Myocardial Gene Expression Associated with Genetic Cardiac Hypertrophy in the Absence of Hypertension

Abstract

The hypertrophic heart rat (HHR) was derived from the spontaneously hypertensive rat of the Okamoto strain and develops cardiac hypertrophy in the absence of hypertension. The genetic basis of this hypertrophy is unknown. Therefore, we compared gene expression profiles in the left ventricular myocardium of young (8−10 weeks of age) and old (38−50 weeks) HHR with rats from an age-matched control strain, the normal heart rat (NHR). cDNA microarrays (National Institute of Aging [NIA], 15,247 clones) were used to evaluate gene expression in cardiac-derived Cy3 and Cy5 labeled cDNA. M values (log2[Cy5/Cy3]) were obtained and significant differential expression was identified using an empirical Bayesian approach with specific results verified using real-time PCR. Compared with NHR, HHR cardiac weight index (heart weight/body weight) was significantly elevated at both ages (young: 5.5±0.5 vs. 3.9±0.2; old: 4.2±0.3 vs. 3.4±0.2 mg/g; p<0.05) with no difference in body weight or in tail-cuff blood pressure detected between the strains at either age. Differential expression was observed in 65 and 390 clones in young and old HHR, respectively, with more genes exhibiting down-regulation than up-regulation in both instances (young: down 44 vs. up 21; old: down 292 vs. up 98). Our data suggest a role for the Ras/mitogen-activated protein kinase (MAPK) signaling pathway and the tumor necrosis factor (TNF) receptor−mediated activation of nuclear factor-κB (NF-κB) in the etiology of cardiac enlargement in the HHR. These findings support the candidature of previously identified cardiotrophic agents in contributing to the cardiac enlargement in the normotensive HHR, and also identify novel genetic factors which may be involved in the genesis of primary cardiac hypertrophy.

References

  1. 1

    Kannel WB, Dannenberg AL, Levy D : Population implications of electrocardiographic left ventricular hypertrophy. Am J Cardiol 1987; 60: 85I–93I.

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Lauer MS, Anderson KM, Kannel WB, Levy D : The impact of obesity on left ventricular mass and geometry. The Framingham Heart Study. JAMA 1991; 266: 231–236.

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Palmieri V, de Simone G, Roman MJ, Schwartz JE, Pickering TG, Devereux RB : Ambulatory blood pressure and metabolic abnormalities in hypertensive subjects with inappropriately high left ventricular mass. Hypertension 1999; 34: 1032–1040.

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Tingleff J, Munch M, Jakobsen TJ, et al: Prevalence of left ventricular hypertrophy in a hypertensive population. Eur Heart J 1996; 17: 143–149.

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Tanase H, Yamori Y, Hansen CT, Lovenberg W : Heart size in inbred strains of rats. Part 1. Genetic determination of the development of cardiovascular enlargement in rats. Hypertension 1982; 4: 864–872.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Harrap SB, Danes VR, Ellis JA, Griffiths CD, Jones EF, Delbridge LM : The hypertrophic heart rat: a new normotensive model of genetic cardiac and cardiomyocyte hypertrophy. Physiol Genomics 2002; 9: 43–48.

    PubMed  Article  Google Scholar 

  7. 7

    MacLellan WR, Schneider MD : Genetic dissection of cardiac growth control pathways. Annu Rev Physiol 2000; 62: 289–319.

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Lee HR, Henderson SA, Reynolds R, Dunnmon P, Yuan D, Chien KR : Alpha 1−adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells. Effects on myosin light chain-2 gene expression. J Biol Chem 1988; 263: 7352–7358.

    CAS  PubMed  Google Scholar 

  9. 9

    Dempsey AA, Dzau VJ, Liew CC : Cardiovascular genomics: estimating the total number of genes expressed in the human cardiovascular system. J Mol Cell Cardiol 2001; 33: 1879–1886.

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Snijders AM, Meijer GA, Brakenhoff RH, van den Brule AJ, van Diest PJ : Microarray techniques in pathology: tool or toy? Mol Pathol 2000; 53: 289–294.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Aronow BJ, Toyokawa T, Canning A, et al: Divergent transcriptional responses to independent genetic causes of cardiac hypertrophy. Physiol Genomics 2001; 6: 19–28.

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Friddle CJ, Koga T, Rubin EM, Bristow J : Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc Natl Acad Sci U S A 2000; 97: 6745–6750.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Lovenberg W : Animal models for hypertension research. Prog Clin Biol Res 1987; 229: 225–240.

    CAS  PubMed  Google Scholar 

  14. 14

    Tanaka TS, Jaradat SA, Lim MK, et al: Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci U S A 2000; 97: 9127–9132.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Buckley MJ : Spot User's Giuide. Sydney, CSIRO Mathematical and Information Sciences, 2000.

