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Construction of citrus gene coexpression networks from

microarray data using random matrix theory
Dongliang Du1, Nidhi Rawat2, Zhanao Deng2 and Fred G. Gmitter Jr.1

After the sequencing of citrus genomes, gene function annotation is becoming a new challenge. Gene coexpression analysis can
be employed for function annotation using publicly available microarray data sets. In this study, 230 sweet orange (Citrus
sinensis) microarrays were used to construct seven coexpression networks, including one condition-independent and six
condition-dependent (Citrus canker, Huanglongbing, leaves, flavedo, albedo, and flesh) networks. In total, these networks contain
37 633 edges among 6256 nodes (genes), which accounts for 52.11% measurable genes of the citrus microarray. Then, these
networks were partitioned into functional modules using the Markov Cluster Algorithm. Significantly enriched Gene Ontology
biological process terms and KEGG pathway terms were detected for 343 and 60 modules, respectively. Finally, independent
verification of these networks was performed using another expression data of 371 genes. This study provides new targets for
further functional analyses in citrus.
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INTRODUCTION
Gene coexpression network analysis is an attractive method for
gene function annotation, which has been used in many model
organisms, including yeast, mouse, human, Arabidopsis, and grape-
vine1–5. In the gene coexpression network, nodes represent genes
and edges represent significant correlations between the express-
ion patterns of connected genes6. After network construction,
highly connected genes are clustered into modules. Genes within
one module tend to participate in similar biological processes.
Therefore, the function of unannotated genes could be hypothe-
sized based on ‘‘guilt-by-association’’ principle7.

After the sequencing of citrus genomes8, gene function annota-
tion is becoming a new challenge. For citrus, large amounts of data
from microarray and RNA-seq experiments are available in public
databases9–13. These data make it possible to construct gene coex-
pression networks for citrus. Several papers on citrus gene coex-
pression networks have been published14–17. Most of these studies
focused on specific areas and used small data sets. Only one study
used 297 citrus microarrays, and covered the general area and
several specific areas17. However, a limitation of this study was that
probe sets were used to construct gene coexpression networks, not
the genes, which were used in many coexpression studies18–20.
There are also some protein–protein interaction (PPI) networks,
but these networks were inferred based on PPI networks of
Arabidopsis21–23.

In this study, we first made a customized Chip Definition File
(CDF) by AffyProbeMiner to transfer probes to gene locus. Then,
seven gene coexpression networks were constructed by
RMTGeneNet using all or part of 230 citrus microarrays. These net-
works were partitioned into modules, and the functional coherence
of modules was assessed by Gene Ontology (GO) and KEGG path-
way enrichment analyses. Finally, RNA-seq data of 371 genes were
used to test the validity of these networks.

MATERIALS AND METHODS

Data collection and preprocessing
The sweet orange (Citrus sinensis) microarray data used in this study were
downloaded from National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO)24. A total of 231 CEL files were obtained
from the platform GPL5731. The raw CEL data were preprocessed with RMA
normalization using affy package of R 3.1.025. One sample (GSM825502)
that failed more than one test of arrayQualityMetrics26 was removed and a
total of 230 samples remained for network construction (Table S1). Based
on hierarchical cluster analysis, these 230 microarrays (called ‘‘all data’’)
were classified into ‘‘citrus canker’’ (30 arrays) and ‘‘HLB’’ (36 arrays), or
‘‘leaves’’ (63 arrays), ‘‘flavedo’’ (40 arrays), ‘‘albedo’’ (31 arrays), and ‘‘flesh’’
(43 arrays). These sub-data sets were also used for networks construction.
To map the microarray probes to citrus genes, a customized CDF was
generated by AffyProbeMiner27 using C. x clementina v1.0 annotation as
the reference8. Probes mapping to multiple citrus loci and probe sets
containing less than five members were discarded. Data about the
NICCE networks were downloaded from http://citrus.adelaide.edu.au/
nicce/home.aspx.

Coexpression network construction and topological analysis
The coexpression networks were constructed using the RMTGeneNet pack-
age28. A minimum of 25 input microarrays is required for this application.
First, a gene expression correlation matrix was constructed using pair-wise
Pearson correlation coefficients (PCC). Then, a threshold was determined
according to the transition of nearest neighbor spacing distribution from
the Gaussian distribution to Poisson distribution (p 5 0.001). Coexpression
networks were visualized using the Cytoscape 2.8.329, and all topological
analyses were performed using the NetworkAnalyzer package30 for
Cytoscape 2.8.3.

