Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Brachial Artery Flow-Mediated Vasodilation Is Correlated with Coronary Vasomotor and Fibrinolytic Responses Induced by Bradykinin


Endothelium plays a key role in the regulation of not only vascular tone but also thrombosis and fibrinolysis. Brachial flow-mediated vasodilation (FMD) provides a noninvasive method of assessing coronary endothelial dysfunction. However, no data are available on the relationship between brachial FMD and coronary fibrinolytic activity. Thus, we examined the relationship between brachial FMD and coronary vasomotor and fibrinolytic function. Brachial FMD by reactive hyperemia was defined as a change in diameter relative to the baseline as measured using high-resolution ultrasound. Coronary blood flow (CBF) responses to bradykinin (BK) were analyzed using Doppler flow velocity measurement. Coronary release of tissue-type plasminogen activator (tPA) antigen was determined as the transcardiac tPA gradient × {CBF × (100 − hematocrit)/100}. In 77 patients with normal coronary arteries, BK caused dose-dependent increases in CBF, transcardiac tPA gradient, and coronary tPA release. Among them, brachial FMD, the BK-induced CBF increase, and the coronary tPA release induced by BK in 14 diabetic subjects were lower than those in 63 non-diabetic subjects (p<0.05, respectively). Brachial FMD correlated with the CBF increase, transcardiac tPA gradient (0.2 μg/min: r=0.25; 0.6 μg/min: r=0.43; 2.0 μg/min: r=0.34; p<0.05, respectively), and coronary tPA release (0.2 μg/min: r=0.24; 0.6 μg/min: r=0.44; 2.0 μg/min: r=0.32; p<0.05, respectively) in response to BK. Brachial FMD correlated significantly with coronary endothelial function and fibrinolytic activity in response to BK. Type 2 diabetes impaired coronary and brachial endothelium-dependent vasodilation and coronary fibrinolytic activity.


  1. 1

    Schachinger V, Britten MB, Zeiher AM : Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000; 101: 1899– 1906.

    CAS  Article  Google Scholar 

  2. 2

    Halcox JP, Schenke WH, Zalos G, et al : Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002; 106: 653– 658.

    Article  Google Scholar 

  3. 3

    Fathi R, Haluska B, Isbel N, Short L, Marwick TH : The relative importance of vascular structure and function in predicting cardiovascular events. J Am Coll Cardiol 2004; 43: 616– 623.

    Article  Google Scholar 

  4. 4

    Ridker PM, Hebert PR, Fuster V, Hennekens CH : Are both aspirin and heparin justified as adjuncts to thrombolytic therapy for acute myocardial infarction? Lancet 1993; 341: 1165– 1168.

    CAS  Article  Google Scholar 

  5. 5

    Jansson JH, Olofsson BO, Nilsson TK : Predictive value of tissue plasminogen activator mass concentration on long-term mortality in patients with coronary artery disease. A 7-year follow-up. Circulation 1993; 88: 2030– 2034.

    CAS  Article  Google Scholar 

  6. 6

    Thogersen AM, Jansson JH, Boman K, et al : High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998; 98: 2241– 2247.

    CAS  Article  Google Scholar 

  7. 7

    Tomiyama H, Kushiro T, Okazaki R, Yoshida H, Doba N, Yamashina A : Influences of increased oxidative stress on endothelial function, platelets function, and fibrinolysis in hypertension associated with glucose intolerance. Hypertens Res 2003; 26: 295– 300.

    CAS  Article  Google Scholar 

  8. 8

    Laurent S, Lacolley P, Brunel P, Laloux B, Pannier B, Safar M : Flow-dependent vasodilation of brachial artery in essential hypertension. Am J Physiol 1990; 258: H1004– H1011.

    CAS  PubMed  Google Scholar 

  9. 9

    Celermajer DS, Sorensen KE, Gooch VM, et al : Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340: 1111– 1115.

    CAS  Article  Google Scholar 

  10. 10

    Sorensen KE, Celermajer DS, Spiegelhalter DJ, et al : Non-invasive measurement of human endothelium dependent arterial responses: accuracy and reproducibility. Br Heart J 1995; 74: 247– 253.

    CAS  Article  Google Scholar 

  11. 11

    Anderson TJ, Uehata A, Gerhard MD, et al : Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 1995; 26: 1235– 1241.

    CAS  Article  Google Scholar 

  12. 12

    Playford DA, Watts GF : Non-invasive measurement of endothelial function. Clin Exp Pharmacol Physiol 1998; 25: 640– 643.

    CAS  Article  Google Scholar 

  13. 13

    Takase B, Uehata A, Akima T, et al : Endothelium-dependent flow-mediated vasodilation in coronary and brachial arteries in suspected coronary artery disease. Am J Cardiol 1998; 82: 1535– 1599.

