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A new constitutively active mutant of AMP-activated
protein kinase inhibits anoxia-induced apoptosis
of vascular endothelial cell

Daisuke Nagata1,2, Arihiro Kiyosue2, Masao Takahashi2, Hiroshi Satonaka3, Kimie Tanaka1,2, Masataka Sata2,
Tetsuo Nagano4, Ryozo Nagai2 and Yasunobu Hirata2

The inhibition of apoptotic changes in vascular endothelial cells is important for preventing vascular damage from hypoxia.

AMP-activated protein kinase (AMPK) has recently been identified as playing a role in vascular protection. Although the

chemical reagent 5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside (AICAR) has been used to stimulate AMPK activity,

AICAR has been associated with several nonspecific reactions. We therefore constructed a new constitutively active mutant of

AMPKa1 (NcaAMPK), which lacks the autoinhibitory domain in AMPKa1 and in which threonine 172 has been replaced with

aspartate. We investigated whether NcaAMPK has an anti-apoptotic effect in vascular endothelial cells under anoxic conditions.

NcaAMPK, or green fluorescent protein (GFP) as a control, was overexpressed in human umbilical vein endothelial cells

(HUVECs). After HUVECs were incubated for 40 h under normoxic or anoxic conditions, we examined cell viability, caspase 3/7

activity, and expression and phosphorylation levels of apoptosis-related proteins. Cell viabilities under anoxic conditions were

improved in NcaAMPK-overexpressing cells. Anoxia increased caspase 3/7 activity, but NcaAMPK reduced this increase

significantly. NcaAMPK overexpression increased protein kinase B/Akt Ser473 and endothelial nitric oxide synthase Ser1177

phosphorylation, but pretreatment with the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) did not

decrease the viability of NcaAMPK-overexpressing HUVECs. Furthermore, co-expression of a dominant-negative Akt reduced

the improvement in cell viability and the suppression of poly (ADP-ribose) polymerase cleavage by NcaAMPK under anoxic

conditions. In conclusion, NcaAMPK inhibited anoxia-induced apoptosis in vascular endothelial cells through Akt activation,

suggesting that activation of AMPK might protect against ischemic vascular injury.
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INTRODUCTION

An important initial step in the pathogenesis of atherosclerosis is
endothelial damage by various factors, such as inflammatory cyto-
kines.1 A large body of evidence has shown that hypoxia is a pivotal
factor modulating endothelial cell function and survival.2 Although
necrosis is a major pathway for regulating ischemia- and reperfusion-
induced cardiomyocyte death, apoptosis has recently been identified
as another important regulator.3 Furthermore, apoptosis of vascular
endothelial cells is thought to be a pivotal regulator of vascular
damage, suggesting that apoptosis of endothelial cells could be an
important therapeutic target for preventing cardiovascular diseases.
AMP-activated protein kinase (AMPK) has been identified as a key

regulator of cellular ATP levels.4 AMPKwas identified as a homolog of
yeast sucrose non-fermenting 1 and is known as a metabolite-sensing

protein kinase.5 AMPK is a heterotrimeric serine/threonine protein
kinase consisting of a catalytic a-subunit and two regulatory subunits,
b and g.6 There are multiple isoforms of each AMPK subunit, with a1,
a2, b1, b2, g1, g2, and g3 forming heterotrimers7 that differ in tissue
and subcellular localization. In mammalian cells, AMPK is activated
by increases in the AMP/ATP ratio,4 which occur under conditions of
hypoxia or anoxia.8,9 When the AMP/ATP ratio increases, AMPK is
partially activated by a conformational change after combining with
AMP and is fully activated when phosphorylated at Thr172 by an
AMPK kinase (AMPKK), which is now known to be LKB1 serine/
threonine kinase.10 Activated AMPK phosphorylates and downregu-
lates several anabolic enzymes, including 3-hydroxy-3-methylglutaryl-
CoA reductase or acetyl-CoA carboxylase, and shuts off the ATP-
consuming synthetic pathway.4 In addition to such energy-saving
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effects, AMPK is important for protecting cellular function under
energy-restricted conditions, such as hypoxia/anoxia.11