Module clustering and functional enrichment analysis
The Markov Cluster (MCL) Algorithm31, an efficient graph clustering algo-
rithm based on the simulation of random walk, was used to partition the
network into modules. The inflation parameter (I) was scanned from 1.2 to
5.0 with increments of 0.2. Area fraction, mass fraction, and efficiency were
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used to determine the inflation parameter for MCL. The GO terms and
Arabidopsis homologs for C. x clementina genes were downloaded from
Phytozome v1032. The KEGG annotations of Arabidopsis genes were obtained
through KEGGREST of Bioconductor33. GO biological process term enrich-
ment analysis was carried out using topGO package of Bioconductor33.
KEGG pathway enrichment was performed in R 3.1.0. Terms enriched with
a Fisher’s test p-value ,0.05 were considered.

Genome synteny analysis and network validation
To use the RNA-seq data of the C. sinensis annotation project (CAP)34,
synteny analysis between C. sinensis genome and C. x clementina gen-
ome was conducted locally using the similar method developed for the
Plant Genome Duplication Database35,36. First, BLASTP37 was conducted
using all C. sinensis proteins to search for potential anchors (E , 1e210,
top 5 matches) in the C. x clementina genome. Afterwards, MCscan was
employed to identify homologous regions38. Finally, syntenic blocks
were evaluated by ColinearScan39. Alignments with an E value , 1e210
were considered as significant matches. The expression data of 371 C.
sinensis genes were downloaded from CAP and the correlation coeffi-
cients between them were calculated using R 3.1.0.

RESULTS

Network construction
As shown in Figure 1, 231 Affymetrix citrus microarrays were down-
loaded from the NCBI GEO. After quality check, 230 high-quality
microarrays (Table S1) were chosen for downstream analyses.
Based on the hierarchical cluster analysis (Figure S1), these micro-
arrays were first distributed into seven organ groups: flower, stem,
leaves, fruit, seed, roots, and epicotyls. In the fruit group, they were
further divided into flavedo, albedo, flesh, and vascular core (also
called central core) subgroup. The data from albedo and vascular
core were first clustered together and then clustered with data from
other parts of fruit. This is reasonable considering that albedo and
vascular core are composed of a colorless, spongy network of
parenchymatous cells. These data sets were combined into one
group, and labeled ‘‘albedo’’, because neither was large enough
for RMTGeneNet analysis. Five groups (flower, stem, seed, roots,
and epicotyls), which had fewer microarrays than the minimum
requirement of RMTGeneNet (Table 1), were not included for con-
dition-dependent coexpression analysis. Within groups, microar-
rays of the same treatment were clustered together. Two major

diseases of citrus40, citrus canker and HLB, constituted 38.3% of
the experiments (citrus canker: 30, HLB: 58), or 81.5% of the experi-
ments if controls were not included. Other treatments were not
included for network construction because of insufficient numbers
of microarrays. For citrus canker, all microarrays are included in the
leaves group. However, HLB data covered five groups (stem, leaves,
fruit, seed, and roots). Only 36 microarrays in the fruit group were
used for constructing ‘‘HLB’’ coexpression network. Therefore, these
230 microarrays (called ‘‘all data’’) were divided into sub-data sets of
‘‘citrus canker’’, ‘‘HLB’’, ‘‘leaves’’, ‘‘flavedo’’, ‘‘albedo’’, and ‘‘flesh’’
based on their experimental conditions or organ types. Data from
these seven groups were analyzed individually to construct coex-
pression networks.

The Affymetrix citrus microarray contains 30 217 probe sets and
341 730 probes. In order to map the probes to citrus gene loci, a
customized CDF was generated by AffyProbeMiner27 using C. x
clementina v1.0 annotation as the reference8. After removing
ambiguous probes mapping to multiple gene loci and probe sets
with less than 5 probes, 158 557 probes belonging to 12 005 gene
loci were kept in the customized CDF. Therefore, the expression of
48.9% citrus genes (12 005/24 533) can be tested accurately using
the Affymetrix citrus microarray. According to the study of NICCE
network, 47.6% (14 020/29 445) C. sinensis genes can be tested by
this citrus microarray17. Similar results were also found in maize that
only 56.5% genes could be detected by maize microarrays41.

