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Renoprotective Effect of Pravastatin in 
Salt-Loaded Dahl Salt-Sensitive Rats

Makiko KIDO, Katsuyuki ANDO, Shigeyoshi OBA, and Toshiro FUJITA

The pathophysiological features of nephrosclerosis may be analogous to those of atherosclerosis, which is

intimately related to lipid metabolism. Thus, we examined whether a lipid-lowering agent, pravastatin, would

ameliorate renal damage in hypertensive model animals. Salt-loaded Dahl salt-sensitive (S) rats were given

pravastatin (2 mg/ml in drinking water) for 5 weeks. Pravastatin decreased systolic blood pressure. Although

pravastatin did not influence the serum total, high-density, or low-density lipoprotein cholesterol, serum

triglycerides were decreased. Pravastatin decreased urinary protein excretion and ameliorated histopatho-

logical damage in salt-loaded Dahl S rats. Increased urinary excretion of 8-iso-prostagaldin F2�  and 8-

hydroxy-2
 

′
 

-deoxyguanosine and renal superoxide overproduction and decreased reduced glutathione in the

renal parenchyma were ameliorated with pravastatin in Dahl S rats fed a high salt diet. Therefore, pravastatin

inhibited the progression of renal injury in salt-loaded Dahl S rats, through its antioxidant as well as its

depressor effects. (
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Introduction

 

Low-density lipoprotein (LDL) and oxidized LDL choles-
terol, monocytes/macrophages infiltration, and overexpres-
sion of cytokines, growth factors, and adhesion molecules
have each been proposed to play significant roles in the
pathophysiology of both atherosclerosis and nephrosclerosis
(

 

1

 

). Indeed, lipid abnormality is commonly observed in vari-
ous renal diseases. For example, renal damage was shown to
be exacerbated with high cholesterol in an animal model of
chronic renal failure (

 

2

 

). Also, renal dysfunction has been
ameliorated with lipid-lowering agent 3-hydroxy-3-methyl
coenzyme A (HMG-CoA) reductase inhibitors in several ani-
mal models (

 

3

 

−

 

9

 

). In addition, pravastatin was shown to have
a renoprotective effect in patients with moderate renal insuf-
ficiency and cardiovascular disease in the Cholesterol and
Recurrent Events (CARE) trial (

 

10

 

), which also demonstrated

that pravastatin was effective for secondary prevention of car-
diovascular events (

 

11

 

). In animal studies (

 

3

 

−

 

9

 

), however, the
renoprotective effects of statins were not always associated
with amelioration of lipid metabolism. Thus, the protective
effect of statins on the kidneys may be attributable to mecha-
nism(s) other than their lipid-lowering action.

Recently, HMG-CoA reductase inhibitors have been postu-
lated to have pleiotropic effects, such as restoration of endo-
thelial function, stabilization of atherosclerotic plaques,
reduction of oxidative stress, anti-inflammatory actions, inhi-
bition of thrombosis, suppression of smooth muscle cell pro-
liferation, improvement of insulin sensitivity, and
enhancement of vasculogenesis (

 

12

 

). Previously, we reported
that an antioxidant retarded the progression of renal injury in
Dahl salt-sensitive (S) rats (

 

13

 

). Similarly, supplementation
with vitamins C and E blunted renal damage in experimental
renovascular disease (

 

14

 

). Indeed, oxidative stress has been
proposed to play an important role in the development of
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renal damage (

 

15

 

−

 

17

 

). Therefore, we hypothesized that
statins ameliorate the development of hypertensive renal
injury through their antioxidant effect. To clarify this view-
point, salt-loaded Dahl S rats were given pravastatin and their
renal function was examined. In addition, we measured the
parameters of oxidative stress to evaluate the role of reactive
oxygen species (ROS).

 

Methods

 

Animal Preparation

 

Four-week-old male Dahl S rats were purchased from SLC
(Shizuoka, Japan). The rats were fed either a high salt diet
containing 8% NaCl or a standard laboratory chow containing
0.66% NaCl (Oriental Yeast Co., Tokyo, Japan) for 5 weeks.
Some Dahl S rats on a high salt diet were given drinking
water containing 2 mg/ml of pravastatin. Food and water were
freely available throughout the study. The rats were housed in
a room maintained at a constant humidity (60

 

±

 

5%), tempera-
ture (23

 

±1°C), and light cycle (0700−1900 h).
Systolic blood pressure (BP) was measured by the tail-cuff

method (P-98A; Softron, Tokyo, Japan). Urine was collected
for 24 h at the last day of the treatment, and indomethacin (10
mg/ml) was added to the urine samples to inhibit degradation
of 8-iso-prostaglandin F2α (8-isoprostane). The rats were then
anesthetized with sodium pentobarbital (100 mg/kg intraperi-
toneally) and euthanized after blood samples were obtained
from the abdominal vein. The kidneys were excised for histo-
logical evaluation and measurement of reduced glutathione.
All animal procedures conformed to the guiding principles for
animal experimentation as enunciated by the Ethics Commit-
tees on Animal Research of the Faculty of Medicine, Univer-
sity of Tokyo, which complies with the guidelines of the
National Institute of Health (NIH).