To investigate the functions of AMPK in mammalian cells, we and
other investigators have used 5-aminoimidazole-4-carboxamide-1-b-
D-ribofuranoside (AICAR), which is a chemical AMPK activator.
AICAR is phosphorylated and converted to 5-aminoimidazole-4-
carboxamide-1-b-D-ribofuranosyl-5¢-monophosphate (ZMP) in
mammalian cells. ZMP mimics the effect of AMP and activates
AMPK.12,13 However, AICAR increases not only ZMP but also
ZTP12 and, as a chemical rather than a specific enzyme, may have
other nonspecific effects on ATP-requiring reactions. Constitutively
active mutants of AMPK provide a more specific method for examin-
ing the functions of AMPK. Several kinds of constitutively active
AMPK mutants have been investigated, including AMPKa1 (amino
acids (aa) 1–312, Thr172-Asp: T172D),14,15 AMPKg2 (Arg302-
Gln),16 and AMPKg1 (His150-Arg).17 Although it has been reported
that maximum activity of AMPK requires all three subunits,6

AMPKa1 (1–312, T172D) lacks both the binding domain for inter-
actions with the b-subunit and the autoinhibitory domain, which
inhibits the self-kinase activity.14 The b-subunit plays a role in
modulating subcellular localization through its phosphorylation and
myristoylation,18,19 so that the ability to bind the b-subunit might be
critical for the catalytic a-subunit to select its appropriate substrates.
We have constructed a replication-defective adenoviral vector expres-
sing a new constitutively active AMPKa1 mutant (NcaAMPK), which
lacks the autoinhibitory domain (aa 313–392) but has the complex
formation domain (aa 393–548).14 As we found that NcaAMPK
functions as a specific and continuous activator of AMPK, we
investigated whether NcaAMPK overexpression could inhibit the
pro-apoptotic pathway induced by anoxia in human umbilical vein
endothelial cells (HUVECs).

MATERIALS AND METHODS

Chemical reagents
NG-nitro-L-arginine methyl ester (L-NAME), wortmannin, and other chemical

reagents were purchased from Sigma-Aldrich (St Louis, MO, USA).

Antibodies
AMPKa1, phospho-AMPKa (Thr172), phospho-protein kinase B/Akt

(Ser473), phospho-endothelial nitric oxide synthase (eNOS) (Ser1177), and

poly (ADP-ribose) polymerase (PARP) antibodies were purchased from Cell

Signaling Technology (Beverly, MA, USA). Actin, Akt, and eNOS antibodies

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Myc-tag and hemagglutinin (HA)-tag antibodies were purchased from Upstate

Biotechnology (Lake Placid, NY, USA).

Cell culture and anoxic conditions
HUVECs were purchased from Kurabo (Osaka, Japan) and cultured in

HuMedia EG2 (Kurabo). HUVECs were used for experiments within passages

6–8. In some experiments, HUVECs were transduced with the indicated

replication-defective adenoviral vectors at a multiplicity of infection of 50

plaque-forming units (50MOI) for 1 day. The medium was then changed to a

low-serum medium, HuMedia basic medium (EB2) with 0.2% fetal bovine

serum, to reduce the effects of stimulation by serum mitogens.

After incubation in the low-serum medium for 8 h, adenovirus-infected cells

were incubated in a normoxic or anoxic incubator for 40h. In the pilot

experiments, we found that 24h anoxia was too short to evaluate cell viability

because cell survival rates under these conditions were 490%. Furthermore,

even under normoxic conditions,472h incubation in the low-serum medium

induced high rates of cell death 440%. We conclude that 40–48h anoxic

conditions are suitable for evaluating effects of anoxia on cell death without the

cell-damaging effects of low serum. For anoxic conditions, we used the Anoxic

Chamber System (Coy Laboratory Products, Grass Lake, MI, USA). To exclude

the effects of reoxygenation after anoxia, every procedure (such as protein

extraction) was performed under anoxic conditions in this anoxic chamber.