The coexpression networks were constructed using the
RMTGeneNet28, which first calculated pair-wise Pearson Corre-
lation Coefficients (PCC) for all genes and then identified a thresh-
old for cutting PCC values using Random Matrix Theory. The PCC
thresholds for these coexpression networks are shown in Table 2,
ranging from 0.882 for ‘‘all data’’ to 0.968 for ‘‘HLB’’. At these rela-
tively stringent thresholds, only the top 0.24% to 1.06% of all pos-
sible edges was retained. The nodes of these networks range from
1137 to 2263, accounting for 9.47%–18.85% measurable genes of
the citrus microarray.

Network topology
Figure 2 displays the coexpression network of ‘‘all data’’ using
Cytoscape 2.8.329. Although these networks have different numbers
of nodes and edges, they have similar topological characteristics
(Table 2). All these networks are composed of a major component
and other small components. All nodes within one component are
directly or indirectly connected. Nodes in the major components
account for 62.56% to 82.28% of that in corresponding networks.
The average path length of these networks ranges from 6.66 to
10.75, implying the small-world properties. The nodes degree of
these networks fits to a power law distribution with the degree
exponent (r) ranging from 1.13 to 2.10, indicating that these net-
works are scale free. These networks demonstrate modular and
hierarchical characteristics with the average clustering coefficient
ranging from 0.20 to 0.40, which is more than 36 times higher than
that of same size random networks (data not shown). Table S2
provides a list of all edges in these networks. Taken together, these
seven networks contain 37 633 edges among 6256 nodes (genes,
Table S3), which account for 52.11% measurable genes of the
microarray or 25.50% total genes in C. x clementina v1.0 genome.
Table 3 shows the intersections between nodes and edges of these

Figure 1. Work flow used for networks construction and clustering in
the present study.

Table 1. Composition of the 230 microarrays according to the experiment conditions and organs.

Epicotyls Root Stem Leaves Flower Peel Flavedo Albedo Vascular core Flesh Seed Total

Citrus canker 0 0 0 30 0 0 0 0 0 0 0 30

Huanglongbing 0 3 3 12 0 0 12 0 12 12 4 58

Other treatments 12 0 0 2 0 0 6 0 0 0 0 20

Control 0 3 3 19 9 12 22 12 7 31 4 122

Total 12 6 6 63 9 12 40 12 19 43 8 230

Citrus gene coexpression networks
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networks. Generally, the intersections among them are relatively
low. In total, 3304 nodes (52.81%) and 34 860 edges (92.63%) were
found only in one network. The intersection among ‘‘leaves’’, ‘‘all
data’’, and ‘‘citrus canker’’ network is relatively higher than that
between other networks.

Network clustering and functional enrichment
MCL algorithm was used to identify sets of nodes (i.e. coexpression
module) that are more densely connected with each other than with
the remaining nodes of the network4. The inflation parameter (I), the
most important parameter of MCL, was chosen according to area
fraction, mass fraction, and efficiency. In the present study, more than
80% of the entire edge masses could be captured only using less than
3% of the network area (Table 4). A total of 2338 modules were
detected in these seven networks (Table S4), with 525 of them contain-
ing five or more nodes. The size of biggest modules in these networks
ranges from 47 to 200. Functional enrichment analyses of these 525
modules were performed using terms from the GO biological process
and KEGG pathway (Tables S5 and S6). Only terms enriched within a
module with a Fisher’s p-value of 0.05 or less were considered. Only
343 modules in these networks had some degree of GO enrichment.
Some GO terms were commonly enriched in these networks, such as
gene expression (GO: 0010467), translation (GO: 0006412), and pho-
tosynthesis (GO: 0015979). However, the gene numbers associated
with these common GO terms varied among networks. For example,
33 and 28 genes were associated with photosynthesis (GO: 0015979)
in the ‘‘all data’’ and ‘‘leaves’’ network, respectively. However, zero and
five genes were related to photosynthesis in the ‘‘albedo’’ and ‘‘flesh’’
network, respectively. A total of 132 GO terms (28.5%) were enriched
exclusively in one network, such as polysaccharide catabolic process
(GO: 0000272) and trehalose metabolic process (GO: 0005991) in
‘‘citrus canker’’ network.

