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Inhibitory effect of ETB receptor on Na+–K+ ATPase
activity by extracellular Ca2+ entry and Ca2+ release
from the endoplasmic reticulum in renal proximal
tubule cells

Yan Liu1, Jian Yang1,4, Hongmei Ren1, Duofen He1, Annabelle Pascua2, M Ines Armando2, Chengming Yang1,
Lin Zhou1, Robin A Felder3, Pedro A Jose2 and Chunyu Zeng1

The kidney is important in the long-term regulation of blood pressure and sodium homeostasis. Stimulation of ETB receptors in

the kidney increases sodium excretion, in part, by decreasing sodium transport in the medullary thick ascending limb of Henle

and in collecting duct. However, the role of ETB receptor on Na+–K+ ATPase activity in renal proximal tubule (RPT) cells is not

well defined. The purpose of this study is to test the hypothesis that ETB receptor inhibits Na+–K+ ATPase activity in rat RPT

cells, and investigate the mechanism(s) by which such an action is produced. In RPT cells from Wistar–Kyoto rats, stimulation

of ETB receptors by the ETB receptor agonist, BQ3020, decreased Na+–K+ ATPase activity, determined by ATP hydrolysis

(control¼0.38±0.02, BQ3020¼0.26±0.03, BQ788¼0.40±0.06, BQ3020+BQ788¼0.37±0.04, n¼5, Po0.01). The ETB

receptor-mediated inhibition of Na+–K+ ATPase activity was dependent on an increase in intracellular calcium, because this

effect was abrogated by a chelator of intracellular-free calcium (BAPTA-AM; 5�10�3
M 15 min�1), Ca2+ channel blocker

(10�6
M 15 min�1 nicardipine) and PI3 kinase inhibitor (10�7

M per wortmannin). An inositol 1,4,5-trisphosphate (IP3) receptor

blocker (2-aminoethyl diphenyl borate; 10�4
M 15 min�1) also blocked the inhibitory effect of the ETB receptor on Na+–

K+ATPase activity (control¼0.39±0.06, BQ3020¼0.25±0.01, 2-APB¼0.35±0.05, BQ3020+ 2-APB¼0.35±0.06, n¼4,

Po0.01). The calcium channel agonist (BAY-K8644; 10�6
M 15 min�1) inhibited Na+–K+ ATPase activity, an effect that was

blocked by a phosphatidylinositol-3 kinase inhibitor (10�7
M 15 min�1 wortmannin). In rat RPT cells, activation of the ETB

receptor inhibits Na+–K+ ATPase activity by facilitating extracellular Ca2+ entry and Ca2+ release from endoplasmic reticulum.
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INTRODUCTION

The kidney is important in the long-term regulation of blood
pressure and is the major organ involved in the regulation of body
sodium homeostasis.1–3 The proximal tubule and medullary thick
ascending limb of Henle are preeminent in the overall regulation of
sodium balance in essential hypertension.4,5 Indeed, several studies
have shown that human essential hypertension and rodent genetic
hypertension are associated with increased sodium transport in the
renal proximal tubule (RPT) and medullary thick ascending limb of
Henle.3–5

Endothelins are a family of isopeptides (ET1, ET2 and ET3)
transduced by at least two receptor subtypes (ETA and ETB).6,7

Renal tissue expresses both endothelin receptors, and endothelin is

synthesized by renal tubules, wherein it regulates sodium transport.8

Emerging evidence suggests that ETB receptor has an important role
in the regulation of sodium balance and blood pressure.4,5,9–11

The effects of ETB on sodium transport in RPT cells seem to be
complex. Both inhibitory and stimulatory effects of endothelin on
sodium hydrogen exchanger 3 (NHE3) activity have been reported
in the RPT.12–14 Short-term stimulation of ETB receptors in
opossum kidney cells, an RPT cell line, activates NHE3.12

In contrast, chronic treatment of the same opossum kidney cells by
endothelin has an opposite effect on NHE3 activity.13 Decreasing
intracellular sodium by the inhibition of NHE3 can result in a
secondary inhibition of Na+–K+ ATPase. We hypothesize that activa-
tion of ETB receptor, independent of NHE3, has an inhibitory effect
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on Na+–K+ ATPase activity in RPT cells. The purpose of this study is
to determine the effect of ETB receptor on Na+–K+ ATPase activity,
and the mechanism(s) by which such an action is produced.
The results reported here suggest that in rat RPT cells, the ETB
receptor inhibits Na+–K+ ATPase activity, which involves Ca2+ entry,
activation of phosphatidylinositol-3 (PI3) kinase and an increase in
inositol 1,4,5-trisphosphate (IP3), which triggers Ca2+ release from the
endoplasmic reticulum (ER) to further increase intracellular Ca2+

concentration.