    Google Scholar 

  16. 16

    Yang YH, Buckley MJ, Dudoit S, Speed TP : Comparison of methods for image analysis on cDNA microarray data. J Comput Graph Stat 2002; 11: 108–136.

    Article  Google Scholar 

  17. 17

    Smyth GK, Speed TP : Normalization for cDNA microarray data. Methods 2003; 31: 265–273.

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Smyth GK : Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: Article3.

    Article  Google Scholar 

  19. 19

    Smyth GK, Michaud J, Scott HS : Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 2005; 21: 2067–2075.

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Smyth GK, Yang YH, Speed T : Statistical issues in cDNA microarray data analysis. Methods Mol Biol 2003; 224: 111–136.

    CAS  PubMed  Google Scholar 

  21. 21

    Kargul GJ, Dudekula DB, Qian Y, et al: Verification and initial annotation of the NIA mouse 15K cDNA clone set. Nat Genet 2001; 28: 17–18.

    PubMed  Google Scholar 

  22. 22

    Ashburner M, Ball CA, Blake JA, et al: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Diehn M, Sherlock G, Binkley G, et al: SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res 2003; 31: 219–223.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Livak KJ, Schmittgen TD : Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    CAS  Article  Google Scholar 

  25. 25

    Hefti MA, Harder BA, Eppenberger HM, Schaub MC : Signaling pathways in cardiac myocyte hypertrophy. J Mol Cell Cardiol 1997; 29: 2873–2892.

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Trentin GA, Yin X, Tahir S, et al: A mouse homologue of the Drosophila tumor suppressor l(2)tid gene defines a novel Ras GTPase-activating protein (RasGAP)-binding protein. J Biol Chem 2001; 276: 13087–13095.

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Hayes GM, Carrigan PE, Miller LJ : Serine-arginine protein kinase 1 overexpression is associated with tumorigenic imbalance in mitogen-activated protein kinase pathways in breast, colonic, and pancreatic carcinomas. Cancer Res 2007; 67: 2072–2080.

    CAS  PubMed  Article  Google Scholar 

  28. 28

    McWhinnie R, Pechkovsky DV, Zhou D, et al: Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2007; 292: L278–L286.

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Stockand JD, Meszaros JG : Aldosterone stimulates proliferation of cardiac fibroblasts by activating Ki-RasA and MAPK1/2 signaling. Am J Physiol Heart Circ Physiol 2003; 284: H176–H184.

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Bhattacharya S, Macdonald ST, Farthing CR : Molecular mechanisms controlling the coupled development of myocardium and coronary vasculature. Clin Sci (Lond) 2006; 111: 35–46.

    CAS  Article  Google Scholar 

  31. 31

    Fang JY, Richardson BC : The MAPK signalling pathways and colorectal cancer. Lancet Oncol 2005; 6: 322–327.

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Murphy KM, Brune KA, Griffin C, et al: Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer Res 2002; 62: 3789–3793.

    CAS  PubMed  Google Scholar 

  33. 33

    Kapoun AM, Liang F, O'Young G, et al: B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 2004; 94: 453–461.

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Marin-Garcia J, Goldenthal MJ : The mitochondrial organelle and the heart. Rev Esp Cardiol 2002; 55: 1293–1310.

    PubMed  Article  Google Scholar 

  35. 35

    Raha S, Robinson BH : Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 2000; 25: 502–508.

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Eaton P, Wright N, Hearse DJ, Shattock MJ : Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J Mol Cell Cardiol 2002; 34: 1549–1560.

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Kang YJ, Li Y, Sun X, Sun X : Antiapoptotic effect and inhibition of ischemia/reperfusion-induced myocardial injury in metallothionein-overexpressing transgenic mice. Am J Pathol 2003; 163: 1579–1586.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Rothe M, Xiong J, Shu HB, Williamson K, Goddard A, Goeddel DV : I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction. Proc Natl Acad Sci U S A 1996; 93: 8241–8246.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Pype S, Declercq W, Ibrahimi A, et al: TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor−associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation. J Biol Chem 2000; 275: 18586–18593.

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A : Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A 2001; 98: 6668–6673.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Norris JL, Baldwin AS Jr : Oncogenic Ras enhances NF-kappaB transcriptional activity through Raf-dependent and Raf-independent mitogen-activated protein kinase signaling pathways. J Biol Chem 1999; 274: 13841–13846.

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Booz GW, Baker KM : Role of type 1 and type 2 angiotensin receptors in angiotensin II-induced cardiomyocyte hypertrophy. Hypertension 1996; 28: 635–640.

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Brasier AR, Jamaluddin M, Han Y, Patterson C, Runge MS : Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor. Mol Cell Biochem 2000; 212: 155–169.

