
diabetic nephropathy rat model prevents the development of nephro-
pathy.75 Also, RAS inhibition prevents renal fibrosis.76–78 In clinical
trials, the risk of onset of end-stage renal failure was inhibited by ARB
treatment in the RENAL (Reduction of Endpoints in non-insulin-
dependent diabetes mellitus (NIDDM) with the Angiotensin II Antago-
nist Losartan) and the IDNT (Irbesartan Diabetic Nephropathy Trial)
studies.79,80 Moreover, IRMA2 (IRbesartan in patients with type II
diabetes and Micro-Albuminuria Study) showed that the ARB irbesar-
tan exerts renal protection without a decrease in blood pressure.81

The renal protective effects of aldosterone blockade independent of
Ang II blockade have been reported in animal models, and an
additional effect of aldosterone blockade with Ang II inhibition has
also been shown in clinical studies.82 For example, blockade of
aldosterone, independent of RAS blockade, reduces proteinuria and
nephrosclerosis in the SHRSP (spontaneously hypertensive, stroke-
prone) rat.83 Clinically, co-administration of eplerenone with an
ACEI, enalapril, significantly reduced albuminuria in patients with
diabetes, compared with enalapril treatment alone.84 Moreover, the
plasma concentration of aldosterone is reported to begin to rise after
long-term RAS blockade in some patients.85 These ‘aldosterone break-
through’ effects reflect incomplete blockade of RAS, and may promote
renal injury even in patients with RAS blockade.

Brain
Recently, there has been a focus on the local RAS in the brain.86

Although it is thought that Ang II does not cross the blood–brain
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barrier, it is reported that all components of RAS exist in the central
nervous system, suggesting that Ang II is produced and functions in
the central nervous system (Figure 3).

Recent large clinical trials, such as the LIFE (Losartan Intervention
For Endpoint) reduction in hypertension87 and the MOSES
(MOrbidity and mortality after Stroke, Eprosartan compared with
nitrendipine for Secondary prevention)88 studies, indicated that the
blockade of RAS is effective in preventing a first or recurrent stroke
beyond its blood pressure-lowering effects. The ACCESS (Acute
Candesartan Cilexetil Therapy in Stroke Survivors) study showed
lower mortality at 12 months after stroke in the candesartan-treated
group compared with that in the placebo group even with similar
blood pressure in the 7 days after stroke in the two groups, suggesting
that RAS inhibition in the acute phase of stroke leads to brain
protection without a hypotensive effect.89 Moreover, the MOSES
study showed that the primary end point, a composite of total
mortality and all CV and cerebrovascular events, was significantly
lower for treatment with an ARB, eprosartan without a change of
blood pressure.88 An experimental brain injury model with middle
cerebral artery occlusion, using genetically modified mice, revealed
that AT1 receptor signaling enhances brain damage partly because of
an increase in oxidative stress in the ischemic brain and a decrease in
cerebral blood flow in the penumbral region of the middle cerebral
artery territory. In contrast, the activation of the AT2 receptor-
attenuated brain injury,90 with counter-regulatory effects on the AT1

receptor and the enhancement of neural differentiation and the repair
of damaged DNA by the induction of a neural differentiating factor,
MMS2, which is one of the ubiquitin conjugating enzyme variants.86

Recent studies have also shown the possibility that stimulation of AT2

receptors may promote cell differentiation and regeneration in neu-
ronal tissue.4,91 Li et al.92 reported that AT2 receptor stimulation
supported neuronal survival and neurite outgrowth in response to
ischemia-induced neuronal injury. Moreover, Gallo-Payet et al.93

showed that Ang II induces neural differentiation and neurite
outgrowththrough mitogen-activated protein kinase or produces
NO94 through AT2 receptor activation and is involved in brain
development.95 This accumulating evidence indicates that AT2

receptor signaling acts as a crucial cerebroprotective factor after stroke.
Moreover, we also showed that a non-hypotensive dose of a

mineralocorticoid receptor antagonist, eplerenone, reduced the stroke
size after middle cerebral artery occlusion in mice.96 These inhibitory
effects of eplerenone on stroke size in the brain were at least partly
owing to an improvement in the early phase of cerebral blood flow in
the peripheral region of the ischemic area and to the prevention of
superoxide production in the injured brain. Furthermore, spirono-
lactone improves the structure and increases the tone in the cerebral
vasculature of male SHRSP,97 indicating that long-term administra-
tion of spironolactone is effective in the prevention of stroke onset.
These results indicate that aldosterone is involved in stroke onset and
in the expansion of brain damage after ischemic stroke.