Fig. 1. Changes in A: body weight and B: systolic blood pressure (BP). NS: normal salt diet; HS: high salt diet; HS+Pravasta-
tin: high salt diet plus pravastatin treatment. Values are expressed as the means±SEM for 5 animals in each group. *p<0.05 vs.
NS, †p<0.05 vs. HS.
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Fig. 2. Serum total (T-), high-density lipoprotein (HDL),
and low-density lipoprotein (LDL) cholesterol, triglycerides
(TG). Abbreviations: see legend in Fig. 1. *p<0.05 vs. HS.
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Analysis of Serum and Urine

Serum was used for the measurement of total, LDL, and high-
density lipoprotein (HDL) cholesterol and triglycerides
(enzymatic methods). Urinary protein was evaluated using
the Bradford method. Serum and urinary creatinine were
measured by Jaffe color reaction. Enzyme immunoassay pro-
cedures were used to measure 8-isoprostane following the
methods supplied in the kit provided by Assay Designees Inc.
(Ann Arbor, USA). Urinary 8-hydroxy-2′-deoxyguanosine
(8OHdG) was extracted, purified and measured using an
enzyme-linked immunosorbent assay kit (8OHdG Check;
Nikken Food Co., Shizuoka, Japan).

Measurement of ROS Production in the Kidneys

The superoxide (O2
-) production was measured by the lucige-

nin (bis-N-methylacridinium nitrate)-enhanced chemilumi-
nescence method as described previously (18, 19) with some
modifications. Briefly, for lucigenin chemiluminescence, the
kidney was excised and freed of surrounding tissues. The
whole kidney specimen was weighed, minced on dry ice, and
homogenized in lysis buffer (PBS containing: 1% NP40,
0.5% sodium deoxycholate, 0.1% SDS, 1 mmol/l PMSF, 10
U/ml aprotinin, and 10 mmol/l sodium orthovanadate), and
the mixture was centrifuged. The supernatant was aspirated
and kept on ice for free radical measurement. After 5 min of
dark adaptation, a kidney sample was placed in a scintillation
counter (LB9507; Berthold Technologies, Bad Wildbad, Ger-
many) and measured. Repeated measurements of the speci-
men were interpreted every 30 s, and the average value was
reported over a 5-min period. The final readings were
expressed as counts per min per 100 mg kidney weight.

Measurement of Renal Reduced Glutathione

To measure levels of total glutathione, 100 mg of whole kid-
ney tissues were mixed with 2 ml of cold 0.1 mol/l phosphate
buffer (pH 7.0) and homogenized for about 1 min. Then, 1 ml
of mixture was kept on ice for 10 min after adding 1 ml of 0.6
Eq/l HClO4−1 mmol/l EDTA. The sample was centrifuged
and the supernatant was kept frozen at -80°C until assayed.
Levels of total glutathione were measured by the enzymatic

cycling method using 5,5′-dithiobis(2-nitrobenzoic acid)
(DTNB) (20). To obtain the desired amount of the oxidized
form of glutathione (GSSG), whole kidney tissue was homog-
enized with 20 mmol/l N-ethylmaleimide (NEM)−0.1 mol/l
phosphate buffer (pH 7). The sample was kept on ice for 10
min, and then 0.6 Eq/l HClO4−1 mmol/l EDTA was added
and the mixture was centrifuged. Quantities of GSSG were
analyzed as stated above (20). Reduced glutathione was
gained from subtraction of GSSG from total glutathione and
the levels were expressed in μg/ml/100 mg of whole kidney
tissue.

Histological Evaluation of the Kidney

Kidneys were excised, fixed in PBS containing 4% paraform-
aldehyde for 4 to 6 h at room temperature, and then paraffin-
embedded. The sections of kidney specimens were stained
with hematoxylin and eosin and evaluated microscopically.
Histological evaluation was done blindly by one of the
authors (S.O.). The degree of tubular injury in terms of tubu-
lar dilation and cast formation was graded with an arbitrary
score of 0 to 3: grade 0, normal; grade 1, mild; grade 2, mod-
erate; grade 3, severe (21, 22) (there was no tubular epithelial
injury or debris accumulation).

