Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Angiotensin II Type 1 Receptor Antagonist and Angiotensin-Converting Enzyme Inhibitor Altered the Activation of Cu/Zn-Containing Superoxide Dismutase in the Heart of Stroke-Prone Spontaneously Hypertensive Rats

Abstract

Although angiotensin II type 1 (AT1) receptor antagonists and angiotensin-converting enzyme (ACE) inhibitors are known to reduce both reactive oxygen species (ROS) generated by activated NAD(P)H oxidase and vascular remodeling in hypertension, the effects of AT1 receptor antagonists or ACE inhibitors on ROS-scavenging enzymes remain unclear. We hypothesized that AT1 receptor antagonists or ACE inhibitors may modulate vascular remodeling via superoxide dismutase (SOD) in hypertension. Male stroke-prone spontaneously hypertensive rats (SHRSP) were treated for 6 weeks with a vehicle, an AT1 receptor antagonist (E4177; 30 mg/kg/day), or an ACE inhibitor (cilazapril; 10 mg/kg/day). We evaluated protein expression using immunoblots, determined SOD activities with a spectrophotometric assay, and measured NAD(P)H oxidase activity by a luminescence assay. The two drugs showed equipotent effects on blood pressure, left ventricular hypertrophy and fibrosis, and endothelial NO synthase in the SHRSP hearts. The wall-to-lumen ratio of the intramyocardial arteries and the NAD(P)H oxidase essential subunit p22phox and its activity were significantly reduced, whereas Cu/Zu-containing SOD (Cu/ZnSOD) expression and activity were significantly increased in the SHRSP hearts. Furthermore, E4177 reduced vascular remodeling more than did cilazapril not only by reducing p22phox expression and NAD(P)H oxidase activity but also by upregulating the Cu/ZnSOD expression and its activity in the SHRSP hearts. Thus, both the AT1 receptor antagonist and the ACE inhibitor inhibited vascular remodeling and reduced ROS in SHRSP via not only a reduction in NAD(P)H oxidase but also an upregulation of Cu/ZnSOD.

References

  1. 1

    Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M : Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000; 20: 2175– 2183.

    CAS  Article  Google Scholar 

  2. 2

    Cai H, Griendling KK, Harrison DG : The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 2003; 24: 471– 478.

    CAS  Article  Google Scholar 

  3. 3

    Dohi Y, Ohashi M, Sugiyama M, Takase H, Sato K, Ueda R : Candesartan reduces oxidative stress and inflammation in patients with essential hypertension. Hypertens Res 2003; 26: 691– 697.

    CAS  Article  Google Scholar 

  4. 4

    Carlsson LM, Marklund SL, Edlund T : The rat extracellular superoxide dismutase dimer is converted to a tetramer by the exchange of a single amino acid. Proc Natl Acad Sci USA 1996; 93: 5219– 5222.

    CAS  Article  Google Scholar 

  5. 5

    Fukai T, Folz RJ, Landmesser U, Harrison DG : Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 2002; 55: 239– 249.

    CAS  Article  Google Scholar 

  6. 6

    Chen X, Touyz RM, Park JB, Schiffrin EL : Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 2001; 38: 606– 611.

    CAS  Article  Google Scholar 

  7. 7

    Matsumoto K, Morishita R, Moriguchi A, et al : Prevention of renal damage by angiotensin II blockade, accompanied by increased renal hepatocyte growth factor in experimental hypertensive rats. Hypertension 1999; 34: 279– 284.

    CAS  Article  Google Scholar 

  8. 8

    Young AA, Legrice IJ, Young MA, Smaill BH : Extended confocal microscopy of myocardial laminae and collagen network. J Microsc 1998; 192: 139– 150.

    CAS  Article  Google Scholar 

  9. 9

    Baba HA, Iwai T, Bauer M, Irlbeck M, Schmid KW, Zimmer HG : Differential effects of angiotensin II receptor blockade on pressure-induced left ventricular hypertrophy and fibrosis in rats. J Mol Cell Cardiol 1999; 31: 445– 455.

    CAS  Article  Google Scholar 

  10. 10

    Fujii K, Umemoto S, Fujii A, Yonezawa T, Sakumura T, Matsuzaki M : Angiotensin II type 1 receptor antagonist downregulates nonmuscle myosin heavy chains in spontaneously hypertensive rat aorta. Hypertension 1999; 33: 975– 980.

    CAS  Article  Google Scholar 

  11. 11

    Hermann M, Camici G, Fratton A, et al : Differential effects of selective cyclooxygenase-2 inhibitors on endothelial function in salt-induced hypertension. Circulation 2003; 108: 2308– 2311.

    CAS  Article  Google Scholar 

  12. 12

    Kikugawa K, Kojima T, Yamaki S, Kosugi H : Interpretation of the thiobarbituric acid reactivity of rat liver and brain homogenates in the presence of ferric ion and ethylenediaminetetraacetic acid. Anal Biochem 1992; 202: 249– 255.

    CAS  Article  Google Scholar 

  13. 13

    Nebot C, Moutet M, Huet P, Xu JZ, Yadan JC, Chaudiere J : Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal Biochem 1993; 214: 442– 451.