METHODS

Cell culture
Immortalized RPT cells from 4- to 8-week-old Wistar–Kyoto rats were

maintained in a humidified atmosphere of 5% CO2/95% air at 37 1C,15–17

cultured at 37 1C in a 95% air/5% CO2 atmosphere in DMEM/F-12

with transferrin (5mg ml�1), insulin (5mg ml�1), epidermal growth factor

(10 ng ml�1), dexamethasone (4mg ml�1) and 5% fetal bovine serum (Sigma,

St Louis, MO, USA). For subculturing, cells were dissociated with 0.1%

trypsin–EDTA, split 1:4 and subcultured in Costar plates with 21 cm2 growth

areas (Costar, Badhoevedorp, the Netherlands). The cell medium was changed

every 2 days, and the cells reached confluence after 3–5 days of incubation.

In all the experiments, cells were maintained in fetal bovine serum-free

medium for 3 h.

Human renal proximal tubule cells: Histologically, normal sections of fresh

human kidneys from normotensive patients (n¼6; mean age, 65 years; 3 men, 3

women) who had unilateral nephrectomy because of renal carcinoma or

trauma were grown in culture. All patients signed a consent form agreeing

that the tissues taken from them are the property of the Department of

Pathology and that such tissues can be used for study. All studies were approved

by the Institutional Review Board of the University of Virginia Center for the

Health Sciences.

Human RPT cells,18 passages 6 and 7, were incubated at 371C in 95% O2/5%

CO2 under polarized conditions on Transwells inserted on 12-well plates in

medium with 5% fetal bovine serum consisting of a 1:1 mixture of Dulbecco’s

modified Eagle’s medium and Ham’s F12 medium supplemented with selenium

(5 ng ml�1), insulin (5mg ml�1), transferrin (5mg ml�1), hydrocortisone

(36 ng ml�1), triiodothyronine (4 pg ml�1) and epidermal growth factor

(10 ng ml�1).18

Na+–K+ ATPase activity assay
ATP hydrolysis. Rat RPT cells were treated with vehicle (dH2O), an ETB

receptor agonist (BQ3020, Sigma) or an ETB receptor antagonist (BQ788,

Sigma)19,20 at indicated concentrations and durations of incubation. Na+–K+

ATPase activity was determined as the rate of inorganic phosphate released in

the presence or absence of ouabain.21 To prepare membranes for Na+–K+

ATPase activity assay, RPT cells cultured in 21 cm2 plastic culture dishes were

washed twice with 5 ml chilled phosphate-free buffer (3.36 mM NaCl, 0.54 mM

NaHCO3, 0.4 mM KCl and 0.12 mM MgCl2 scraped in phosphate-free buffer)

and were centrifuged at 3000 g for 10 min. The cells were then placed on ice and

lysed in 2 ml of lysis buffer (1 mM NaHCO3, 2 mM CaCl2 and 5 mM MgCl2).

Cellular lysates were centrifuged at 3000 g for 2 min to remove intact cells,

debris and nuclei. The resulting supernatant was suspended in an equal volume

of 1 M sodium iodide, and the mixture was centrifuged at 48 000 g for 25 min.