Because a small portion of all nodes (25.15%, 1574/6256) was
annotated with KEGG orthology identifiers in the C. x clementina
annotation file, their homologs in Arabidopsis were used for KEGG
enrichment. A total of 60 modules were detected with significantly
enriched KEGG pathways, and 36 KEGG pathways were enriched in
at least one module. Some pathways were commonly enriched in
these networks, such as Ribosome (ath03010), and photosynthesis
(ath00195). A clear correspondence was observed between GO and
KEGG enrichment analyses.

Predominant function of selected modules
Four modules were presented below to illustrate the correspond-
ence of these modules with defined biological functions and meth-

Table 2. Topological characteristics of seven coexpression networks

Arrays RT Nodes Edges AD ND NCC NBC EBC APL DE CC

All data 230 0.882 1391 10 220 14.69 0.011 104 1046 9878 7.62 1.13 0.40

HLB 36 0.968 1400 5036 7.19 0.005 91 1040 4379 6.76 1.58 0.29

Citrus canker 30 0.938 1841 5565 6.05 0.003 211 1265 5174 8.79 1.50 0.23

Leaves 63 0.911 2263 11 535 10.19 0.005 158 1862 11 247 10.75 1.47 0.33

Flavedo 40 0.964 1425 2467 3.46 0.002 123 1133 2289 9.63 2.10 0.20

Albedo 31 0.947 1592 3725 4.68 0.003 162 996 2644 6.66 1.80 0.20

Flesh 43 0.948 1137 2431 4.28 0.004 90 911 2290 7.59 1.86 0.20

Total 6256 37 633

RT, RMT threshold; AD, average degree; ND, network density; NCC, number of connected components; NBC, nodes of biggest components; EBC, edges of biggest components;

APL, average path length; DE, degree exponent; CC, clustering coefficient.

Figure 2. Layout of the citrus ‘‘all data’’ coexpression network. The
most overrepresented GO terms were shown for the 12 largest
color-coded modules.

Table 3. Intersection between edges/nodes (upper/lower triangular) of networks

All data HLB Citrus canker Leaves Flavedo Albedo Flesh

All data 206 (1.35%) 574 (3.64%) 1305 (6%) 158 (1.25%) 45 (0.32%) 28 (0.22%)

HLB 334 (11.97%) 26 (0.25%) 29 (0.18%) 14 (0.19%) 28 (0.32%) 15 (0.2%)

Citrus canker 482 (14.91%) 308 (9.5%) 1271 (7.43%) 15 (0.19%) 10 (0.11%) 3 (0.04%)

Leaves 665 (18.2%) 274 (7.48%) 925 (22.54%) 59 (0.42%) 21 (0.14%) 9 (0.06%)

Flavedo 278 (9.87%) 257 (9.1%) 276 (8.45%) 361 (9.79%) 70 (1.13%) 32 (0.65%)

Albedo 262 (8.78%) 267 (8.92%) 269 (7.84%) 317 (8.22%) 565 (18.73%) 40 (0.65%)

Flesh 144 (5.7%) 238 (9.38%) 178 (5.98%) 217 (6.38%) 410 (16%) 382 (14%)
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ods that can be used to explore functional modules from these
gene coexpression networks.

(1) Citrus lateral organ boundaries 1 in ‘‘citrus canker‘‘ network
The guide-gene approach is commonly used to explore functional
modules from gene coexpression networks. A lateral organ bound-
aries 1 (CsLOB1) gene has recently been identified as a citrus canker
disease susceptibility gene in sweet orange42. The precise function of
CsLOB1 is still not clear. Using its homolog in C. x clementina
(Ciclev10033956m) as a guide, 25 coexpressed genes were identified
in module 1 of the ‘‘citrus canker’’ network (Figure 3). Six of them
were involved in cell wall metabolism: Ciclev10005888m (plant pectin
methylesterase inhibitor superfamily protein), Ciclev10016123m
(xyloglucan endotransglucosylase/hydrolase 5), Ciclev10021623m
(expansin B2), Ciclev10007670m (proline-rich extensin-like receptor

