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Hypertension causes endothelial dysfunction, which plays an important role in atherogenesis. The vascular

cell adhesion molecule-1 (VCAM-1) contributes to atherosclerotic lesion formation by recruiting leukocytes

from blood into tissues. Tumor necrosis factor-�  (TNF� ) induces endothelial dysfunction and VCAM-1

expression in endothelial cells (ECs). We examined whether the cAMP-response element binding protein

(CREB), a transcription factor that mediates cytokine expression and vascular remodeling, is involved in

TNF� -induced VCAM-1 expression. TNF�  induced phosphorylation of CREB with a peak at 15 min of stim- 

ulation in a dose-dependent manner in bovine aortic ECs. Pharmacological inhibition of p38 mitogen-acti-

vated protein kinase (p38-MAPK) inhibited TNF� -induced CREB phosphorylation. Adenovirus-mediated

overexpression of a dominant-negative form of CREB suppressed TNF� -induced VCAM-1 and  c-fos  expres- 

sion. Although activating protein 1 DNA binding activity was attenuated by overexpression of dominant neg-

ative CREB, nuclear factor-� B activity was not affected. Our results suggest that the p38-MAPK/CREB

pathway plays a critical role in TNF� -induced VCAM-1 expression in vascular endothelial cells. The p38-

MAPK/CREB pathway may be a novel therapeutic target for the treatment of atherosclerosis. (

 

Hypertens Res

 

2006; 29: 39–47)
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Introduction

 

The initial step of atherogenesis involves attachment of
mononuclear leukocytes to endothelial cells (ECs) and migra-
tion into the subendothelial space (

 

1

 

). Adhesion molecules
expressed in ECs play an important role in the attachment of
mononuclear leukocytes. Various cardiovascular risk factors

including hypertension have been shown to increase the lev-
els of soluble adhesion molecules, such as the vascular cell
adhesion molecule-1 (VCAM-1), intercellular adhesion mol-
ecule-1 (ICAM-1) and E-selectin (

 

2

 

–

 

4

 

). Carotid intima-media
thickness has been positively correlated with the plasma level
of circulating soluble cellular adhesion molecules (

 

5

 

).
VCAM-1 is expressed in ECs predisposed to atherosclerotic
lesion formation (

 

6

 

) and contributes to recruitment of mono-
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nuclear leukocytes by binding to 

 
α

 
4

 
β

 
1-integrin expressed on

leukocytes (  7  ).
Tumor necrosis factor-

 
α

 
 (TNF

 
α

 
) is a multifunctional

cytokine produced by activated macrophages, monocytes and
lymphocytes. The vascular EC is an important target of TNF

 

α

 

(

 

1

 

, 

 

8

 

). A previous study demonstrated that 

 

in vivo

 

 blockade of
TNF

 

α

 

 accelerated functional endothelial recovery after
angioplasty (

 

9

 

). TNF

 

α

 

 is known to modulate the expression
of many genes involved in cytoadhesion, thrombosis, and
inflammatory response in ECs, resulting in the acquisition of
new functional capacities leading to atherosclerosis (

 

10

 

).
VCAM-1 is one of the molecules induced by TNF

 

α

 

 (

 

11

 

).
cAMP-response element (CRE)-binding protein (CREB) is

a 43 kD nuclear transcription factor belonging to the CREB/
ATF family (

 

12

 

, 

 

13

 

). Phosphorylation of the serine residue at
133 (Ser133), which recruits a transcriptional coactivator,
CREB-binding protein (CBP) or p300, is necessary for tran-
scriptional activation. The phosphorylation of Ser133 is
mediated by a variety of protein kinase pathways, such as 1)
protein kinase A (PKA), 2) Ca

 

2+

 

/calmodulin-dependent pro-
tein kinase (CaMK) II (

 

14

 

), 3) extracellular signal-regulated
protein kinase (ERK) (

 

15

 

, 

 

16

 

