Impact of Adenosine Receptor Signaling and Metabolism on Pathophysiology in Patients with Chronic Heart Failure


Adenosine is well known to be a cardioprotective substance in ischemic heart disease. However, the modulation of adenosine receptors and the production and degradation of endogenous adenosine in chronic heart failure (CHF) are not fully understood. We analyzed the gene expression patterns of adenosine-related genes in human failing and nonfailing myocardium using DNA microarray analysis and quantitative real time–polymerase chain reaction (RT-PCR). DNA microarray analysis revealed that the gene expression of adenosine A2a, A2b, and A3 receptors (A2aR, A2bR, and A3R) as well as that of adenosine deaminase (ADA) decreased in failing myocardium. The down-regulation of these genes was verified by quantitative RT-PCR. We also measured the activities of these adenosine metabolism–related enzymes in failing myocardium and cardiac adenosine levels in patients with CHF. In CHF patients, we observed the decreased enzyme activity of ADA and the elevation of cardiac adenosine levels in CHF patients. To enhance the signaling of adenosine receptors, we increased plasma adenosine levels using dipyridamole, which decreased the severity of CHF. The gene expression of A2aR, A2bR, A3R, and ADA was decreased in the failing hearts, and this decrease may impair adenosine-related signal transduction. The activities of adenosine-related enzymes were altered, thus increasing the myocardial adenosine levels; this increase may compensate for the impairment of adenosine-related signal transduction in patients with CHF. The impairment of adenosine-related signal transmission contributes to the pathophysiology of CHF.


  1. 1

    Katz AM : Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med 1990; 322: 100–110.

    CAS  Article  Google Scholar 

  2. 2

    Cohn JN, Levine TB, Olivari MT, et al: Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311: 819–823.

    CAS  Article  Google Scholar 

  3. 3

    Francis GS, Benedict C, Johnstone DE, et al: Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 1990; 82: 1724–1729.

    CAS  Article  Google Scholar 

  4. 4

    Levine B, Kalman J, Mayer L, Fillit HM, Packer M : Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990; 323: 236–241.

    CAS  Article  Google Scholar 

  5. 5

    Takeda Y : Pleiotropic actions of aldosterone and the effects of eplerenone, a selective mineralocorticoid receptor antagonist. Hypertens Res 2004; 27: 781–789.

    CAS  Article  Google Scholar 

  6. 6

    Waagstein F, Hjalmarson A, Varnauskas E, Wallentin I : Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J 1975; 37: 1022–1036.

    CAS  Article  Google Scholar 

  7. 7

    The SOLVD Investigators : Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992; 327: 685–691.

  8. 8

    Nishiyama A, Rahman M, Inscho EW : Role of interstitial ATP and adenosine in the regulation of renal hemodynamics and microvascular function. Hypertens Res 2004; 27: 791–804.

    CAS  Article  Google Scholar 

  9. 9

    Hori M, Kitakaze M : Adenosine, the heart, and coronary circulation. Hypertension 1991; 18: 565–574.

    CAS  Article  Google Scholar 

  10. 10

    Kitakaze M, Hori M, Takashima S, Sato H, Inoue M, Kamada T : Ischemic preconditioning increases adenosine release and 5′-nucleotidase activity during myocardial ischemia and reperfusion in dogs. Implications for myocardial salvage. Circulation 1993; 87: 208–215.

    CAS  Article  Google Scholar 

  11. 11

    Yamane R, Nakamura T, Matsuura E, Ishige H, Fujimoto M : A simple and sensitive radioimmunoassay for adenosine. J Immunoassay 1991; 12: 501–519.

    CAS  Article  Google Scholar 

  12. 12

    Seidman JG, Seidman C : The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 2001; 104: 557–567.

    CAS  Article  Google Scholar 

  13. 13

    Liang BT, Morley JF : A new cyclic AMP–independent, Gs-mediated stimulatory mechanism via the adenosine A2a receptor in the intact cardiac cell. J Biol Chem 1996; 271: 18678–18685.

    CAS  Article  Google Scholar 

  14. 14

    Duncker DJ, van Zon NS, Pavek TJ, Herrlinger SK, Bache RJ : Endogenous adenosine mediates coronary vasodilation during exercise after KATP+ channel blockade. J Clin Invest 1995; 95: 285–295.

    CAS  Article  Google Scholar 

  15. 15

    Ledent C, Vaugeois JM, Schiffmann SN, et al: Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 1997; 388: 674–678.

    CAS  Article  Google Scholar 

  16. 16

    Varani K, Laghi-Pasini F, Camurri A, et al: Changes of peripheral A2A adenosine receptors in chronic heart failure and cardiac transplantation. FASEB J 2003; 17: 280–282.

    CAS  Article  Google Scholar 

  17. 17

    Liang BT, Jacobson KA : A physiological role of the adenosine A3 receptor: sustained cardioprotection. Proc Natl Acad Sci U S A 1998; 95: 6995–6999.

    CAS  Article  Google Scholar 

  18. 18

    Wakeno M, Minamino T, Seguchi O, et al: Long-term stimulation of adenosine A2b receptors begun after myocardial infarction prevents cardiac remodeling in rats. Circulation 2006; 114: 1923–1932.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Masafumi Kitakaze.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Asakura, M., Asanuma, H., Kim, J. et al. Impact of Adenosine Receptor Signaling and Metabolism on Pathophysiology in Patients with Chronic Heart Failure. Hypertens Res 30, 781–787 (2007).

Download citation


  • DNA microarray
  • adenosine
  • single nucleotide polymorphism
  • heart failure
  • adenosine deaminase, adenosine A2a receptor

Further reading