Construction of adenoviral AMPKa1 mutant vectors and other
adenoviral vectors
Total RNAwas extracted from rat vascular smooth muscle cells (rVSMCs) using

Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s

instructions. cDNA was produced by reverse transcription from purified

rVSMC RNA with an RNA LA PCR kit (TAKARA, Otsu, Japan) using a

random 9mer primer. Synthetic oligo primers for PCR and for creating point

mutations are as follows:

primer 1

GGAATTCGCCATGGAGCAGAAGCTTATCTCCGAGGAGGACCTCGGTG

GCGGCGAGAAGCAGAAGCACGACGGG

primer 2

CCGCTCGAGTTAGTACAGGCAGCTGAGGACCTC

primer 3

GCTCTAGAGTACAGGCAGCTGAGGACCTC

primer 4

GCTCTAGAAAGGCAAAGTGGCATTTGGGGATTCGAA

primer 5

GCTCTAGAGCATGCTCGAGTTACTGTGCAAGAATTTTAATTAGATTTG

CACACACATTTCA

primer 6

ATGTCAGATGGTGAATTTTTAAGAGATAGCTGTGGCTCGCCCAATTATG

primer 7

CATAATTGGGCGAGCCACAGCTATCTCTTAAAAATTCACCATCTGACAT

To make a conventional caAMPK (CcaAMPK) cDNA fragment that lacks aa

313–548, we performed PCR with KOD FX DNA polymerase (Toyobo, Osaka,

Japan) using the rVSMC cDNA, primer 1 (which includes a myc-tag sequence),

and primer 2. This fragment was digested with the restriction enzymes EcoRI

and XhoI and ligated to pcDNA 3.1/Zeo(+) (Invitrogen) digested with EcoRI/

XhoI. To make a Thr-to-Asp mutation at residue 172, we used a QuickChange

II XL Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) according

to the manufacturer’s instructions, using primers 6 and 7 to introduce the point

mutation. To construct the NcaAMPK cDNA fragment, which has the complex

formation domain but lacks the autoinhibitory domain, we amplified a

fragment A using primer 1/primer 3 and a fragment B using primer 4/primer

5. We digested fragments A and B with EcoRI/XbaI and XbaI, respectively.

Fragment A was then ligated to pcDNA 3.1/Zeo(+) digested with EcoRI/XbaI.

Next, this vector was digested with XbaI and ligated with XbaI-digested

fragment B. The direction of fragment B was confirmed by direct sequencing.

To make a Thr-to-Asp mutation at residue 172, we used the QuickChange II XL

Site-Directed Mutagenesis Kit, as for CcaAMPK construction. Schematics of

the complete constructs are shown in Figure 1. We used an adenoviral

construction kit (AdEasy adenovirus vector system; Stratagene) to make

replication-defective adenoviral vectors for CcaAMPK and NcaAMPK. Briefly,

pcDNA 3.1/Zeo(+) plasmid vectors for CcaAMPK and NcaAMPK were

digested with KpnI/XhoI, and the fragments were ligated to a KpnI/XhoI-

digested pAdTrack-CMV plasmid, which was a generous gift from Dr Walsh

(Boston University). We followed the manufacturer’s instructions after this

procedure. An adenoviral vector expressing green fluorescent protein (GFP)

was obtained from Qbiogene (Illkirch, France) and used as a control for

infection level. The HA-tagged dominant-negative (dn) Akt adenovirus was

also generous gift from Dr Walsh.

AMPK assay
The AMPK assay using SAMS peptide (HMRSAMSGLHLVKRR, Upstate

Biotechnology) was performed according to the methods available at the

Animal Model of Diabetic Complications Consortium (AMDCC) website

(http://www.amdcc.org/shared/phenotype/showAssay.aspx?id¼260).