The pellet (membrane fraction) was washed twice and suspended in 10 mM Tris

and 1 mM EDTA (pH 7.4). Protein concentrations were determined by the

Bradford assay (Bio-Rad Laboratories, Hercules, CA, USA) and adjusted to

1 mg ml�1. The membranes were stored at �70 1C until further use. To measure

Na+–K+ ATPase activity, 100ml aliquots of membrane fraction were added to an

800ml reaction mixture (75 mM NaCl, 5 mM KCl, 5 mM MgCl2, 6 mM sodium

azide, 1 mM Na4EGTA, 37.5 mM imidazole, 75 mM Tris HCl and 30 mM

histidine; pH 7.4) with or without 1 mM ouabain (final volume¼1 ml) and

preincubated for 5 min in a water bath at 37 1C. Reactions were initiated by

adding Tris-ATP (4 mM) and terminated after 15 min of incubation at 37 1C by

adding 50ml of 50% trichloracetate. For determination of ouabain-insensitive

ATPase activity, NaCl and KCl were omitted from the reaction mixtures

containing ouabain. To quantify the amount of phosphate produced, 1 ml of

coloring reagent (10% ammonium molybdate in 10 N sulfuric acid + ferrous

sulfate) was added to the reaction mixture. The mixture was then combined

thoroughly and centrifuged at 3000 g for 10 min. Formation of phosphomo-

lybdate was determined spectrophotometrically at 740 nm against a standard

curve prepared from K2HPO4. Na+–K+ ATPase activity was estimated as the

difference between total and ouabain-insensitive ATPase activity and expressed

as nmol phosphate released per mg protein per min.

To eliminate the effect of proteases and phosphatases, we added protease

inhibitors (1 mM phenylmethylsulfonyl fluoride, 10mg ml�1 each of leupeptin

and aprotinin) and phosphatase inhibitor (50mM sodium orthovanadate) to all

solutions used after drug/vehicle incubations.22

Sodium green tetraacetate uptake. To determine the effect of the ETB receptor

on Na+–K+ ATPase activity, we measured the uptake of sodium

green as reported by Sasaki et al.23 in the absence (total transport) and

presence (ouabain-sensitive transport) of ouabain. We also used another

proximal tubule cell line to determine whether ETB receptor inhibits

Na+–K+ ATPase activity in cells other than those from rats. Human renal

proximal tubular cells18 were cultured to confluence under polarized conditions

on Transwells inserted on 12-well plates. The cells were incubated in culture

medium with or without 50mM ouabain for 1 hour at 37 1C, washed gently with

PBS three times and treated for 15 min at 37 1C with vehicle (PBS, control),

10 nM BQ3020, or 10 nM BQ3020 and 10 nM BQ788, as indicated. After

washing, cells were loaded for 30 min at room temperature with the cell

permeant sodium indicator, sodium green tetraacetate (5mM, Molecular Probes,

Eugene, OR, USA), in DMEM/F12 medium without phenol red. The cells were

washed gently with PBS three times, and the fluorescence emission (excitation

485 nm, emission 535 nm) of each Transwell was read in a Victor 3 V plate

reader (Perkin Elmer, Vienna, VA, USA). Ouabain-sensitive transport was

expressed as percentage of total sodium transport.

Determination of the second messenger(s) involved in the ETB
receptor-mediated inhibition of Na+–K+ ATPase activity
To determine the second messenger(s) involved in the ETB receptor-mediated

inhibition of Na+–K+ ATPase activity, several agonists or antagonists were used,

including cell permeable, myristoylated peptide inhibitor of PKC (peptide

19–31),24,25 PKA 14–22 amide26 (Calbiochem Company, Darmstadt, Ger-

many), calcium channel blocker, nicardipine (Sigma),27,28 the PI3 kinase

inhibitor, wortmannin (Tocris, Ellisville, MO, USA)29,30 and the IP3 receptor

blocker, 2-aminoethyl diphenyl borate (2-APB) (10�4
M 15 min) (Sigma).31

Measurement of intracellular calcium ([Ca2+]i) concentration
Twenty-four hours before the experiments, Wistar–Kyoto cells were harvested

and seeded into 7.5 cm2 petri dishes (Falcon, Franklin Lakes, NJ, USA). Wistar–

Kyoto cells were loaded with the calcium indicator Fura-2AM (5mM) in Hepes-

buffered saline. Changes in [Ca2+]i in individual cells were measured using an

Aquacosmos system with band-pass filters for 340 and 380 nm. [Ca2+]i was

calculated from the Fura-2 fluorescence ratio (F340/F380) using linear regres-

sion between adjacent points on a calibration curve generated by measuring

F340/F380 in at least seven calibration solutions containing [Ca2+] between 0

and 854 nM. The ETB receptor-mediated changes in [Ca2+]i after stimulation

with BQ3020 or with individual reagents in Ca2+-free and Ca2+ concentration

were measured as previously described.32

Statistical analysis
Data are expressed as mean±s.e.m. Comparison within groups was carried out

by repeated measures analysis of variance (ANOVA) and comparison among

groups was carried out by factorial ANOVA and Duncan’s test. A value of

Po0.05 was considered significant.