), 4) p38 mitogen-activated pro-
tein kinase (p38-MAPK) (

 

17

 

), and 5) phosphatidylinositol 3-
kinase (PI3-K) (

 

18

 

).
Although TNF

 

α

 

 is known to activate transcription factors

such as activating protein 1 (AP-1) and nuclear factor-
 

κ
 

B
(NF-  κ  B) (  19  ,  20  ), it has not been examined whether TNF α 
activates CREB in ECs. We investigated whether CREB is
activated by TNF

 

α

 

 in bovine ECs. We report in the present
study that TNF

 

α

 

 phosphorylated CREB through p38-MAPK
and CREB mediated TNF

 

α

 

-induced VCAM-1 expression.

 

Methods

 

Materials

 

Dulbecco’s modified Eagle’s medium (DMEM) was pur-
chased from GIBCO BRL (Gaithersburg, USA). Fetal bovine
serum (FBS) was purchased from BioWhittaker (Walkers-
ville, USA). Ionomycin, KN93 and SP60125 were purchased
from Sigma Chemical Co. (St. Louis, USA). Recombinant
human TNF

 

α

 

 was a gift from Dainippon Pharmaceutical Co.
(Osaka, Japan). PD98059 and wortmannin were purchased
from BIOMOL Research Laboratories Inc. (Plymouth Meet-
ing, USA). SB203580 and FR167653, inhibitors of p38-
MAPK, were gifts from GlaxoSmithKline and Fujisawa Phar-
maceutical Co. (Osaka, Japan), respectively. H89 was pur-
chased from Seikagaku Co. (Tokyo, Japan). Horseradish
peroxidase conjugated second antibodies (anti-rabbit or anti-
mouse IgG) were purchased from VECTOR Laboratories Inc.

 

Fig. 1.

 

CREB is phosphorylated at Ser133 by TNF

 

α

 

. A: Bovine ECs were stimulated with TNF

 

α

 

 (1 ng/ml) for varying periods
indicated in the figure (

 

n

 

=4). B: Bovine ECs were stimulated with TNF

 

α

 

 for 15 min at concentrations varying from 0.01 to 100
ng/ml (

 

n

 

=4). Phosphorylation of CREB was detected by Western blot analysis using a phospho-specific CREB antibody. The
density of the specific band was scanned and quantified with an imaging analyzer. The ratio of phosphorylated CREB to total
CREB in TNF

 

α

 

-stimulated cells is shown as the relative fold increase compared with that in unstimulated cells. The values are
expressed as the mean

 

±

 

SEM. *

 

p

 

<0.05, **

 

p

 

<0.01 

 

vs

 

. the control.
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(Burlingame, USA). Other antibodies used in the experiments
were obtained from Cell Signaling Technology (Danvers,
USA). Other chemical reagents were purchased from Wako
Pure Chemicals (Osaka, Japan) unless specifically men-
tioned.

Cell Culture

The bovine aortic ECs were the gift of Katsuya Hirano
(Kyushu University Graduate School of Medical Sciences)
and grown in a humidified atmosphere of 95% air/5% CO2 at
37°C in DMEM with 10% FBS. Passages between 5 and 12
were used for the experiments. The investigation conformed
with the Guide for the Care and Laboratory Animals pub-
lished by the US National Institutes of Health (NIH Publica-
tion No. 85-23, revised 1996).

Western Blot Analysis

Bovine ECs were lysed in a sample buffer (5 mmol/l EDTA,
10 mmol/l Tris-HCl, pH 7.6, 1% Triton X-100, 50 mmol/l
NaCl, 30 mmol/l sodium phosphate, 50 mmol/l NaF, 1%
aprotinin, 0.5% pepstatin A, 2 mmol/l phenylmethylsulfonyl
fluoride and 5 mmol/l leupeptin). Western blot analyses of
CREB, p38-MAPK and VCAM-1 were performed as
described previously (21).