Western blot analysis
Western blot analysis was carried out as previously described.9 An ECL-PLUS

Western Blotting Detection kit (GE Healthcare, Piscataway, NJ, USA) was used

AMPK inhibits anoxia-induced apoptosis of HUVECs
D Nagata et al

134

Hypertension Research

http://www.amdcc.org/shared/phenotype/showAssay.aspx?id&equals;260
http://www.amdcc.org/shared/phenotype/showAssay.aspx?id&equals;260


for detection. The density of the bands was quantified using the Scion Image

program (Scion Corporation, Frederick, MD, USA). Each experiment was

repeated 3–4 times.

Intracellular protein crosslinking experiments using photoactivated
amino acids
To evaluate intracellular AMPK protein complex formation in NcaAMPK-

overexpressing cells, we used the photoactivated amino acid system (Thermo

Fisher Scientific, Rockford, IL, USA) according to the manufacturer’s instruc-

tions. Briefly, ultraviolet (UV)-sensitive L-photo-leucine and L-photo-methio-

nine, which are incorporated in AMPK subunits or overexpressed AMPK

mutants, are crosslinked to each other intracellularly after UV irradiation. Cell

lysates were then extracted with cell lysis buffer, and AMPK protein complex

formation was evaluated by western blotting.

WST-1 assay
To evaluate cell viability, we performed an assay using the WST-1 reagent

(Roche, Basel, Switzerland) according to the manufacturer’s instructions.

Caspase 3/7 assay
We performed a caspase 3/7 assay using a Caspase-Glo 3/7 assay kit and

GloMax96 luminometer (Promega, Madison, WI, USA) according to the

manufacturer’s instructions.

Statistical analyses
Values are expressed as the mean±s.e.m. Statistical comparisons were per-

formed using analysis of variance with Scheffe’s F procedure for post hoc

analyses. P-valueo0.05 was considered to be statistically significant.

RESULTS

NcaAMPK shows higher kinase activity and forms an AMPK
complex more efficiently than CcaAMPK
To compare the AMPK activity of NcaAMPK and CcaAMPK, we
performed a kinase assay by measuring the radiolabeled phosphoryla-
tion rate of SAMS peptide corrected by the amount of protein
(Figure 2a). The basal levels of AMPK activity in GFP-overexpressing
control cells was 1030±140 c.p.m. per mg protein. Although the kinase
activity of CcaAMPK-overexpressing cells (1860±160 c.p.m. per mg
protein) was significantly higher than that of controls (Po0.05), the
activity of NcaAMPK-overexpressing cells (3310±250 c.p.m. per mg
protein) was significantly higher than that of CcaAMPK (Po0.01).

We confirmed the expression of the CcaAMPK and NcaAMPK
mutants by western blot (Figure 2b).
As NcaAMPK kinase activity is higher than CcaAMPK, we hypothe-

sized that NcaAMPK would bind more effectively to the b-subunit
than CcaAMPK and its kinase activity would be intensified. To show
the formation of AMPK complexes including NcaAMPK, we used the
UV light-sensitive photoactivated amino acid system. In NcaAMPK-
overexpressing HUVECs, positive bands of approximately 130 kDa
were found when using an anti-myc-tag or anti-AMPKb antibody
(Figure 2c). In CcaAMPK-overexpressing cells, we did not find myc-
tag positive bands of approximately 110 kDa, which indicates AMPK
complex formation including the CcaAMPK mutant. When using the
AMPKb antibody, we found weaker intensity bands with a molecular
weight of B135 kDa in the GFP- and CcaAMPK-overexpressing cells.
These might be endogenous AMPK complexes with expected mole-
cular weights of 137 kDa (a1b1g1 or a2b1g1). These results suggest
that NcaAMPK, which has the complex formation domain, can form
active AMPK complexes more effectively than CcaAMPK.