kinase), Ciclev10014994m (glycosyl hydrolase), and Ciclev10019941m
(pectin lyase-like superfamily protein). Similar results were reported
in the NICCE networks17. Interestingly, three minichromosome main-
tenance family genes (Ciclev10007588m, Ciclev10027769m, and
Ciclev10019324m) were coexpressed with Ciclev10033956m, implying
the functions of LOB1 in DNA replication. Another candidate target of
TAL effectors, CsSWEET1 (Ciclev10002276m)42, was also included in
module 1 of the ‘‘citrus canker’’ network. It encodes a sugar trans-
porter for pathogen nutrition and is linked to Ciclev10033956m
through three nodes (the shortest path).

(2) Module 25 in ‘‘citrus canker network’’ (canker-module 25): plant
hormone signal transduction
Canker-module 25 was selected based on functional enrichment
analyses. It has 10 nodes, 14 edges and a density of 0.311 (Figure 4).

Table 4. Network clustering and functional enrichment of modules

Inflation Efficiency Mass fraction (%) Area fraction (%) Modules M5 SBM GO KEGG

All data 2 0.52 83.63 2.85 285 55 200 39 7

HLB 1.8 0.45 80.93 1.38 267 72 90 47 9

Citrus canker 1.8 0.56 85.90 0.81 447 88 103 58 9

Leaves 1.8 0.46 82.00 1.40 432 87 144 57 17

Flavedo 1.6 0.48 86.92 0.75 287 86 47 58 12

Albedo 1.8 0.54 83.03 0.84 402 73 102 37 3

Flesh 1.6 0.44 84.90 1.67 218 64 108 47 3

Total 2338 525 343 60

M5, number of modules containing more than five nodes; SBM, size of biggest module; GO, KEGG: number of modules with significantly enriched GO biological process terms,

KEGG pathways.

Figure 3. Graph showing coexpressed genes of the C. clementina homolog of citrus LOB1 (Ciclev10033956m) and SWEET1 (Ciclev10002276m) in
canker-module 1.
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The highest ranked (lowest p value) GO term of this module was
response to oxidative stress (GO: 0006979, p 5 0.05). The highest
ranked KEGG pathway of this module was plant hormone signal
transduction (ath04075, p 5 0.00024). Increased ethylene produc-
tion was reported in citrus leaves inoculated with Xanthomonas
campestris pv. citri (Hasse) Dye (Xc), a strain of bacteria that causes
citrus canker43. However, the ethylene signal transduction pathway
is not clear in citrus. Three nodes in this module, Ciclev10019132m
(ERS1, ethylene response sensor 1), Ciclev10021170m (MAP kinase
kinase) and Ciclev10005820m (ERF1, ethylene response factor 1),
may be involved in the ethylene signal transduction. The hub gene
of this module is Ciclev10019132m (ERS1). In Arabidopsis, ethylene
signal is first perceived by endoplasmic reticulum localized recep-
tor (including ERS1) and then transduced to ERF and downstream
targets through MAPK cascades44,45. A jasmonic acid-amido
synthetase gene (Ciclev10019459m) and a protein phosphatase
2C gene (Ciclev10004981m) were also included in this module,
implying the cross-talk among ethylene, JA and ABA signaling
pathways. Other genes may also be involved in plant hormone
signal transduction, such as Ciclev10024032m (cysteine-rich recep-
tor-like protein kinase) and Ciclev10001726m (peroxidase gene).
Therefore, canker-module 25 is likely to carry on the functions of
plant hormone signal transduction. Unannotated genes in this
module would be hypothesized to be related to plant hormone
signal transduction.

(3) Module 19 in ‘‘flesh’’ network (flesh-module 19): fruit ripening
Flesh-module 19 was also selected based on functional enrichment
analyses. It has 11 nodes, 11 edges, and a density of 0.2 (Figure 5).
The highest ranked KEGG pathway of this module was the citrate
cycle (TCA cycle) (ath00020, p 5 0.00026). The citrate cycle is the
major pathway for the synthesis of citric acid, the most abundant
organic acid in citrus46. At least three nodes of this module were
related to the citrate cycle: Ciclev10008189m (dihydrolipoamide
succinyltransferase gene), Ciclev10025308m (dihydrolipoamide
acetyltransferase gene), and Ciclev10013692m (acyl-activating
enzyme 5 gene). Two nodes were involved in the biosynthesis of
the polyphenol compounds: Ciclev10019346m (UDP-glycosyltrans-
ferase gene) and Ciclev10011175m (phenylalanine ammonia lyase
gene). One node, Ciclev10028195m (glucose-1-phosphate adenylyl-
transferase gene) was involved in glycogen biosynthesis. All these
nodes were linked by Ciclev10006509m, which encodes a subunit of
a RUB (Related to Ubiquitin)-activating enzyme. The proteins
encoded by these genes may be subject to similar post-trans-
lational modifications.

