Gene Delivery of Paraoxonase-1 Inhibits Neointimal Hyperplasia after Arterial Balloon-Injury in Rabbits Fed a High-Fat Diet


Paraoxonase-1 (PON-1) is a high-density lipoprotein (HDL)−associated enzyme that hydrolyzes oxidized phospholipids, thereby preventing the oxidative modification of low-density lipoproteins (LDL). A high-fat diet reduces PON-1 activity, enhancing LDL oxidation. Thus, PON-1 is a candidate for anti-atherogenic gene therapy. In the present study, we investigated the effect of local PON-1 overexpression on the development of atherosclerotic lesions using the Sendai virus–mediated transgenic technique. One-month-old rabbits (n=11) were fed a high-fat diet for 8 weeks and then subjected to balloon injury of the common iliac artery and simultaneous infection with a Sendai virus vector containing the PON-1 gene (n=7) or enhanced green fluorescence protein (EGFP) gene as a control (n=4). The arteries were examined 7–10 days after the operation. Local overexpression of PON-1 almost completely eliminated the immunohistochemical signals of the lectin-like oxidized LDL receptor-1 (LOX-1), thereby inhibiting macrophage accumulation, intimal thickening (by 63% compared with control), or atherosclerotic plaque formation in the vascular lumen (by 87.5%). Decreased levels of oxidative stress in the PON-1−treated arteries were confirmed by 4-hydroxy-2-nonenal (HNE) staining. Local overexpression of PON-1 in the arteries attenuated oxidative stress, thereby inhibiting the atherosclerotic process. Delivery of the PON-1 gene may be a possible therapeutic strategy for preventing atherosclerosis.


  1. 1

    James RW, Deakin SP : The importance of high density lipoproteins for paraoxonase 1 secretion, stability, and activity. Free Radic Biol Med 2004; 37: 1986–1994.

    CAS  Article  Google Scholar 

  2. 2

    Durrington PN, Mackness B, Mackness MI : Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol 2001; 21: 473–480.

    CAS  Article  Google Scholar 

  3. 3

    Clendenning JB, Humbert R, Green ED, Wood C, Traver D, Furlong CE : Structural organisation of the human PON1 gene. Genomics 1996; 35: 586–589.

    CAS  Article  Google Scholar 

  4. 4

    Shih DM, Gu L, Xia YR, Navab M, Li WF, Hama S : Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 1998; 394: 284–287.

    CAS  Article  Google Scholar 

  5. 5

    Rozenberg O, Rosenblat M, Coleman R, Shih DM, Aviram M : Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice. Free Radic Biol Med 2003; 34: 774–784.

    CAS  Article  Google Scholar 

  6. 6

    Shih DM, Xia YR, Wang XP, Miller E : Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J Biol Chem 2000; 275: 17527–17535.

    CAS  Article  Google Scholar 

  7. 7

    Rozenberga O, Shiha DM, Aviruma M : Paraoxonase 1 (PON1) attenuates macrophage oxidative status: studies PON1 transfected cells and in PON1 transgenic mice. Atherosclerosis 2005; 181: 9–18.

    Article  Google Scholar 

  8. 8

    Shih DM, Gu L, Hama S, Xia YR, Navab M : Genetic-dietary regulation of serum paraoxonase expression and its role in atherogenesis in a mouse model. J Clin Invest 1996; 97: 1630–1639.

    CAS  Article  Google Scholar 

  9. 9

    Ikeda Y, Suehiro T, Inoue M, Nakauchi Y, Morita T, Arii K : Serum paraoxonase activity and its relationship to diabetic complications in patients with non–insulin-dependent diabetes mellitus. Metabolism 1998; 47: 598–602.

    CAS  Article  Google Scholar 

  10. 10

    Paragh G, Balla P, Katona E, Seres I, Egerhazi A, Degrell I : Serum paraoxonase activity changes in patients with Alzheimer's disease and vascular dementia. Eur Arch Psychiatry Clin Neurosci 2002; 252: 63–67.

    Article  Google Scholar 

  11. 11

    Paragh G, Asztalos L, Seres I, et al: Serum paraoxonase activity changes in uremic and kidney-transplanted patients. Nephron 1999; 83: 126–131.