NcaAMPK overexpression inhibits anoxia-induced cell death
We performed a WST-1 assay in HUVECs overexpressing GFP,
CcaAMPK, or NcaAMPK to compare the effect of the AMPK mutants
on cell survival under anoxic conditions. Cell viability was significantly
higher (Po0.01) in NcaAMPK-overexpressing cells than in either GFP
or CcaAMPK-infected cells (Figure 3a). The lower panels in Figure 3a
show phase-contrast micrographs of these cells. NcaAMPK overex-
pression inhibited cell death and kept cells attached to the bottom of
the culture dish.
We also measured caspase 3/7 activity to investigate whether

anoxia-induced cell death might be accompanied by an increase in
caspase activity. Caspase 3/7 activity was inhibited by 33% in
NcaAMPK cells relative to control GFP cells (Figure 3b). CcaAMPK
did not inhibit caspase 3/7 compared with controls (Figure 3b).

NcaAMPK increases Akt and eNOS phosphorylation
Previous studies, including ours, suggested that AMPKupregulates the
PKB/Akt signal,9,20 which is known to be an important regulator of
cell survival in endothelial cells. Consistent with these reports, we
found that Akt Ser473 was more highly phosphorylated in NcaAMPK-
overexpressing cells than in controls (Figure 4a). Furthermore, eNOS
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Figure 1 The construction of two AMPKa1 mutants, conventional constitutively active a1 (CcaAMPK) and new constitutively active a1 (NcaAMPK). Wild-

type rat AMPKa1 contains a kinase domain, autoinhibitory domain, and the domain for complex formation. The autoinhibitory domain inhibits the AMPKa1

kinase activity. CcaAMPK lacks both the autoinhibitory domain and the domain for complex formation. At the target phosphorylation site of upstream kinases

in the kinase domain of CcaAMPK, Asp was substituted for Thr172 to mimic phosphorylation. We constructed NcaAMPK by adding the domain for complex

formation to the C terminus of CcaAMPK. Both CcaAMPK and NcaAMPK have a myc tag to distinguish their expression from that of endogenous AMPKa1.
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Ser1177, which is known to be phosphorylated by Akt and AMPK,21

was also phosphorylated (Figure 4a). Phosphoinositide 3 (PI3) kinase
is an upstream kinase of Akt, and pretreatment with the PI3 kinase
inhibitor wortmannin (1mmol l�1) inhibited Akt and eNOS phos-
phorylation (Figures 4a and b), suggesting that NcaAMPK phosphor-
ylates Akt and eNOS in a PI3 kinase-dependent manner. Thus, eNOS
might be phosphorylated both directly by AMPK and, at least in part,
by the PI3–Akt pathway.
As we have previously shown that nitric oxide has an anti-apoptotic

effect in endothelial cells,22 we used the WST-1 assay to investigate
whether the nitric oxide synthase inhibitor L-NAME could inhibit the
anti-apoptotic cell survival effect of NcaAMPK. Although we used
L-NAME concentrations from 1.0 to 5.0mmol l�1, L-NAME pretreat-
ment did not inhibit cell survival (Figure 4c).

NcaAMPK increases the phosphorylation of Akt but does not
modulate proteins of the bcl-2 family
In agreement with the results of our previous report,9 the phosphor-
ylation of Akt Ser473 decreased under anoxic conditions in control
cells (Figures 5a and b). However, in NcaAMPK-overexpressing cells,
Akt phosphorylation was maintained at a high level even under anoxic
conditions. The expression levels of two members of the Bcl-2 family,
Bax and Bcl-xl, did not change in NcaAMPK-overexpressing cells or
under anoxic conditions (Figure 5a). Bcl-2 was not detected by
western blot analysis.