Adenovirus Vector Expressing a Dominant Nega-
tive Form of CREB

A recombinant adenovirus vector expressing a mutant of
CREB (AdCREB M1) (22) in which the phosphorylation site

at Ser133 was changed to alanine was a gift from Anthony J.
Zeleznik (University of Pittsburgh, Pittsburgh, USA). Con-
fluent bovine ECs were washed 2 times with PBS and incu-
bated with AdCREB M1 or adenovirus empty vector
(AdEmpty) under gentle agitation for 2 h at room tempera-
ture. Then the cells were washed 3 times, cultured in DMEM
with 10% FBS for 2 days and used for the experiments. The
multiplicity of infection (MOI) value indicates the number of
viruses per cell added to a culture dish.

Northern Blot Analysis

Total RNA was prepared according to an acid–guanidinium–
thiocyanate–phenol–chloroform extraction method. Northern
blot analysis of c-fos, VCAM-1 and 18S rRNA was per-
formed as described previously (21). The radioactivity of
hybridized bands of c-fos and VCAM-1 mRNA, and 18S
rRNA was quantified with a MacBAS Bioimage Analyzer
(Fuji Film Co., Tokyo, Japan).

Preparation of Nuclear Extracts and Gel Mobility
Shift Assay

The preparation of nuclear extracts and gel mobility shift
assay were performed as described previously (23). DNA
probes of AP-1 (5′-CGCTTGATGAGTCAGCCGGAA-3′)
and NF-κB (5′-AGATGAGGGGACTTTCCCAGGC-3′)
were end-labeled with 32P γ-ATP. Ten micrograms of nuclear
extracts were incubated with 1 × 105 cpm of labeled DNA
probe for 30 min at room temperature and electrophoresed on
4% acrylamide gel. A fifty-fold molar excess of unlabeled
DNA was added as a competitor. After electrophoresis, the

Fig. 3. AdCREB M1 inhibits TNFα-induced CREB phosphorylation. Bovine ECs were infected with AdCREB M1 (30 MOI) or
AdEmpty (30 MOI) and stimulated with or without TNFα (1 ng/ml) for 15 min. TNFα-induced CREB phosphorylation was
detected by Western blot analysis (n=4). The ratio of phosphorylated CREB to α-tubulin in TNFα-stimulated cells is shown in
the right panel as the relative fold increase compared with that in unstimulated cells. The values are expressed as the
mean±SEM. **p<0.01 vs. AdCREB M1 TNFα (+), #p<0.01 vs. control TNFα (−) or AdEmpty TNFα (−).
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Fig. 4. AdCREB M1 inhibits TNFα-induced VCAM-1 mRNA and protein expression. A: Bovine ECs were infected with
AdCREB M1 (30 MOI) or AdEmpty (30 MOI) and stimulated with or without TNFα (1 ng/ml) for 4 h. TNFα-induced VCAM-1
mRNA expression was detected by Northern blot analysis and the radioactivities of the bands were measured with an imaging
analyzer (n=4). The radioactivity of VCAM-1 mRNA in TNFα-stimulated cells was normalized against that of rRNA and shown
as the relative fold increase compared with that in unstimulated cell. B: Bovine ECs were infected with AdCREB M1 (30 MOI) or
AdEmpty (30 MOI) and stimulated with or without TNFα (1 ng/ml) for 12 h. TNFα-induced VCAM-1 protein expression was
detected by Western blot analysis (n=4) and the ratio of VCAM-1 expression to α-tubulin in TNFα-stimulated cells is shown in
the right panel as the relative fold increase compared with that in unstimulated cells. C: Bovine ECs were preincubated with
SB203580 (10 μmol/l) for 30 min and stimulated with TNFα (1 ng/ml) for 4 h. TNFα-induced VCAM-1 mRNA expression was
detected by Northern blot. The values are expressed as the mean±SEM. **p<0.01 vs. AdCREB M1 TNFα (+) or TNFα,
*p<0.05 vs. AdCREB M1 TNFα (+), #p<0.01 vs. control TNFα (−) or AdEmpty TNFα (−).
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gels were dried and exposed to X-ray films.