RESULTS

Activation of ETB receptor inhibits Na+–K+ ATPase activity
in RPT cells
An ETB receptor agonist, BQ3020, inhibited Na+–K+ ATPase activity
in a concentration- and time-dependent manner. The inhibitory effect
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was evident at 10�8 M, noted as early as 5 min, and maintained for at
least 30 min (Figures 1a and b).

Specificity of BQ3020 as an ETB receptor agonist was determined
using the ETB receptor antagonist, BQ788. Consistent with the results
shown in Figures 1a and b, BQ3020 (10�8

M 15 min�1) inhibited
Na+–K+ ATPase activity. BQ788 (10�8

M 15 min�1), by itself, had
no effect on Na+–K+ ATPase activity, but reversed the inhibitory
effect of BQ3020 on Na+–K+ ATPase activity (control¼0.38±0.02,
BQ3020¼0.26±0.03, BQ788¼0.40±0.06, BQ3020+BQ788¼0.37±0.04,
n¼5, Po0.01) (Figure 1c).

To further confirm the inhibitory effect of BQ3020 on Na+–K+

TPase activity in RPT cells, we determined Na+–K+ ATPase activity by
the intracellular uptake of sodium green. Similar to the results in
Figures 2b and c, BQ3020 (10�8 M 15 min�1) inhibited Na+–K+

ATPase activity, which was partially blocked by the ETB receptor
antagonist, BQ788 (10�8

M 15 min�1) (Figures 1d and e). These effects

were observed in human RPT cells,33 indicating that the inhibitory
effect of ETB on Na+–K+ ATPase activity is observed in RPT cells,
other than those from rats.

Intracellular Ca2+ is involved in the inhibitory effect of ETB
receptor on Na+–K+ ATPase activity
Endothelin, in part through ETB receptors, has been shown to activate
Ca2+ channels, leading to an increase in [Ca2+]i.34,35 We therefore
determined whether intracellular Ca2+ is involved in the ETB receptor-
mediated inhibition of Na+–K+ ATPase activity. Rat RPT cells were
first treated with BAPTA-AM (5�10�3

M)34,36 (Biomol Research Labs
Plymouth Meeting, PA, USA), a chelator of intracellular-free calcium.
In a Ca2+-free solution, in the presence of BAPTA-AM, the inhibitory
effector of ETB receptor on Na+–K+ ATPase activity was no longer
evident (control¼0.39±0.02, BQ3020¼0.27±0.02, BAPTA-AM¼
0.40±0.03, BQ3020+ BAPTA-AM¼0.39±0.04, n¼5) (Figure 2).
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Figure 1 Effect of ETB receptor stimulation on Na+–K+ ATPase activity in RPT cells from Wistar–Kyoto rats. (a) Concentration–response of Na+–K+ ATPase

activity in RPT cells incubated with the ETB receptor agonist, BQ3020, for 15 min. Results are expressed as micromol phosphate released per mg protein
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*Po0.01 vs. control (C), ANOVA, Duncan’s test). (c) Effects of an ETB receptor agonist (BQ3020, 10�8 M 15min–1) and an ETB receptor antagonist

(BQ788, 10�8 M 15min–1) on Na+–K+ ATPase activity in RPT cells. Results are expressed as micromol phosphate released per mg protein per min (n¼5,

*Po0.01 vs. others, ANOVA, Duncan’s test). (d and e) Effects of an ETB receptor agonist (BQ3020, 10�8 M 15 min�1) and an ETB receptor antagonist
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We also tested the effects of a PKA inhibitor (14–22 amide), and of
a PKC inhibitor, PKC peptide 19–31. However, neither 14–22 amide
nor peptide 19–31 could block the inhibitory effect of ETB receptor on
Na+–K+ ATPase activity (data not shown).

To prove further the role of intracellular calcium in the inhibitory
effect of ETB receptor on Na+–K+ ATPase activity, we studied the
effect of stimulation of the ETB receptor on intracellular calcium
concentration. We found that BQ3020 increased intracellular calcium,
an effect that was blocked by nicardipine (10�6 M 15 min�1), 2-APB
(10�4 M 15 min�1), wortmannin (10�7 M 15 min�1) or BAPTA-AM
(5�10�3

M 15 min�1) (Figures 3a and b).

