Postnatal Blocking of Interferon-γ Function Prevented Atherosclerotic Plaque Formation in Apolipoprotein E–Knockout Mice


It is unknown whether interferon-γ has a positive or negative impact on atherosclerotic plaque formation. Thus, we examined the effects of postnatal interferon-γ function blocking on plaque formation in apolipoprotein E–knockout (apoEKO) mice by overexpressing a soluble mutant of interferon-γ receptor (sIFNγR), an interferon-γ inhibitory protein. Mice were fed a Western-type diet from 8 weeks of age. sIFNγR or mock plasmid (control) was injected into the thigh muscle at 8 and 10 weeks' age, because serum sIFNγR protein was transiently increased with a peak at 2 days after a single sIFNγR gene transfer and remained elevated for 2 weeks. At 12 weeks' age, control apoEKO mice showed marked atherosclerotic plaques from the ascending aorta to the aortic arch. The plaques in the aortic root had massive lipid cores and macrophage infiltration with thin fibrous cap and few smooth muscle cells, demonstrating low plaque stability. In contrast, the luminal plaque area was remarkably reduced in sIFNγR-treated apoEKO mice. sIFNγR treatment not only reduced lipid core areas and macrophage infiltration but also increased smooth muscle cell count and fibrotic area, suggesting improved plaque stability. In controls, interleukin-1β, monocyte chemoattractant protein-1, and vascular cell adhesion molecules-1 were remarkably upregulated in the aortic wall. These changes were significantly reversed by sIFNγR. sIFNγR treatment had no effects on serum cholesterol levels. In conclusion, sIFNγR treatment prevented plaque formation in apoEKO mice by inhibiting inflammatory changes in the arterial wall. The present study provides insight into a new strategy for preventing atherosclerosis.


  1. 1

    Ross R : Atherosclerosis: an inflammatory disease. New Engl J Med 1999; 340: 115–126.

    CAS  Article  Google Scholar 

  2. 2

    Young YL, Libby P, Schonbeck U : Cytokines in the pathogenesis of atherosclerosis. Thromb Haemost 2002; 88: 554–567.

    CAS  Article  Google Scholar 

  3. 3

    Harvey EJ, Ramji DP : Interferon-γ and atherosclerosis: pro- or anti-atherogenic? Cardiovasc Res 2005; 67: 11–20.

    CAS  Article  Google Scholar 

  4. 4

    Piccirillo CA, Prud'homme GJ : Prevention of experimental allergic encephalomyelitis by intramuscular gene transfer with cytokine-encoding plasmid vectors. Hum Gene Ther 1999; 10: 1915–1922.

    CAS  Article  Google Scholar 

  5. 5

    Lawson BR, Prud'homme GJ, Chang Y, et al: Treatment of murine lupus with cDNA encoding IFN-gammaR/Fc. J Clin Invest 2000; 106: 207–215.

    CAS  Article  Google Scholar 

  6. 6

    Tahara N, Kai H, Niiyama H, et al: Repeated gene transfers of naked prostacyclin synthase plasmid into skeletal muscles attenuate monocrotaline-induced pulmonary hypertension and prolong survival in rats. Hum Gene Ther 2004; 15: 1270–1278.

    CAS  Article  Google Scholar 

  7. 7

    Danko I, Fritz JD, Jiao S, Hogan K, Latendresse JS, Wolff JA : Pharmacological enhancement of in vivo foreign gene expression in muscle. Gene Ther 1994; 1: 114–121.

    CAS  PubMed  Google Scholar 

  8. 8

    Niiyama H, Kai H, Yamamoto T, et al: Roles of endogenous monocyte chemoattractant protein-1 in ischemia-induced neovascularization. J Am Coll Cardiol 2004; 44: 661–666.

    CAS  Article  Google Scholar 

  9. 9

    Molloy CJ, Taylor DS, Weber H : Angiotensin II stimulation of rapid protein tyrosin phosphorylation and protein kinase activation in rat smooth muscle cells. J Biol Chem 1993; 268: 7338–7345.

    CAS  PubMed  Google Scholar 

  10. 10

    Kai H, Griendling KK, Lassegue B, Ollerenshaw JD, Runge MS, Alexander RW : Agonist-induced phosphorylation of the vascular type 1 angiotensin II receptors. Hypertension 1994; 24: 523–527.