    CAS  Article  Google Scholar 

  14. 14

    Linz W, Wiemer G, Scholkens BA : Beneficial effects of bradykinin on myocardial energy metabolism and infarct size. Am J Cardiol 1997; 80: 118A– 123A.

    CAS  Article  Google Scholar 

  15. 15

    Minai K, Matsumoto T, Horie H, et al : Bradykinin stimulates the release of tissue plasminogen activator in human coronary circulation: effects of angiotensin-converting enzyme inhibitors. J Am Coll Cardiol 2001; 37: 1565– 1570.

    CAS  Article  Google Scholar 

  16. 16

    Corretti MC, Anderson TJ, Benjamin EJ, et al : Guidelines for the ultrasound assessment of endothelial dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 2002; 39: 257– 265.

    Article  Google Scholar 

  17. 17

    Matsumoto T, Minai K, Horie H, et al : Angiotensin-converting enzyme inhibition but not angiotensin II type 1 receptor antagonism augments coronary release of tissue plasminogen activator in hypertensive patients. J Am Coll Cardiol 2003; 41: 1373– 1379.

    CAS  Article  Google Scholar 

  18. 18

    Ohira N, Matsumoto T, Tamaki S, et al : Angiotensin-converting enzyme insertion/deletion polymorphism modulates coronary release of tissue plasminogen activator in response to bradykinin. Hypertens Res 2004; 27: 39– 45.

    CAS  Article  Google Scholar 

  19. 19

    Doucette JW, Corl PD, Payne HM, et al : Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992; 85: 1899– 1911.

    CAS  Article  Google Scholar 

  20. 20

    Matsuo S, Matsumoto T, Takashima H, et al : The relationship between flow-mediated brachial artery vasodilation and coronary vasomotor responses to bradykinin: comparison with those to acetylcholine. J Cardiovasc Pharmacol 2004; 44: 164– 170.

    CAS  Article  Google Scholar 

  21. 21

    Desta B, Vanhoutte PM, Boulanger CM : Inhibition of the angiotensin converting enzyme by perindoprilat and release of nitric oxide. Am J Hypertens 1995; 8: 1S– 6S.

    CAS  Article  Google Scholar 

  22. 22

    Groves P, Kurz S, Just H, et al : Role of endogenous bradykinin in human coronary vasomotor control. Circulation 1995; 92: 3424– 3430.

    CAS  Article  Google Scholar 

  23. 23

    Hornig B, Kohler C, Drexler H, Drexler H : Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans. Circulation 1997; 95: 1115– 1118.

    CAS  Article  Google Scholar 

  24. 24

    Makimattila S, Liu ML, Vakkilainen J, et al : Impaired endothelium-dependent vasodilation in type 2 diabetes. Relation to LDL size, oxidized LDL, and antioxidants. Diabetes Care 1999; 22: 973– 981.

    CAS  Article  Google Scholar 

  25. 25

    Zeiher AM, Drexler H, Wollschlager H, Just H : Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991; 83: 391– 401.

    CAS  Article  Google Scholar 

  26. 26

    Furumoto T, Saito N, Dong J, Mikami T, Fujii S, Kitabatake A : Association of cardiovascular risk factors and endothelial dysfunction in Japanese hypertensive patients: implications for early atherosclerosis. Hypertens Res 2002; 25: 475– 480.

    Article  Google Scholar 

  27. 27

    Sobel BE, Woodcock-Mitchell J, Schneider DJ, Holt RE, Marutsuka K, Gold H : Increased plasminogen activator inhibitor type 1 in coronary artery atherectomy specimens from type 2 diabetic compared with nondiabetic patients: a potential factor predisposing to thrombosis and its persistence. Circulation 1998; 97: 2213– 2221.

    CAS  Article  Google Scholar 

  28. 28

    Meade TW, Ruddock V, Stirling Y, Chakrabarti R, Miller GJ : Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet 1993; 342: 1076– 1079.

    CAS  Article  Google Scholar 

  29. 29

    Thompson SG, Kienast J, Pyke SD, Haverkate F, van de Loo JC : Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med 1995; 332: 635– 641.

    CAS  Article  Google Scholar 

  30. 30

    Meigs JB, Mittleman MA, Nathan DM, et al : Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study. JAMA 2000; 283: 221– 228.

    CAS  Article  Google Scholar 

  31. 31

    Zeiher AM, Schachinger V, Minners J : Long-term cigarette smoking impairs endothelium-dependent coronary arterial vasodilator function. Circulation 1995; 92: 1094– 1100.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Tetsuya Matsumoto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tarutani, Y., Matsumoto, T., Takashima, H. et al. Brachial Artery Flow-Mediated Vasodilation Is Correlated with Coronary Vasomotor and Fibrinolytic Responses Induced by Bradykinin. Hypertens Res 28, 59–66 (2005).

Download citation


  • coronary
  • endothelial function
  • bradykinin
  • fibrinolytic activity

Further reading


Quick links