Both extracellular Ca2+ entry and ER Ca2+ release take part in the
signaling of ETB receptor-inhibited Na+–K+ ATPase activity
Intracellular Ca2+ concentration depends on extracellular Ca2+ entry
and ER Ca2+ release. To determine whether the Ca2+ channel at
the plasma membrane was involved in the ETB-mediated inhibition
of Na+–K+ ATPase activity, a Ca2+ channel blocker, nicardipine
(10�6 M 15 min�1) (Sigma),27 was added to the incubation medium
and the effect of the ETB receptor agonist, BQ3020 (10�8

M 15 min�1),
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was retested. Nicardipine, by itself, had no effect on Na+–K+ ATPase
activity, but blocked the inhibitory effect of BQ3020 on Na+–K+

ATPase activity (Figure 4a), which suggests that the inhibitory effect
of ETB receptor on Na+–K+ ATPase activity requires extracellular
Ca2+ entry (control¼0.39±0.06, BQ3020¼0.25±0.05, nicardipine¼
0.39±0.06, BQ3020+ nicardipine¼0.39±0.09, n¼6, Po0.01).
To confirm the relative contribution of extracellular Ca2+ on the
inhibitory effect of BQ3020, studies were performed in a Ca2+-free
medium. Similar to the abrogation of the inhibitory effect of ETB
receptor on Na+–K+ ATPase activity in the presence of calcium
channel blockers, the Ca2+-free medium also prevented the inhibitory
effect of BQ3020 on Na+–K+ ATPase activity (culture medium with
calcium: control¼0.39±0.02, BQ3020¼0.26±0.02; culture medium
without calcium: control¼0.40±0.04, BQ3020¼0.40±0.03, n¼4)
(Figure 4b).

Entry of extracellular Ca2+ into the cell leads to Ca2+ release from
the ER through the IP3 receptor, resulting in a further increase in
[Ca2+]i.37,38 To determine the effect of ER Ca2+ release on the ETB
receptor-mediated inhibition of Na+–K+ ATPase activity, we used an
IP3 receptor blocker, 2-APB (10�4

M 15 min�1) (Sigma),31,39 to treat
RPT cells in the presence of the ETB receptor agonist, BQ3020
(10�8 M 15 min�1). 2-APB, by itself, had no effect on Na+–K+

ATPase activity, but blocked the inhibitory effect of BQ3020 on
Na+–K+ ATPase activity (control¼0.39±0.06, BQ3020¼0.25±0.01,
2-APB¼0.35±0.05, BQ3020+2-APB¼0.35±0.06, n¼4, Po0.01)
(Figure 5a).

Intracellular signaling by many cell surface receptors requires the
generation of IP3. PI3 kinase is an important enzyme in the produc-

tion of IP3.40 To determine whether PI3 kinase is involved in
ETB action, the PI3 kinase inhibitor, wortmannin,41 was used. In
the presence of wortmannin (10�7 M 15 min–1), the inhibitory
effect of ETB receptor on Na+–K+ ATPase activity was blocked
(control¼0.39±0.04, BQ3020¼0.27±0.03, wortmannin¼0.38±0.04,
BQ3020+wortmannin¼0.40±0.08, n¼5, Po0.01)(Figure 5b).

The studies, so far, have shown that, in RPT cells, the inhibitory
effect of ETB receptor on Na+–K+ ATPase activity involved both
extracellular Ca2+ entry and Ca2+ release from ER. However, the
upstream signal in this effect is not clear. Activation of calcium
channels by BAY-K8644 (10�6

M 15 min–1) (Sigma) inhibited Na+–K+

ATPase activity (control¼0.39±0.04, BAY-K8644¼0.19±0.04,
wortmannin¼0.38±0.04, BAY-K8644+wortmannin¼0.38±0.03,
n¼5, Po0.01) (Figure 6),42, which was blocked by the PI3 kinase
inhibitor, wortmannin. These results indicate that extracellular Ca2+

entry was needed to trigger ER Ca2+ release, which subsequently
inhibited Na+–K+ ATPase activity in RPT cells.