NcaAMPK suppresses anoxia-induced cell death and PARP cleavage
but co-expression of dnAkt abrogates this suppression
We showed that NcaAMPK overexpression augments the resistance of
HUVECs to anoxia (Figure 3). However, co-expression of dnAkt
partially but significantly abrogated this anoxia resistance in
NcaAMPK-overexpressing cells (Figure 6a). Next, we performed
western blot analyses to investigate whether PARP cleavage was
inhibited more effectively in NcaAMPK-overexpressing cells than in
controls. The band intensities of cleaved PARP were higher under
anoxic conditions than under normoxic conditions. The band inten-
sity of the cleaved smaller fragment of PARP was lower in NcaAMPK-
overexpressing cells than in controls under anoxic conditions
(Figure 6b, lane 4). However, overexpression of dnAkt partially but
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significantly abrogated the inhibition of PARP cleavage in NcaAMPK-
overexpressing cells under anoxic conditions (Figure 6b, lane 8).

DISCUSSION

The results of this study suggest that AMPK activation by NcaAMPK
inhibits anoxia-induced apoptosis in HUVECs through the activation
of Akt. Although ischemia and reperfusion have been shown to injure
the cardiovascular system, AMPK activation can prevent these harmful
effects of ischemia.23 AMPK is also a downstream target of adipo-
nectin,24,25 the most cardiovascular-protective adipocytokine,26 which
inhibits cardiomyocyte apoptosis partially through AMPK activa-
tion.27 Conversely, apoptosis increases in cardiomyocytes after ische-
mia and reperfusion when AMPK activation is impaired.23 Thus,
AMPK clearly plays an anti-apoptotic role in the cardiovascular
system, although details of the mechanism remain to be elucidated,
especially in the vasculature.
Some investigators28,29 have shown that AICAR-induced AMPK

activation inhibits apoptosis in vascular endothelial cells, whereas
other investigators30,31 have reported that AICAR treatment, rather
than increasing cell viability, actually promotes apoptotic changes in
nonendothelial cell lines. AICAR has also been reported to have
nonspecific effects in addition to its ability to activate AMPK.12,32,33

Therefore, we have been very eager to find a more specific activator of
AMPK to clarify whether AMPK signaling actually inhibits anoxia-
induced apoptosis in vascular endothelial cells. A constitutively active

AMPK mutant containing only the a-subunit kinase domain,
CcaAMPK, provided an alternative, but the kinase domain alone
possesses weak kinase activity in mammalian cells, and maximum
AMPK activity requires all three subunits.6,14 We therefore constructed
a replication-defective adenovirus expressing NcaAMPK, which has
higher kinase activity and suppresses anoxia-induced apoptotic cell
death more efficiently than CcaAMPK. Although higher dose,
100MOI, CcaAMPK transduction in the cells increased SAMS peptide
phosphorylation rate by B35% compared with 50MOI, the dose we
used in this study, we did not find more potent inhibition of cell death
in CcaAMPK-overexpressing cells with 100MOI (data not shown).
Our results suggest that the ability of NcaAMPK to bind the b-subunit
might contribute to its more effective suppression of anoxia-induced
apoptosis than that of CcaAMPK.
It has been previously reported that Akt is phosphorylated and

activated in AMPK-activated endothelial cells,9,20,34 and this activation
is PI3-kinase dependent.20,34 In this study we found that Akt Ser473
was also phosphorylated in NcaAMPK-overexpressing HUVECs. PI3
kinase inhibition by wortmannin suppressed this Akt phosphoryla-
tion, suggesting that NcaAMPK also upregulates Akt in a PI3 kinase-
dependent manner. The anti-apoptotic effect of Akt has been pro-
posed to be partially due tophosphorylation of transcription factors of
the forkhead box gene, group O (FoxOs) and Bcl-xL/Bcl-2-associated
death promoter (Bad).35–37 As we reported previously that phosphor-
ylation levels of Akt were gradually downregulated under hypoxic
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conditions,9 we also found in this study that the basal phosphorylation
levels of Akt were lower under anoxic conditions than in normoxic
conditions (Figure 5). However, phosphorylation was maintained at
high levels in NcaAMPK-overexpressing cells even under anoxic
conditions. As overexpression of dnAkt did not reverse completely
the inhibition of anoxia-induced PARP cleavage in NcaAMPK-over-
expressing HUVECs, we suggest that NcaAMPK inhibits apoptosis of
endothelial cells not only through Akt signaling but also through
other, as yet unknown, signaling pathways under anoxic conditions.
Very recently, Young11 published a thought-provoking review on