Statistical Analysis

Statistical analysis was performed with 1-way ANOVA and

Fisher’s test if appropriate. Values of p<0.05 were consid-
ered to indicate statistical significance. Data are shown as the
mean±SEM.

Fig. 5. AdCREB M1 inhibits TNFα-induced c-fos mRNA expression and AP-1 DNA binding activity. A: Bovine ECs were
infected with AdCREB M1 (30 MOI) or AdEmpty (30 MOI) and stimulated with or without TNFα (1 ng/ml) for 30 min. TNFα-
induced c-fos mRNA expression was detected by Northern blot analysis and the radioactivities of the bands were measured with
an imaging analyzer (n=4). The radioactivity of c-fos mRNA was normalized against that of rRNA. The ratio in TNFα-stimu-
lated cells is shown as the relative fold increase compared with that in unstimulated cells. The values are expressed as the
mean±SEM. **p<0.01 vs. AdCREB M1 TNFα (+), #p<0.01 vs. control TNFα (−) or AdEmpty TNFα (−). B: Bovine ECs were
infected with AdCREB M1 (30 MOI) or AdEmpty (30 MOI) and stimulated with or without TNFα (1 ng/ml) for 4 h. Nuclear
extracts were prepared and incubated with radiolabeled AP-1 (left panel) or NF-κB (right panel) probe for 30 min and electro-
phoresed. A fifty-fold molar excess of unlabeled probe was used as a competitor. For the supershift assay, an antibody against c-
Jun was added to the binding reaction mixtures. The same results were obtained in other independent experiments and a repre-
sentative autoradiogram is shown (n=4).
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Results

Phosphorylation of CREB at Ser133 by TNF� 

To examine whether CREB is phosphorylated in response to
TNF

 

α

 

, we performed Western blot analysis using an antibody
that only recognizes the phosphorylated form of CREB at
Ser133 (p-CREB). TNF

 

α

 

 stimulated phosphorylation of
CREB with a peak at 15 min of stimulation (Fig. 1A). TNF

 

α

 

dose-dependently increased phosphorylation of CREB at 15
min of stimulation (Fig. 1B).

 

The p38-MAPK Pathway Mediates TNF� -Induced
CREB Phosphorylation

 

Several protein kinases are reported to phosphorylate CREB.
We examined which pathway is responsible for TNF

 

α

 

-
induced CREB phosphorylation. SB203580 (10 

 

μ

 

mol/l), a
p38-MAPK inhibitor, completely blocked TNF

 

α

 

-induced
CREB phosphorylation (Fig. 2A). PD98059 (10 

 

μ

 

mol/l), an
ERK kinase (MEK) inhibitor, wortmannin (50 nmol/l), an
inhibitor of PI3-K, KN93 (10 

 

μ

 

mol/l), an inhibitor of
CAMKII, and H89 (1 

 

μ

 

mol/l), an inhibitor of PKA, did not
affect TNF

 

α

 

-induced CREB phosphorylation (Fig. 2A).
SP600125, a 

 

c-jun

 

 N-terminal kinase inhibitor, also had no
effect on TNF

 

α

 

-induced CREB phosphorylation (data not
shown). SB203580 was first described as an inhibitor of p38-
MAPK activity that acts by competing with ATP for binding;
however, it was later demonstrated that SB203580 also pre-
vents p38-MAPK phosphorylation/activation (

 

24

 

–

 

26

 

).
SB203580 dose-dependently inhibited TNF

 

α

 

-induced CREB
and p38-MAPK phosphorylation (Fig. 2B). To confirm the
role of p38-MAPK, we used another p38-MAPK inhibitor,
FR167653. FR167653 dose-dependently inhibited TNF

 

α

 

-
induced CREB and p38-MAPK phosphorylation (Fig. 2C).
TNF

 

