
ORIGINAL ARTICLE

An assessment of the reliability of quantitative genetics
estimates in study systems with high rate of extra-pair
reproduction and low recruitment

A Bourret and D Garant

Quantitative genetics approaches, and particularly animal models, are widely used to assess the genetic (co)variance of key
fitness related traits and infer adaptive potential of wild populations. Despite the importance of precision and accuracy of
genetic variance estimates and their potential sensitivity to various ecological and population specific factors, their reliability is
rarely tested explicitly. Here, we used simulations and empirical data collected from an 11-year study on tree swallow
(Tachycineta bicolor), a species showing a high rate of extra-pair paternity and a low recruitment rate, to assess the importance
of identity errors, structure and size of the pedigree on quantitative genetic estimates in our dataset. Our simulations revealed an
important lack of precision in heritability and genetic-correlation estimates for most traits, a low power to detect significant
effects and important identifiability problems. We also observed a large bias in heritability estimates when using the social
pedigree instead of the genetic one (deflated heritabilities) or when not accounting for an important cause of resemblance
among individuals (for example, permanent environment or brood effect) in model parameterizations for some traits (inflated
heritabilities). We discuss the causes underlying the low reliability observed here and why they are also likely to occur in other
study systems. Altogether, our results re-emphasize the difficulties of generalizing quantitative genetic estimates reliably from
one study system to another and the importance of reporting simulation analyses to evaluate these important issues.
Heredity (2017) 118, 229–238; doi:10.1038/hdy.2016.92; published online 26 October 2016

INTRODUCTION

Understanding the genetic component underlying important fitness
related traits is essential to infer the adaptive potential of wild
populations (Lynch and Walsh, 1998; Hendry et al., 2011). However,
as most traits are likely under the control of numerous genes with
small effects (Lande, 1981; Falconer and Mackay, 1996; Husby et al.,
2015), potentially interacting with the genetic components of other
traits (Lande and Arnold, 1983; Blows and Hoffmann, 2005) and/or
with the environment in which they are expressed (Via and Lande,
1985; Hoffmann and Merilä, 1999), this task remains challenging
despite rapid advances in whole-genome analysis methods
(Vinkhuyzen et al., 2013). For these reasons, quantitative genetic
approaches—statistical methods using known relationships between
individuals to assess the genetic and environmental components of a
population phenotypic variance—remain efficient ways to infer the
underlying genetic variation of focal traits (Falconer and Mackay,
1996; Kruuk et al., 2008). For this purpose, animal models are
particularly suitable for wild population datasets because they allow
the use of all relationships between individuals and can account
for missing data, unbalanced designs and other potential biases
(for example, environmental causes of phenotypic similarity among
individuals rather than genetic ones) (Henderson, 1984; Kruuk, 2004;
Kruuk and Hadfield, 2007; Wilson et al., 2010). Moreover, heritability
estimates from wild populations obtained with animal models are
generally more accurate than those estimated with traditional parent–
offspring regressions (reviewed in Postma, 2014).

Several factors will influence the validity of the genetic variance
estimates obtained in the wild, which in turn will affect our capacity to
infer population responses to selective pressures (for example, through
breeder’s or Robertson–Price equation, see Morrissey et al., 2010).
Precision—the repeatability of a measurement—is highly dependent
on sample size both in terms of pedigree depth and completeness, but
also on the complexity of the genetic architecture underlying the focal
trait (Morrissey et al., 2007; de Villemereuil et al., 2013). For example,
given two pedigrees with identical sample sizes, a pedigree with a weak
degree of connectivity between individuals, for example, in popula-
tions with strong natal dispersion and/or immigration resulting in few
related individuals, will be less precise than a pedigree with known
relationships between all individuals (Wilson et al., 2010). However,
precision is rarely tested per se, but rather deduced from the size of
standard errors around estimates (for example, Charmantier and
Réale, 2005). Accuracy—the proximity between the estimated value
and the true value—is affected mainly by pedigree errors (that is,
erroneous links between individuals in the pedigree; Charmantier and
Réale, 2005; Morrissey et al., 2007; Firth et al., 2015) and by model
parameterizations (Kruuk and Hadfield, 2007; Wilson, 2008; Wolak
et al., 2015). Pedigree errors could be particularly common in study
systems where extra-pair copulations are important and parental links
in pedigrees constructed solely based on social pair observations
(that is, social pedigree). Theoretically, the presence of extra-pair
paternity (EPP), if not accounted for, can bias downward the
heritability estimates, even though evidence so far suggests that this
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bias is generally small in wild populations (Charmantier and Réale,
2005; Bérénos et al., 2014; Firth et al., 2015; but see Lee and Pollak,
1997 for reports of bias in the animal breeding litterature; see also
Walther and Moore, 2005 for a detailed discussion on the concepts of
bias, precision and accuracy).
Despite previous knowledge of what can affect precision and