the function of AMPK in the cardiovascular system under ischemic
stress. He suggested that AMPK functions as a ‘major conductor of the
stress signaling orchestra’ in ischemic cardiovascular cells. As AMPK
functions as an energy sensor and inhibits ATP-consuming reactions
in endothelial cells, improvement of intracellular energy status might
be a major factor for preventing cell death under anoxic/hypoxic
conditions. However, we revealed in this study that AMPK activation
plays an anti-apoptotic role in HUVECs, at least partly through the
Akt pathway under anoxic conditions. AMPK might therefore play a
beneficial role in the ischemic vasculature, although the details of the
mechanism remain to be elucidated.

ACKNOWLEDGEMENTS
We gratefully acknowledge the excellent technical support of Ms Asuka Ishii,

Ms Marie Morita, and Ms Etsuko Kanaya. This study was supported by Grants-

in-Aid no. 19590855 (to DN) and no. 17659229 (to YH) and by Core Research

for Evolutional Science and Technology (to YH and TN) from the Ministry of

Education, Culture, Sports, Science, and Technology of Japan.

1 Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999; 340: 115–126.

cont contNca Nca

Norm Anox

p-Akt

Akt

myc-tag

Bcl-xl

Bax

Actin

cont contNca Nca

Norm Anox

*

†

*

R
el

at
iv

e 
op

ti
ca

l d
en

si
ty

5.0

4.0

3.0

2.0

1.0

0

IB:

Figure 5 NcaAMPK increases phosphorylation levels of Akt under both

normoxic and anoxic conditions. Basal phosphorylation levels of Akt in
controls were downregulated under anoxic conditions compared with

normoxic conditions. However, in NcaAMPK-overexpressing cells, Akt

phosphorylation was maintained at high levels even under anoxic conditions.

Neither Bcl-xl nor Bax expression levels changed under anoxic conditions.

The experiments were performed four times and a representative figure is

shown. IB, immunoblot. (b) Relative phosphorylation levels of Akt were

quantified using the Scion Image program. Immunoblots were normalized to

total loaded protein. The mean value of cont/Norm (normoxia) was fixed to

1.0. Each bar represents the mean±s.e.m., *Po0.005 vs. cont, wPo0.01

vs. Norm.
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Figure 6 NcaAMPK inhibits anoxia-induced cell death and PARP cleavage

but dominant-negative (dn) Akt abrogates this inhibition. (a) The cell viability
measured in the WST-1 assay was compared under anoxic conditions among

the cells expressing GFP 100 MOI (cont), NcaAMPK 50MOI+GFP 50MOI

(Nca), GFP 50 MOI+dnAkt 50MOI (dnAkt), and NcaAMPK 50 MOI+dnAkt

50MOI (dnAkt+Nca). Each bar represents the mean±s.e.m., N¼6. *Po0.01

vs. cont, wPo0.01 vs. Nca. (b) Anoxia-induced caspase activation increased

PARP cleavage in control HUVECs, as shown with an anti-PARP antibody, and

NcaAMPK overexpression inhibited PARP cleavage compared with control.

However, co-overexpression of dnAkt abrogated the inhibition of PARP

cleavage in NcaAMPK-overexpressing cells under anoxic conditions.

Immunoblotting with myc-tag or HA tag antibodies shows the expressions of

NcaAMPK and dnAkt, respectively. The experiments were performed four

times and a representative figure is shown. The lower part of this figure shows

a quantitative analysis of the cleaved PARP fragments. Each bar represents

the mean±s.e.m., Norm, normoxia; Anox, anoxia; Nca, NcaAMPK; IB,

immunoblot. *Po0.005, wPo0.01, zPo0.05.
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