Data Analysis

All values are expressed as the mean±SEM from at least 5
independently performed experiments. Data were analyzed
by a one-way ANOVA followed by the post hoc test. A value
of p<0.05 was considered significant.

Results

Body weight gain was not different among non-salt-loaded
Dahl S rats, salt-loaded rats without pravastatin, and salt-
loaded rats with pravastatin (Fig. 1A). The salt-induced rise in
systolic BP was significantly decreased with pravastatin (Fig.
1B). Pravastatin did not affect serum total, HDL, or LDL cho-
lesterol in salt-loaded rats, but decreased the serum triglycer-
ide level (Fig. 2).

Salt loading increased daily urinary protein in Dahl S rats
(Table 1). However, pravastatin decreased urinary protein

Table 1. Urinary Protein, Serum Creatinine, Urinary 8-Hydroxy-2′-Deoxyguanosine (8OHdG), and Urinary 8-iso-Prostaglan-
din F2�  (8-Isoprostane) of Dahl Salt-Sensitive Rats on Normal Salt Diet (NS), High Salt Diet (HS), and High Salt Diet plus Pra- 
vastatin Treatment (HS+Pravastatin)

 

Urinary protein 
(mg/day)

 Serum creatinin 
(mg/dl)

8-Isoprostane 
(ng/day)

 8OHdG 
(ng/day)

NS 2.85

 

±

 

0.14 0.27

 

±

 

0.005 4.46

 

±

 

0.41 255.7

 

±

 

23.0
HS 14.2

 

±

 

0.85* 0.21

 

±

 

0.007 13.5

 

±

 

0.51* 425.0

 

±

 

21.1*
HS+Pravastatin 3.59

 

±

 

0.35

 

†

 

0.21

 

±

 

0.015 10.4

 

±

 

0.39

 

† 365.8±5.35†

*p<0.05 vs. NS, †p<0.05 vs. HS.
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greatly. Salt loading caused tubular injury in Dahl S rats
(morphological severity: 2.5±0.19 vs. 0.2±0.2, p<0.01) (Fig.
3). However, pravastatin reversed renal damage in salt-loaded
Dahl S rats (1.4±0.69, p<0.05).

Urinary 8-isoprostane and 8OHdG were increased by salt
loading, but pravastatin partially inhibited them (Table 1).
Superoxide production from the kidney, as measured by

lucigenin chemiluminescence, was also increased by a high
salt diet in Dahl S rats, and this increase was reduced with
pravastatin (Fig. 4). On the other hand, renal reduced glu-
tathione was decreased with salt loading but normalized with
pravastatin (Fig. 5).

Discussion

In the present study, pravastatin treatment normalized urinary
protein excretion and tubulointerstitial injury in salt-loaded
Dahl S rats. The present data are consistent with the previous
findings; HMG-CoA reductase inhibitors including pravasta-
tin have been reported to ameliorate renal injury in several
model animals of renal impairment (3−9). In addition, prava-
statin suppressed renal ROS generation, which was demon-
strated by the data of urinary 8-isoprostane, 8OHdG, and
superoxide production measured by lucigenin chemilumines-

Fig. 3. Renal histological photographs stained with hema-
toxylin-eosin (×100). Abbreviations: see legend in Fig. 1.
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Fig. 4. Superoxide production from the whole kidney mea-
sured by lucigenin chemiluminescence. Abbreviations: see
legend in Fig. 1. *p<0.05 vs. NS, †p<0.05 vs. HS.

Fig. 5. Reduced glutathione in the renal parenchyma.
Abbreviations: see legend in Fig. 1. *p<0.05 vs. NS,
†p<0.05 vs. HS.
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cence. Thus, the present data suggest that an antioxidant
effect of pravastatin plays an important role in renoprotection,
because it has been demonstrated that antioxidant interven-
tion prevented renal injury (13, 14). In addition, pravastatin
decreased systolic BP in salt-loaded Dahl S rats and, there-
fore, its antihypertensive effect may also contribute to the
renoprotective effect of pravastatin. Because, in salt-loaded
Dahl S rats, serum lipid levels were not decreased with prava-
statin, except in the case of serum triglycerides, the lipid-ame-
liorating effect could play a minor role in its renoprotective
action.