    CAS  Article  Google Scholar 

  14. 14

    Miller FJ Jr, Griendling KK : Functional evaluation of nonphagocytic NAD(P)H oxidases. Methods Enzymol 2002; 353: 220– 233.

    CAS  Article  Google Scholar 

  15. 15

    Otsuka S, Sugano M, Makino N, Sawada S, Hata T, Niho Y : Interaction of mRNAs for angiotensin II type 1 and type 2 receptors to vascular remodeling in spontaneously hypertensive rats. Hypertension 1998; 32: 467– 472.

    CAS  Article  Google Scholar 

  16. 16

    Goto M, Mukoyama M, Sugawara A, et al : Expression and role of angiotensin II type 2 receptor in the kidney and mesangial cells of spontaneously hypertensive rats. Hypertens Res 2002; 25: 125– 133.

    CAS  Article  Google Scholar 

  17. 17

    Schiffrin EL : The many targets of aldosterone. Hypertension 2004; 43: 938– 940.

    CAS  Article  Google Scholar 

  18. 18

    Braun S, Losel R, Wehling M, Boldyreff B : Aldosterone rapidly activates Src kinase in M-1 cells involving the mineralocorticoid receptor and HSP84. FEBS Lett 2004; 570: 69– 72.

    CAS  Article  Google Scholar 

  19. 19

    Takeda Y, Miyamori I, Yoneda T, Iki K, Hatakeyama H, Takeda R : Gene expression of 11 beta-hydroxysteroid dehydrogenase in the mesenteric arteries of genetically hypertensive rats. Hypertension 1994; 23: 577– 580.

    CAS  Article  Google Scholar 

  20. 20

    Sato A, Suzuki Y, Shibata H, Saruta T : Plasma aldosterone concentrations are not related to the degree of angiotensin-converting enzyme inhibition in essential hypertensive patients. Hypertens Res 2000; 23: 25– 31.

    CAS  Article  Google Scholar 

  21. 21

    Cohn JN, Anand IS, Latini R, Masson S, Chiang YT, Glazer R : Sustained reduction of aldosterone in response to the angiotensin receptor blocker valsartan in patients with chronic heart failure: results from the Valsartan Heart Failure Trial. Circulation 2003; 108: 1306– 1309.

    CAS  Article  Google Scholar 

  22. 22

    Park JB, Touyz RM, Chen X, Schiffrin EL : Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens 2002; 15: 78– 84.

    CAS  Article  Google Scholar 

  23. 23

    Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M : Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 1991; 88: 10045– 10048.

    CAS  Article  Google Scholar 

  24. 24

    Hornig B, Landmesser U, Kohler C, et al : Comparative effect of ACE inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation 2001; 103: 799– 805.

    CAS  Article  Google Scholar 

  25. 25

    Brahmajothi MV, Campbell DL : Heterogeneous basal expression of nitric oxide synthase and superoxide dismutase isoforms in mammalian heart: implications for mechanisms governing indirect and direct nitric oxide-related effects. Circ Res 1999; 85: 575– 587.

    CAS  Article  Google Scholar 

  26. 26

    Didion SP, Ryan MJ, Didion LA, Fegan PE, Sigmund CD, Faraci FM : Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ Res 2002; 91: 938– 944.

    CAS  Article  Google Scholar 

  27. 27

    Chaudiere J, Ferrari-Iliou R : Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 1999; 37: 949– 962.

    CAS  Article  Google Scholar 

  28. 28

    Chang MS, Yoo HY, Rho HM : Transcriptional regulation and environmental induction of gene encoding copper- and zinc-containing superoxide dismutase. Methods Enzymol 2002; 349: 293– 305.

    CAS  Article  Google Scholar 

  29. 29

    Schupp M, Janke J, Clasen R, Unger T, Kintscher U : Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation 2004; 109: 2054– 2057.

    CAS  Article  Google Scholar 

  30. 30

    Zalba G, San Jose G, Moreno MU, et al : Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension 2001; 38: 1395– 1399.

    CAS  Article  Google Scholar 

  31. 31

    Csonka C, Pataki T, Kovacs P, et al : Effects of oxidative stress on the expression of antioxidative defense enzymes in spontaneously hypertensive rat hearts. Free Radic Biol Med 2000; 29: 612– 619.

    CAS  Article  Google Scholar 

  32. 32

    Marklund SL : Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem J 1984; 222: 649– 655.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masunori Matsuzaki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tanaka, M., Umemoto, S., Kawahara, S. et al. Angiotensin II Type 1 Receptor Antagonist and Angiotensin-Converting Enzyme Inhibitor Altered the Activation of Cu/Zn-Containing Superoxide Dismutase in the Heart of Stroke-Prone Spontaneously Hypertensive Rats. Hypertens Res 28, 67–77 (2005). https://doi.org/10.1291/hypres.28.67

Download citation

Keywords

  • superoxide dismutase
  • angiotensin
  • vascular remodeling
  • stroke-prone spontaneously hypertensive rats
  • oxidative stress

Search

Quick links