α

 

 stimulated phosphorylation of p38-MAPK with a peak
at 5 min of stimulation, which is faster than phosphorylation
of CREB (Fig. 2D). PD98059 and wortmannin at the same
concentrations used in Fig. 2 inhibited TNF

 

α

 

-induced ERK
and Akt (a target molecule of PI3-K) activation, respectively
(data not shown). KN93 and H89 at the same concentrations
also inhibited ionomycin- and forskolin-induced CREB phos-
phorylation, respectively (data not shown). Therefore, the
concentrations of these protein kinase inhibitors were suffi-
cient. These data suggest that the p38-MAPK pathway is crit-
ical for TNF

 

α

 

-induced CREB phosphorylation.

 

Overexpression of a Dominant Negative Form of
CREB Inhibits TNF� -Induced VCAM-1 Expres- 
sion

 

To clarify the role of CREB in the TNF

 

α

 

 signaling, we over-
expressed a dominant negative form of CREB by an adenovi-
rus vector (AdCREB M1). We used AdEmpty as a negative

control for the infection of adenovirus. Phosphorylation of
CREB by TNF

 

α

 

 was attenuated by infection of AdCREB M1,
but not by AdEmpty (Fig. 3). A previous study demonstrated
that TNF

 

α

 

 stimulated VCAM-1 expression in ECs (

 

11

 

). In
the present study, AdCREB M1 but not AdEmpty suppressed
TNF

 

α

 

-induced VCAM-1 mRNA and protein expression (Fig.
4A, B). SB203580 also suppressed TNF

 

α

 

-induced VCAM-1
mRNA expression (Fig. 4C), suggesting that the p38-MAPK/
CREB pathway plays an important role. It is known that
TNF

 

α

 

 induces VCAM-1 expression through activation of
NF-

 

κ

 

B and AP-1 (

 

27

 

). AP-1 is a heterodimer of c-Fos and c-
Jun and CRE is one of the important 

 

cis

 

-DNA elements regu-
lating 

 

c-fos

 

 gene expression. We therefore hypothesized that
dominant negative CREB may affect 

 

c-fos

 

 induction and AP-
1 activation. AdCREB M1 but not AdEmpty suppressed
TNF

 

α

 

-induced 

 

c-fos

 

 mRNA expression (Fig. 5A). Further-
more, AdCREB M1 suppressed AP-1 DNA binding activity
to the consensus sequence induced by TNF

 

α

 

, but it did not
affect NF-

 

κ

 

B binding activity (Fig. 5B). The binding of AP-1
was specific because the band was eliminated by a 50 mol
excess of unlabeled competitor, and the band was super-
shifted by addition of an antibody against c-Jun. These data
suggest that AdCREB M1 may suppress TNF

 

α

 

-induced
VCAM-1 gene expression through inhibition of not only
CREB but also AP-1 activity.

 

Discussion

 

In the present study, we showed that TNF

 

α

 

 activated CREB
through p38-MAPK. Inhibition of CREB function by a dom-
inant negative molecule suppressed TNF

 

α

 

-induced AP-1
activity and VCAM-1 expression.

The results of a search for 

 

cis

 

-DNA elements of the
VCAM-1 gene promoter by TFSEACH showed the presence
of a possible CRE site in the promoter of VCAM-1 at 

 

−

 

1686
bp. Therefore, our result suggests that the CRE site of the
VCAM-1 gene promoter may play an important role in
VCAM-1 expression induced by TNF

 

α

 

. A previous study
demonstrated that TNF

 

α

 

 stimulated VCAM-1 expression
through two NF-

 

κ

 

B sites (present at 

 

−

 

63 bp and 

 

−

 

77 bp from
the transcription initiation site) (

 

11

 

). Ahmad 

 

et al

 

. reported
that the AP-1/NF-

 

κ

 

B complex was induced by TNF

 

α

 

 and reg-
ulated VCAM-1 gene expression (

 

27

 

). AP-1 can interact with
other transcription factors and modulate their transcriptional
activity (