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Abdel-Mageed AB, Agrawal KC : Activation of nuclear factor kappaB: potential role in metallothionein-mediated mitogenic response. Cancer Res 1998; 58: 2335–2338.

    CAS  PubMed  Google Scholar 

  45. 45

    Marian AJ, Roberts R : Recent advances in the molecular genetics of hypertrophic cardiomyopathy. Circulation 1995; 92: 1336–1347.

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Kai H, Muraishi A, Sugiu Y, et al: Expression of proto-oncogenes and gene mutation of sarcomeric proteins in patients with hypertrophic cardiomyopathy. Circ Res 1998; 83: 594–601.

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Ayer DE, Laherty CD, Lawrence QA, Armstrong AP, Eisenman RN : Mad proteins contain a dominant transcription repression domain. Mol Cell Biol 1996; 16: 5772–5781.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Ogawa Y, Nakao K, Mukoyama M, et al: Natriuretic peptides as cardiac hormones in normotensive and spontaneously hypertensive rats. The ventricle is a major site of synthesis and secretion of brain natriuretic peptide. Circ Res 1991; 69: 491–500.

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Nakagawa O, Ogawa Y, Itoh H, et al: Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy. Evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload. J Clin Invest 1995; 96: 1280–1287.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Benitah JP, Gomez AM, Delgado C, Lorente P, Lederer WJ : A chloride current component induced by hypertrophy in rat ventricular myocytes. Am J Physiol 1997; 272: H2500–H2506.

    CAS  Google Scholar 

  51. 51

    Hiramatsu M, Furukawa T, Sawanobori T, Hiraoka M : Ion channel remodeling in cardiac hypertrophy is prevented by blood pressure reduction without affecting heart weight increase in rats with abdominal aortic banding. J Cardiovasc Pharmacol 2002; 39: 866–874.

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Gupta S, Young D, Sen S : Inhibition of NF-kappaB induces regression of cardiac hypertrophy, independent of blood pressure control, in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2005; 289: H20–H29.

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Jing L, Zhang JZ, Zhao L, Wang YL, Guo FY : High-expression of transforming growth factor beta1 and phosphorylation of extracellular signal−regulated protein kinase in vascular smooth muscle cells from aorta and renal arterioles of spontaneous hypertension rats. Clin Exp Hypertens 2007; 29: 107–117.

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Satoh C, Fukuda N, Hu WY, Nakayama M, Kishioka H, Kanmatsuse K : Role of endogenous angiotensin II in the increased expression of growth factors in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 2001; 37: 108–118.

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Haugen E, Chen J, Wikstrom J, Gronros J, Gan LM, Fu LX : Parallel gene expressions of IL-6 and BNP during cardiac hypertrophy complicated with diastolic dysfunction in spontaneously hypertensive rats. Int J Cardiol 2007; 115: 24–28.

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Kuroski de Bold ML : Atrial natriuretic factor and brain natriuretic peptide gene expression in the spontaneous hypertensive rat during postnatal development. Am J Hypertens 1998; 11: 1006–1018.

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Ye P, West MJ : Cosegregation analysis of natriuretic peptide genes and blood pressure in the spontaneously hypertensive rat. Clin Exp Pharmacol Physiol 2003; 30: 930–936.

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Kwon S, Fang LH, Kim B, Ha TS, Lee SJ, Ahn HY : p38 Mitogen-activated protein kinase regulates vasoconstriction in spontaneously hypertensive rats. J Pharmacol Sci 2004; 95: 267–272.

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Scherer CR, Linz W, Busch AE, Steinmeyer K : Gene expression profiles of CLC chloride channels in animal models with different cardiovascular diseases. Cell Physiol Biochem 2001; 11: 321–330.

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Boutros PC, Okey AB ; Assessment of Rat-Mouse Sequence Homology in the NIA 15K Clone Library : Implications for Gene Expression Studies in Species Widely-Used in Toxicology, Society of Toxicology of Canada 35th Annual Symposium (STC). Montreal, 2002.

  61. 61

    Sehl PD, Tai JT, Hillan KJ, et al: Application of cDNA microarrays in determining molecular phenotype in cardiac growth, development, and response to injury. Circulation 2000; 101: 1990–1999.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert Di Nicolantonio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dwyer, J., Ritchie, M., Smyth, G. et al. Myocardial Gene Expression Associated with Genetic Cardiac Hypertrophy in the Absence of Hypertension. Hypertens Res 31, 941–955 (2008). https://doi.org/10.1291/hypres.31.941

Download citation

Keywords

  • hypertrophic heart rat
  • cardiac hypertrophy
  • microarray
  • gene expression
  • remodeling

Further reading

Search