    CAS  Article  Google Scholar 

  12. 12

    Mackness MI, Durrington PN, Mackness B : The role of paraoxonase 1 activity in cardiovascular disease: potential for therapeutic intervention. Am J Cardiovasc Drugs 2004; 4: 211–217.

    CAS  Article  Google Scholar 

  13. 13

    Deakin S, Leviev I, Guernier S, James RW : Simvastatin modulates expression of the PON1 gene and increases serum paraoxonase: a role for sterol regulatory element–binding protein-2. Arterioscler Thromb Vasc Biol 2003; 23: 2083–2089.

    CAS  Article  Google Scholar 

  14. 14

    Bradshaw G, Gutierrez A, Miyake JH : Facilitated replacement of Kupffer cells expressing a paraoxonase-1 transgene is essential for ameliorating atherosclerosis in mice. Proc Natl Acad Sci U S A 2005; 102: 11029–11034.

    CAS  Article  Google Scholar 

  15. 15

    Sakaguchi T, Uchiyama T, Fujii Y, et al: Double membrane vesicles released from mammalian cells infected with Sendai virus expressing the matrix protein of vesicular stomatitis virus. Virology 1999; 263: 230–243.

    CAS  Article  Google Scholar 

  16. 16

    Nga CJ, Diana B, Shiha M : The paraoxonase gene family and atherosclerosis. Free Radic Biol Med 2005; 38: 153–163.

    Article  Google Scholar 

  17. 17

    Watson AD, Berliner JA, Hama SY, et al: Protective effect of high density lipoprotein associated paraoxonase: inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest 1995; 96: 2882–2891.

    CAS  Article  Google Scholar 

  18. 18

    Kita T, Kume N, Minami M, Hayashida K : Role of oxidized LDL in atherosclerosis. Ann NY Acad Sci 2001; 947: 199–205.

    CAS  Article  Google Scholar 

  19. 19

    Kume N, Murase T, Masaki T, Kita T : Inducible expression of lectin-like oxidized low density lipoprotein receptor-1 in vascular endothelial cells. Circ Res 1998; 83: 322–327.

    CAS  Article  Google Scholar 

  20. 20

    Li D, Mehta JL : Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol 2000; 20: 1116–11122.

    CAS  Article  Google Scholar 

  21. 21

    Tanigawa H, Miura S, Matsuo Y, Fujino M : Dominant-negative lox-1 blocks homodimerization of wild-type lox-1−induced cell proliferation through extracellular signal regulated kinase 1/2 activation. Hypertension 2006; 48: 294–300.

    CAS  Article  Google Scholar 

  22. 22

    Vohra RS, Murphy JE, Walker JH, Ponnambalam S, Homer-Vanniasinkam S : Atherosclerosis and the lectin-like oxidized low-density lipoprotein scavenger receptor. Trends Cardiovasc Med 2006; 16: 60–64.

    CAS  Article  Google Scholar 

  23. 23

    Li D, Liu L, Chen H : LOX-1 mediates oxidized low-density lipoprotein–induced expression of matrix metalloproteinases in human coronary artery endothelial cells. Circulation 2003; 107: 612–617.

    CAS  Article  Google Scholar 

  24. 24

    Negre-Salvayre A, Vieira O, Escargueil-Blanc I : Oxidized LDL and 4-hydroxynonenal modulate tyrosine kinase receptor activity. Mol Aspects Med 2003; 24: 251–261.

    CAS  Article  Google Scholar 

  25. 25

    Zarkovic N : 4-Hydroxynonenal as a bioactive marker of pathophysiological processes. Mol Aspects Med 2003; 24: 281–291.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Miwa Miyoshi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miyoshi, M., Nakano, Y., Sakaguchi, T. et al. Gene Delivery of Paraoxonase-1 Inhibits Neointimal Hyperplasia after Arterial Balloon-Injury in Rabbits Fed a High-Fat Diet. Hypertens Res 30, 85–91 (2007).

Download citation


  • paraoxonase-1
  • atherosclerosis
  • gene therapy
  • lectin-like oxidized low-density lipoprotein receptor-1
  • oxidative stress


Quick links