(4) Module 6 in ‘‘HLB’’ network (HLB-module 6): programmed cell
death
HLB-module 6 has 28 nodes, 75 edges, and a density of 0.198
(Figure 6). This module was selected because 13 of these 28 genes
(46.43%) were only included in ‘‘HLB’’ network. Seventeen genes
were assigned to specific GO terms. The highest ranked GO term of
this module was programmed cell death (PCD, GO: 0012501, p 5
0.005). PCD is widely observed in plants in response to pathogenic
infection. At least eight genes in this module were related to PCD.
Bcl-2-associated athanogene gene (Ciclev10018596m) plays a crit-
ical role in PCD47. It can suppress PCD via its interaction with Hsc70
and Hsp40 (Ciclev10000372m)48. However, the up-regulation of
genes involved in the ubiquitin-proteasome system can activate
PCD49. Ciclev10008240m (polyubiquitin 10) and Ciclev10005221m
(RING finger E3 ubiquitin ligases) are parts of the ubiquitin-protea-
some system. Other genes related to PCD include: Ciclev10005800m
(myosin heavy chain-related), Ciclev10032432m (sphingoid base
hydroxylase), Ciclev10021281m (LAG1 longevity assurance homo-
log 3), and Ciclev10032631m (Glutaredoxin family protein). Their
functions in HLB still need to be determined.

Comparison with NICCE network
When this manuscript was being prepared, a citrus gene coexpres-
sion network (called ‘‘NICCE network’’ in this study) based on pub-
licly available microarray data sets was reported17. There are several
differences between the NICCE networks and networks in this
study.

First, probe sets, rather than genes, were used to construct the
NICCE networks. In the 30 217 nodes of the NICCE networks, 5960
(19.7%) nodes were not mapped to any citrus transcripts; 9336
(30.9%) nodes belonged to the ‘‘one probe set per transcript’’
group. 5775 transcripts (38.2%) were represented by the remain-
ing 14 921 (49.4%) probe sets (Table S7). Therefore, 5.9% of the
edges of NICCE networks were between probe sets of the same
transcript/gene. Probe sets representing the same transcript
were expected to have similar expression levels and appear in
the same cluster of one network. However, this is not the case in
the NICCE networks. One example (Cs1g07330.1) was shown in
Table S8.

Second, when constructing the NICCE networks, PCC values
between probe sets were transformed into highest reciprocal ranks
(HRR), and the top 100 HRR for a given probe set was considered.
This leads to most PCC values between nodes of NICCE networks
being very low. Cs5g33560 was given as an example in the website
of NICCE (http://citrus.adelaide.edu.au/nicce/home.aspx). However,
the PCC values between Cs5g33560 and its coexpressed genes in
condition-independent network range from 0.68 to 0.39. More
attention should be paid to assess gene pairs with low PCC values.

Third, only sweet orange microarrays were used in this study, and
they were classified into six condition-dependent data sets: citrusFigure 4. Genes and edges in canker-module 25.

Figure 5. Genes and edges in flesh-module 19.
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canker, HLB, leaves, flavedo, albedo, and flesh. In the NICCE net-
works, 297 microarrays from different species of citrus (including
mandarin, sweet orange, lemon, and pummelo) were used, and
they were classified into four condition-dependent data sets: sweet
orange, fruit, leaf, and stress17.

In order to compare our networks with the NICCE networks, C. x
clementina gene IDs from our networks were transformed to
C. sinensis gene IDs. C. sinensis orthologs were not identified for
1504 C. x clementina genes in our networks. Therefore, only 26
191 edges in our networks were used in the comparison with the
NICCE networks, whose nodes were also transformed to C. sinensis
gene IDs. Only 3868 edges were found in common between the two
networks. About 85% of edges in our networks were not included in
the NICCE networks. This may be due to different classification
methods for microarray data sets. Most edges (72.84%) in our net-
works were exclusively found in condition-dependent networks.