Our data suggest an antioxidant effect of pravastatin. Renal
reduced glutathione, an ROS-eliminating substance, was also
normalized by pravastatin in the present study. This change in
renal reduced glutathione levels can be explained as a result
of the reduced ROS generation by pravastatin. Indeed, prava-
statin decreased plasma lipid peroxide in patients with hyper-
cholesterolemia (23), and treatment with pravastatin as well
as atorvastatin decreased NADPH oxidase activity in the right
atrial myocardium in patients undergoing elective cardiac
surgery for coronary artery bypass grafting (24). Because
hypercholesterolemia has been demonstrated to increase
endothelial ROS generation (25), the lipid-lowering effect of
pravastatin may contribute to its antioxidant effect. However,
the antioxidant effect of HMG-CoA reductase inhibitors has
been shown to be independent of the triglyceride-lowering
action (26) and, in Dahl S rats in the present study, LDL cho-
lesterol was low and unaffected by pravastatin. In vitro as
well as in vivo studies revealed that HMG-CoA reductase
inhibitors directly inhibited ROS generation by reducing pre-
nylation and translocation of rac1 (24, 27), and by reducing
the expression of NAD(P)H oxidase subunits and scavenging
free radical molecules (28). However, further experiments
will be needed to clarify the mechanism(s) of the antioxidant
effect of pravastatin.

Pravastatin almost completely suppressed a rise in systolic
BP in Dahl S rats with salt loading in the present study.
Decreased BP may also contribute to the amelioration of renal
damage in salt-loaded Dahl S rats, since BP control has been
shown to play a critical role in renoprotection (29). However,
BP reduction could not account for the entire renoprotective
effect of pravastatin, since a lower dose of pravastatin than
that used here was reported to decrease urinary protein and
ameliorate renal injury in salt-loaded Dahl S rats without BP
changes (5).

The depressor effect of pravastatin in the present study can-
not be due to its toxicity, because body weight gain was not
different between salt-loaded Dahl S rats with and those with-
out pravastatin treatment. In a study by Wilson et al., prava-
statin decreased mean BP in salt-loaded Dahl S rats when it
was started concomitantly with salt loading, but not when it
was started 2 weeks after the start of salt loading (5). Also,
pravastatin was shown to decrease BP in spontaneously
hypertensive rats (SHR) (9). The antihypertensive effect of
HMG-CoA reductase inhibitors may be due to an improve-

ment in endothelial function (30). Indeed, a higher dose of
statin was shown to promote endothelial NO synthase protein
expression (31). Moreover, statin inhibited the development
of nitric oxide (NO)-deficient hypertension (32). On the other
hand, an HMG-CoA reductase inhibitor was also reported to
greatly suppress an angiotensin II-induced increase in BP to
67%, possibly by blunting the pressor effect of angiotensin II
(33). Pravastatin-ameliorated insulin resistance (34) may also
lead to a depressor effect of pravastatin, as proposed for the
antihypertensive effect of fibrate (35). However, BP was not
normalized by pravastatin in the previous studies. The greater
reduction in BP in the present study may be due to the differ-
ence in the dose of pravastatin used: the dose was several
times greater in the present study compared with Wilson’s
study (5). In addition, they started pravastatin administration
at 8 weeks of age (5), while we started it at 4 weeks of age.
The delay in starting the salt loading results in a less extreme
rise in systolic BP and slower development of hypertension in
Dahl S rats (36). In contrast, earlier treatment with a high dose
of statin might cause a greater reduction in BP as in the
present study, because NO deficiency (37), activation of the
tissue renin-angiotensin system (38), and insulin resistance
(39) are pathophysiological characteristics in salt-induced
hypertension in Dahl S rats. However, further studies will be
needed to confirm this hypothesis.

The lipid-lowering effect of pravastatin may play a minor
role in renoprotection because pravastatin did not affect
serum total, HDL, or LDL cholesterol. Moreover, the lower
levels of triglycerides do not suggest a pathophysiological
role of lipid metabolism in the development of renal injury
with salt loading. It remains uncertain why pravastatin
decreased only the serum triglyceride levels in salt-loaded
Dahl S rats in the present study. In agreement with our data, a
previous study reported that pravastatin decreased serum tri-
glycerides but did not affect serum total or HDL cholesterol
in SHR (9). The same influence of lipid metabolism has been
reported in simvastatin (9) and cerivastatin (40). The different
effect of HMG-CoA reductase inhibitors in lipids might be
due to the relatively lower levels of serum total, HDL, and
LDL cholesterol and the relatively higher level of triglycer-
ides.

In conclusion, pravastatin prevented the development of
renal injury in salt-loaded Dahl S rats, in association with an
antioxidant effect in the kidney and BP reduction. Thus,
HMG-CoA reductase inhibitors may have a beneficial effect
on kidney function beyond their lipid-ameliorating action.
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