    CAS  Article  Google Scholar 

  11. 11

    Inoue S, Egashira K, Ni W, et al: Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E–knockout mice. Circulation 2002; 106: 2700–2706.

    CAS  Article  Google Scholar 

  12. 12

    Ni W, Egashira K, Kitamoto S, et al: New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E–knockout mice. Circulation 2001; 103: 2096–2101.

    CAS  Article  Google Scholar 

  13. 13

    Kuwahara F, Kai H, Tokuda K, et al: Transforming growth factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 2002; 106: 130–135.

    CAS  Article  Google Scholar 

  14. 14

    Kai H, Mori T, Tokuda K, et al: Pressure overload–induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II. Hypertens Res 2006; 29: 711–718.

    CAS  Article  Google Scholar 

  15. 15

    Vaporciyan AA, DeLisser HM, Yan HC, et al: Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 1993; 262: 1580–1582.

    CAS  Article  Google Scholar 

  16. 16

    Yoshii T, Iwai M, Li Z, et al: Regression of atherosclerosis by amlodipine via anti-inflammatory and anti-oxidative stress actions. Hypertens Res 2006; 29: 457–466.

    CAS  Article  Google Scholar 

  17. 17

    Gupta S, Pablo AM, Jiang X, Wang N, Tall AR, Schindler C : IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 1997; 99: 2752–2761.

    CAS  Article  Google Scholar 

  18. 18

    Kurschner C, Ozmen L, Garotta G, Dembic Z : IFN-gamma receptor-Ig fusion proteins. Half-life, immunogenicity, and in vivo activity. J Immunol 1992; 149: 4096–4100.

    CAS  PubMed  Google Scholar 

  19. 19

    Ozmen L, Gribaudo G, Fountoulakis M, Gentz R, Landolfo S, Garotta G : Mouse soluble IFN gamma receptor as IFN gamma inhibitor. Distribution, antigenicity, and activity after injection in mice. J Immunol 1993; 150: 2698–2705.

    CAS  PubMed  Google Scholar 

  20. 20

    Kurschner C, Garotta G, Dembic Z : Construction, purification, and characterization of new interferon gamma (IFN gamma) inhibitor proteins. Three IFN gamma receptor–immunoglobulin hybrid molecules. J Biol Chem 1992; 267: 9354–9360.

    CAS  PubMed  Google Scholar 

  21. 21

    Schroder K, Hertzog PJ, Ravasi T, Hume DA : Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004; 75: 163–189.

    CAS  Article  Google Scholar 

  22. 22

    Lusis AJ : Atherosclerosis. Nature 2000; 407: 233–241.

    CAS  Article  Google Scholar 

  23. 23

    Charo IF, Taubaman MB : Chemokines in the pathogenesis of vascular diseases. Circ Res 2004; 95: 858–866.

    CAS  Article  Google Scholar 

  24. 24

    Amento EP EN, Palmer H, Libby P : Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 1991; 11: 1223–1230.

    CAS  Article  Google Scholar 

  25. 25

    Yuan W, Yufit T, Li L, Mori Y, Chen SJ, Varga J : Negative modulation of alpha1(I) procollagen gene expression in human skin fibroblasts: transcriptional inhibition by interferon-gamma. J Cell Physiol 1999; 179: 97–108.

    CAS  Article  Google Scholar 

  26. 26

    Sibinga NE, Wang H, Perrella MA, et al: Interferon-gamma–mediated inhibition of cyclin A gene transcription is independent of individual cis-acting elements in the cyclin A promoter. J Biol Chem 1999; 274: 12139–12146.

    CAS  Article  Google Scholar 

  27. 27

    Zohlnhofer D, Richter T, Neumann F, et al: Transcriptome analysis reveals a role of interferon-gamma in human neointima formation. Mol Cell 2001; 7: 1059–1069.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hisashi Kai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koga, M., Kai, H., Yasukawa, H. et al. Postnatal Blocking of Interferon-γ Function Prevented Atherosclerotic Plaque Formation in Apolipoprotein E–Knockout Mice. Hypertens Res 30, 259–267 (2007).

Download citation


  • atherosclerosis
  • inflammation
  • cytokine
  • gene therapy

Further reading