Validation of coexpression networks using RNA-seq data
To confirm the coexpression networks in this study, 500 edges
among 371 genes were randomly selected from the ‘‘all data’’ net-
work. The expression of these genes was examined using another
gene expression data set (Table S9) in CAP34. The correlation coeffi-
cients (r) between them were computed. The distribution of these
correlation coefficients was highly skewed, as shown in Figure 7.
For 353 edges (70.6%), r values were higher than the PCC thresholds
that were used to construct the ‘‘all data’’ networks (0.882). R values
of 385 edges (77.0%) were higher than 0.8. These results suggest
that the coexpression networks in this study are reliable.

DISCUSSION
In this study, 230 citrus microarrays from a diverse collection of
experiments were used to construct seven coexpression networks.
The nodes of these networks range from 1137 to 2263, accounting
for 9.47%–18.85% measurable genes of the citrus microarray. This is
consistent with Ficklin’s work on rice20, which also employed the
RMT method to select a threshold for rice coexpression network.
10% of the measurable genes on rice microarray were included in

their network. The percentage is relatively low compared with other
studies using empirical thresholds. For example, in the Arabidopsis
coexpression network, the PCC cutoff value was set to 0.75 and 38%
measurable genes were retained4. RMT method was taken from the
field of particle physics and had been used to construct gene coex-
pression networks for Escherichia coli, yeast, human, Arabidopsis,
rice, and maize20,28,50,51. It has been demonstrated to be a reliable
method for generating networks across a wide range of data sets50.
It should be mentioned that after combining the seven coexpres-
sion networks, the nodes captured in our study reached 52.11% of
the measurable genes of the microarray.

Both condition-independent and condition-dependent analyses
were employed to ensure that coexpressed genes in special condi-

Figure 6. Genes and edges in HLB-module 6.

Figure 7. Distribution of absolute value of correlation coefficients.
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tions were not lost. 77.77% nodes and 72.84% edges in our net-
works were exclusively found in condition-dependent networks.
Function analysis of modules yielded similar results. 66.31%
enriched GO terms were identified only in condition-dependent
networks, such as programmed cell death in ‘‘citrus canker’’,
‘‘HLB’’, and ‘‘albedo’’ network. Condition-independent analysis
was considered to be suitable for identifying globally coexpressed
genes7, such as genes in photosynthesis, ribosome and DNA meta-
bolism. In this study, we found that condition-independent analysis
was not sufficient to identify all the genes in these pathways. For
example, 159 ribosome genes could be measured in the citrus
microarray (Table S10). Thirty-seven ribosome genes were included
in the condition-independent network (‘‘all data’’). This number is
much smaller compared with 147 ribosome genes in ‘‘leaves’’ net-
work. It has been demonstrated that gene coexpression analysis
using too many microarray samples could result in the loss of
information52. Therefore, condition-dependent analysis is neces-
sary even for identifying globally coexpressed genes.

According to the present annotation of the C. x clementina gen-
ome, 2485 and 4682 (39.72% and 74.84%) genes in these networks
were not assigned to a specific GO and KEGG pathway term,
respectively8. The function of these genes could be predicted based
on well-annotated genes within the same module. For example, 28
genes were included in HLB-module 6. Eleven of them were not
labeled with a specific GO term, and only four genes were assigned
to a specific KEGG pathway. Based on the above analysis, HLB-mod-
ule 6 is likely to carry on the functions of programmed cell death.
Unannotated genes in this module could be hypothesized to be
related to programmed cell death. In addition to gene function
prediction, gene coexpression analysis is also helpful for hypothesis
generation and testing7. For example, several genes encoding tran-
scription factors were also included in HLB-module 6, such as ERF
and KH domain-containing putative RNA-binding protein. It has
been demonstrated in Arabidopsis that a KH domain-containing
putative RNA-binding protein is critical for HSF and HSP regu-
lation53. Therefore, it would be reasonable to hypothesize that
those transcription factors can regulate the expression of other
genes within the same module.
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