DISCUSSION

ETB receptor has an important role in the regulation of blood
pressure.10,11,43 At the whole-animal level, a naturally occurring
or induced deletion of the ETB receptor gene in rats results in
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per min (*Po0.01 vs. that of others, ANOVA, Duncan’s test).
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salt-sensitive hypertension.10,44 ETB blockade produces hypertension
that is exaggerated by salt intake.11 ETB receptors are also involved in
the hypertension that occurs in spontaneously hypertensive rats and
after the administration of deoxycorticosterone acetate and NaCl,45

but not in angiotensin II-induced hypertension.9 Systemic ETB
blockade produces hypertension in mice, which is maintained by
ETA receptors.46 These findings strongly suggest that the ETB receptor,
by itself, or in conjunction with ETA receptors, can regulate blood
pressure as a consequence of its vasodilator and natriuretic effects.
However, under certain circumstances, ETB receptors, acting on
vascular smooth muscle cells, can also increase blood pressure.47–49

Therefore, the eventual blood pressure resulting from ETB receptor
activation depends upon which action of ETB predominates.

ETB receptors, expressed in RPT cells, in the medullary thick
ascending limb of Henle and collecting duct, can decrease the
reabsorption of sodium and water.13,14 Previous studies have shown
that diuretic and natriuretic responses to endothelin-1 precursor big
ET-1 can be inhibited by ETB blockade;43 activation of the ETB
receptor decreases sodium transport in the medullary thick ascending
limb of Henle and collecting duct.9,10,44 However, the ETB receptor
has also been reported to stimulate NHE3 in RPTs/cells.12–14

The major regulation of sodium transport across RPT is provided
by two key proteins: NHE3, located at the brush border membrane,
and Na+–K+ ATPase, located at the basolateral membrane. Although
endothelin has been shown to inhibit fluid and bicarbonate transport
by reducing Na+–K+ ATPase activity in the rat proximal straight
tubule,33 the role of ETB receptor on Na+–K+ ATPase activity in RPT
cells is not well defined. We now report that activation of the ETB
receptor decreases Na+–K+ ATPase activity in RPT cells.

Na+–K+ ATPase activity is regulated by intracellular calcium.50

In agreement with previous reports, [Ca2+]i mediates the inhibitory
effect of ETB on Na+–K+ ATPase activity.50,51 RPT cells treated with an
intracellular calcium chelator, BAPTA-AM, in a Ca2+-free solution
prevents the inhibitory effect of ETB receptor on Na+–K+ ATPase
activity. In many cell types, Ca2+ signaling induced by neurotransmit-
ters or hormones is a biphasic phenomenon.52,53 In the early phase,
neurotransmitter or hormone binding to a specific receptor at the cell
surface activates G proteins and IP3 kinase, resulting in the generation
of IP3. IP3 then binds to IP3 receptors on the ER-triggering release of
Ca2+ from intracellular stores.38 In a later phase, the increase in

[Ca2+]i stimulates the intracellular movement of extracellular Ca2+.
Our results show that both mechanisms are involved in the signaling
pathway by which the ETB receptor inhibits Na+–K+ ATPase activity,
because this effect is prevented by an L-type Ca2+ channel blocker
(nicardipine) and a Ca2+-free medium. However, these experiments
cannot determine whether Ca2+ entry from the extracellular space, or
Ca2+ released from the ER, initiates the ETB effect. Previous studies
have shown that the sequence of events may vary depending on cell
type. For example, in cardiac endothelial cells, the Ca2+ cascade is
initiated by Ca2+ released from ER, followed by a sustained Ca2+ entry
across the plasma membrane.53 In contrast, in cardiomyocytes, extra-
cellular Ca2+ entry across the plasma membrane is the initiating
event.49,54 In thyroid carcinoma cells, PI3 kinase is involved as calcium
activation increases PI3 kinase activity.55 Our results show that the
L-type Ca2+ channel agonist, BAY-K8644, inhibits Na+–K+ ATPase
activity, which is blocked by an inhibitor of PI3 kinase. These results
suggest that Ca2+ entry through the plasma membrane is the trigger-
ing event after ETB receptor occupation, which is subsequently
followed by Ca2+ release from the ER (Figure 7).

In summary, we have shown that activation of the ETB receptor
inhibits Na+–K+ ATPase activity in RPT cells; the inhibitory effect is
mediated by an increase in intracellular calcium that is initially due to
extracellular Ca2+ entry and is followed by Ca2+ release from ER.
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