 

28

 

).The p65 subunit of NF-

 

κ

 

B requires a co-factor
protein for transcriptional activity and can interact with c-Fos
and c-Jun through the Rel homology domain (

 

29

 

). CRE in the
promoter region of the 

 

c-fos

 

 gene plays an important role in
the induction of 

 

c-fos

 

 by many stimuli (

 

30

 

–

 

32

 

). We confirmed
that CRE mediates 

 
c-fos

 
 expression by TNF  α

 
. These data

suggest that inhibition of AP-1 activity by AdCREB M1 may
be involved in the suppression of TNF

 

α

 

-induced VCAM-1
expression. However, further study is necessary to confirm
the role of the AP-1 site of the VCAM-1 gene promoter in
response to TNF

 

α

 

.
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TNF

 

α

 

 is known to activate the mitogen-activated protein
kinases (MAPKs), such as 

 

c-jun

 

 NH

 

2

 

-terminal kinase and
p38-MAPK in ECs (

 

33

 

, 

 

34

 

). A previous study demonstrated
that p38-MAPK mediated actin filament reorganization by
several stimuli, such as vascular endothelial growth factor or
oxidative stress, in human umbilical vein ECs (

 

35

 

). Another
study demonstrated that p38-MAPK negatively regulated cell
survival and proliferation by FGF-2 stimulation in bovine
capillary ECs (

 

36

 

). In the present study, we demonstrated that
p38-MAPK mediated TNF

 

α

 

-induced CREB phosphorylation
and could modulate the expression of cytoadhesion mole-
cules. The p38-MAPK family includes four isoforms, p38

 

α

 

,
p38

 

β

 

, p38

 

γ

 

 and p38

 

δ

 

. Vascular EC expresses p38

 

α

 

, p38

 

β

 

 and
p38

 

δ

 

 (

 

37

 

). SB203580 inhibits p38

 

α

 

 and p38β, and thus p38α
or p38β may mediate TNFα-induced CREB phosphorylation.

Atherosclerotic lesion progression has been shown to
depend on persistent, chronic inflammation in the arterial
wall and is characterized by the recruitment of monocytes and
lymphocytes to the arterial wall (38). Adhesion molecules
and chemotactic factors mediate the entry of the leukocytes
into the subendothelial space. The first step in adhesion, the
rolling of leukocytes along the endothelial surface, is medi-
ated by selectins which bind to carbohydrate ligands on leu-
cocytes (39, 40). The firm adhesion of monocytes and T
lymphocytes to endothelium is mediated by VCAM-1 on the
endothelium, which interacts with the integrin VLA-4 on
monocytes and T lymphocytes (7). Therefore, VCAM-1 is
assumed to be important for atherosclerogenesis, and knock-
out strategies have been attempted. Although VCAM-1-null
mice die during embryogenesis (41), it has been shown that
atherosclerotic lesion was reduced that the size of atheroscle-
rotic lesions is reduced in VCAM-1 domain 4-deficient mice
(42), suggesting that VCAM-1 is indeed an important gene
product directly involved in the formation of atherosclerotic
lesions.

In the present study, we demonstrated the possible involve-
ment of CREB in TNFα-induced VCAM-1 expression. In
addition to TNFα, angiotensin II has been shown to stimulate
VCAM-1 expression (43, 44), and we and others previously
reported that angiotensin II stimulated phosphorylation of
CREB (32, 45). Inhibition of CREB may suppress not only
TNFα-induced but also angiotensin II-induced VCAM-1
expression. Furthermore, it was previously reported that high
blood pressure activates MAPKs (46–48) and that p38-
MAPK activation induced by high blood pressure is involved
in endothelial dysfunction (48). Therefore, inhibition of the
p38-MAPK/CREB pathway may attenuate endothelial dys-
function in patients with hypertension. Our data suggest that
the p38-MAPK/CREB pathway could be a therapeutic target
for the prevention of atherosclerosis.
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