Although an improvement of the cognitive function by RAS
inhibition has not been confirmed clinically, RAS inhibition is
expected to prevent a cognitive decline in Alzheimer’s disease98 and
in the metabolic syndrome,99 based on animal studies. Recently, it has
been proven that RAS inhibition by an ARB is expected to prevent the
onset of Alzheimer’s disease. An ARB, valsartan, was able to attenuate
oligomerization of amyloid b peptides into high-molecular-weight
oligomeric peptides.100 Moreover, treatment with valsartan also atte-
nuated the development of amyloid b-mediated cognitive impairment
in Tg2576 mice, an Alzheimer’s disease mouse model. On the other
hand, ACE is concerned with the decomposition of amyloid b.101 In a

clinical investigation of the relationship between antihypertensive
medication use and the onset of Alzheimer’s disease,102 the onset of
Alzheimer’s disease was attenuated by a diuretic agent or calcium
channel blocker; however, an ACEI failed to prevent Alzheimer’s
disease, indicating the involvement of ACE in amyloid b deposition.
However, amyloid b level in the brain was not changed in
ACE-deficient mice, suggesting that further investigations are required
to determine whether ACE is actually involved in the decomposition
of amyloid b.103

Moreover, potassium-sparing diuretics, which include spironolac-
tone and eplerenone, are associated with the reduced incidence of
Alzheimer’s disease according to the examination of the relationship of
antihypertensive medication with Alzheimer’s disease onset in the
elderly population aged 65 years and older in Cache County, Utah,
USA.102 Although further investigation is needed, these results suggest
that aldosterone may affect the incidence of Alzheimer’s disease.

Metabolic syndrome
The VALUE (Valsartan Antihypertensive Long-term Use Evaluation)
study104 and other large clinical studies showed that a new onset of
diabetes is suppressed by administration of an ARB compared with
other antihypertensive agents, such as calcium channel blockers and
b-blockers. Thus, local actions of RAS in adipose tissue,105 skeletal
muscle and the pancreas have also been highlighted recently. Obesity is
one of the major risks for the metabolic syndrome with hypertension
and glucose intolerance. However, there have been inconsistent reports
on the role of the adipose tissue RAS. There are at least two
differentiation steps in adipogenesis involving RAS; from mesen-
chymal stem cell (MSC) to adipocytes and from preadipocytes to
adipocytes. The inhibitory effects of Ang II seem to differ between
MSC and preadipocyte differentiation. Janke et al.106 reported that
Ang II inhibits differentiation of human adipocyte progenitor cells,
and inhibiting this function by an ARB, thereby results in large
insulin-resistant adipocytes with an increased storage of lipid.105 In
contrast, blockade of RAS promotes the recruitment of preadipocytes,
thereby increasing the number of small insulin-sensitive adipocytes.
This hypothesis is supported by the observation by Shimamoto
et al.107 that an ARB, olmesartan, significantly reduced adipocyte
size in fructose-fed rats, with an improvement in glucose intolerance.
In association with preadipocyte differentiation, an ARB increased
well-differentiated adipocytes, which can secrete inflammatory adipo-
cytokines, such as TNF-a, and more beneficial adipocytokines, such as
adiponectin. Therefore, the effect of an ARB on preadipocyte differ-
entiation is to increase ‘well-differentiated adipocytes’ rather than
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‘poorly differentiated adipocytes’. On the other hand, in MSC differ-
entiation, relative stimulation of AT2 receptors by an ARB increased
less-differentiated adipocytes, such as progenitors with adipocyte
characteristics, which secrete less adipocytokines and may have
transdifferentiation potential.108 Thus, ARBs have two different
possible beneficial effects on adipocyte differentiation, resulting in
an improvement in the metabolic syndrome (Figure 4).

Moreover, we earlier reported that blockade of RAS by an ARB,
valsartan, increased insulin uptake into skeletal muscle and attenuated
the increase in plasma glucose concentration.109 Insulin-induced
phosphorylation of insulin receptor substrate-1 (IRS-1), the associa-
tion of IRS-1 with the p85 regulatory subunit of phosphoinositide 3
kinase (PI 3-K), PI 3-K activity and the translocation of glucose
transporter type 4 (GLUT4) to the plasma membrane are exaggerated
by valsartan treatment. Furthermore, Ang II receptors are expressed
in the pancreatic tissue.110 An increase in Ang II suppressed the
secretion of insulin dose-dependently in hyperglycemic mice.111

Moreover, administration of an ACEI or ARB attenuated inflamma-
tion and fibrosis in the pancreas.112,113 These results indicate that
RAS inhibition prevents the onset of diabetes and the metabolic
syndrome.

Other tissues
Fibroproliferative diseases, including liver cirrhosis, pulmonary fibro-
sis, aortic aneurysm and macular degeneration, are also target-organ
diseases and are the leading causes of morbidity and mortality. CV
disease and progressive kidney disease also involve these pathological
disorders. Fibrosis is characterized by the accumulation of matrix
molecules, such as collagen and fibronectin, owing to overexpression
and decreased clearance and degradation of these matrix components.
Epithelial–mesenchymal transition, a process through which an
epithelial cell changes its phenotype to become more like a mesench-
ymal cell, activates local tissue fibroblasts. Ang II induces an epithelial–
mesenchymal transition through increased expression of vimentin and
a-smooth muscle actin and downregulation of E-cadherin, followed
by phosphorylation of Smad2/3 by TGF-b (transforming growth
factor-b) activation.114 Recently, an association of fibroproliferative
diseases with upregulation of TGF-b by Ang II has been reported.

Hepatocytes are the main source of angiotensinogen.115,116 Recently,
the hepatic RAS has been reported to be related to the pathogenesis of
chronic liver disease. Hepatic RAS is upregulated in chronic liver
injury, and contributes to oxidative stress,117 recruitment of inflam-
matory cells and the development of fibrosis. In AT1a-deficient mice,
inflammation and fibrosis were attenuated after treatment with either
CCl4 or bile duct ligation.118,119 Although large randomized clinical
trials have not been conducted to date, on the basis of the results of
clinical120 and experimental studies in vivo121,122 and in vitro,123 RAS
inhibition has been expected to become a potential new therapeutic
strategy against the progression of chronic liver disease, for preventing
liver fibrosis.

An elevated ACE concentration in bronchoalveolar lavage fluid and/
or serum has been reported in many potentially fibrotic lung diseases,
including sarcoidosis,124 idiopathic pulmonary fibrosis125 and in the
acute respiratory distress syndrome.126 Ang II has been identified as a
proapoptotic and profibrotic factor in experimental lung fibrosis
models, and patients with the insertion/deletion (ID)/deletion/dele-
tion (DD) polymorphism of ACE, which confers higher levels of ACE,
are predisposed to pulmonary fibrosis.127 ACEI and ARB prevented
experimental lung fibrosisthrough inhibition of the angiotensin/TGF-
b ‘autocrine loop’,128 indicating that RAS inhibition may prevent the
fibrotic change in the lung.

On the other hand, excessive TGF-b signaling enlarges the aortic
root and results in aortic aneurysm. Treatment with an ARB attenu-
ated aortic root dilatation in a mouse model129 and in patients with
Marfan’s syndrome.130 Marfan’s syndrome is a disorder of connective
tissue resulting from mutations in the gene for fibrillin-1, which leads
to skeletal muscle weakness and CV abnormalities. A similar group
also reported that treatment with the ARB losartan normalized muscle
architecture observed in fibrillin-1 deficient mice, a mouse model of
Marfan’s syndrome.131 Interestingly, losartan treatment improved the
muscle function in a dystrophin-deficient mouse model of Duchenne’s
muscular dystrophy.131

Further clinical investigation should be carried out to prove the
actual beneficial effect of RAS inhibition in such fibroproliferative
diseases in the future.

CONCLUSIONS

Recent clinical studies indicate multiple preventive effects of the
blockade of RAS on target organ damage. As the TROPHY (Trial
Of Preventing Hypertension) showed recently that the treatment of
prehypertension with an ARB, candesartan, reduced the incidence of
hypertension even after the cessation of ARB administration,132 RAS
inhibition may have to be initiated as soon as possible for resetting
RAS. Moreover, in some patients, long-term treatment with an ACEI
or ARB induces an increase in serum aldosterone level, which is called
‘aldosterone breakthrough’.133 Therefore, in the next stage, further
investigation is necessary to determine when to start and what doses of
ACEI and ARB and other RAS inhibition agents to use through a
comparison of the long-term therapeutic effects of RAS inhibition
with single and combined agents for the optimal prevention of target
organ damage.
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