accuracy of genetic variance estimates, extrapolating the reliability of
these estimates from one study system to another is difficult given the
large diversity of life history observed across species that inevitably
modified dataset and pedigree structures. Therefore, simulation
analyses are recommended for testing the limits of a particular dataset,
pedigree and model to answer specific biological questions (Morrissey
et al., 2007; Wilson et al., 2010). Simulation frameworks allow the
assessment of power—the probability of detecting an effect given that
this effect is true—of a particular dataset or model. In animal models,
power is affected by the same factors as precision (Quinn et al., 2006;
Morrissey et al., 2007; Bérénos et al., 2014). However, performing a
power analysis alone could provide an incomplete picture of the
validity of genetic variance estimates. In fact, a particular model
applied on a dataset could have a high power to estimate a given effect,
but the model itself might be missing a critical variance term, leading
to precise but inaccurate estimates (Kruuk and Hadfield, 2007).
Similarly, even if all important variance terms are included in a
particular model, the model variance structure might not allow
discrimination between two variance terms being included, a problem
of statistical models related to their low ‘identifiability’ (Bolker, 2008).
Confounded parameters could be frequent when applying animal
models to wild populations (Wilson et al., 2010), but the extent of
identifiability problems is still unknown. Finally, reliability of quanti-
tative genetics estimates is even less reported for multivariate models
than univariate models, limiting our confidence on important para-
meter estimations such as genetic additive covariance/correlation
among traits.
Here, we used an 11-year study on Tree swallow (Tachycineta

bicolor (Vieillot, 1808)) to assess the effects of identity errors, structure
and size of a pedigree on reliability of quantitative genetic estimates.
Tree swallows are small migratory passerines and their breeding
grounds are widely distributed across North America (Winkler et al.,
2011). Similarly to other migrating species, tree swallow shows high
natal dispersal, high mortality within the first year and low nestling
recruitment rate (Hosner and Winkler, 2007), which reduce kinship
among individuals in monitored populations. This socially mono-
gamous species also displays one of the highest rate of EPP
documented in birds (Griffith et al., 2002), with more than 80% of
nests containing at least one extra-pair offspring and overall around
50% of nestlings resulting from extra-pair copulations (Dunn et al.,
2001; Lessard et al., 2014). In the context of building a pedigree for
quantitative genetics analyses, this means that half of paternal links
would be erroneous if using a social pedigree. This represents a higher
proportion of EPP than those tested in previous studies to assess their
impacts on heritability estimates (for example, in Charmantier and
Réale, 2005; Firth et al., 2015), but it is a proportion that will be
typically found in other similar study systems (see Griffith et al., 2002
and references therein). Furthermore, reliability of genetic variance
estimates for this and similar species is difficult to predict based on
previous results obtained on other species, as the typical poorly
connected pedigree available for migratory species could be compen-
sated by the natural half-sibs design resulting from the high rate of
EPP occurring in tree swallows.
In this study, we used a social and a genetic pedigree to estimate and

compare genetic additive (co-)variances and heritability of traits

differing in their completeness through the pedigree structure. More
specifically, we first used empirical data to assess the bias resulting
from using a social pedigree over a genetic one. Then, we used
simulated data to assess precision and accuracy of quantitative genetic
estimates obtained with both pedigrees, as well as power of datasets
and models, and identifiability among variance terms.

MATERIALS AND METHODS

Study species, system and phenotypic data
Tree swallows breed in tree cavities or nest boxes, they produce only one clutch
per year, containing on average five eggs and both parents provide care to
nestlings (Winkler et al., 2011). Since 2004, we have intensively followed tree
swallow activities during the breeding season at 400 nest boxes equally
distributed across 40 farms in an area covering 10 200 km2 in southern
Québec, Canada (detailed in Ghilain and Bélisle, 2008). Nest boxes were
visited every 2 days from May to July to record nest box occupancy and
important brood characteristics (for example, laying date, clutch size and
hatching date). Adults and nestlings were individually marked with an
aluminum band (US Fish and Wildlife Service). Adults were captured directly
in their nest box by a trap system, during the incubation period and food
provisioning period for females and males, respectively. Morphological
measurements of body mass (±0.01 g), non-flattened wing length (±0.5 mm)
and tarsus length (±0.02 mm) were taken on adult tree swallows during
captures. Females were classified based on their plumage color as second-year
(brown) or after-second-year (blue-green) (Hussell, 1983) and a minimal age
was determined for all adults based on the year they were first observed in the
study system. Nestlings were captured at 16 days old before they fledged
(fledging occurs around 18–22 days) to record body mass (±0.01 g), primary
length (hereafter wing length; ± 0.02 mm) and tarsus length (±0.02 mm). Since
2006, blood samples of adults and nestlings have been collected on a qualitative
P8 grade filter paper (Thermo Fisher Scientific, Waltham, MA, USA) for
molecular analysis (see below).
To reflect the large differences that can exist between traits in terms of

sample size and amount of standing genetic variance, we focused on nine
phenotypic traits grouped in three categories: (1) morphological traits, which
included wing length, body mass and tarsus length of all adults; (2)
reproductive traits, which were restricted to females, and included laying date
(that is, date of the first egg laid), clutch size (that is, number of eggs laid within
a nest box) and incubation duration (defined as hatching date�(laying date
+clutch size− 1)); and (3) nestling traits, which included wing length, body
mass and tarsus length measured at the age of 16 days. Most traits were
measured since the beginning of the research program (that is, in 2004), but
some traits were first measured later (nestling body mass: 2005; nestling wing
length: 2006; adult/nestling tarsus length: 2007) creating differences in data
completeness among traits (sample size per traits can be found in
Supplementary Table A1).

Molecular analysis and pedigree construction
DNA extraction, molecular sexing and microsatellite data analyses are detailed
in Lessard et al. (2014). Briefly, DNA was extracted from blood samples
following a standard salt-extraction method and DNA concentration was
determined by migration on 2% agarose gels with a molecular weight standard.
A molecular sexing technique was used to determine nestling sexes and to
validate adult field observations. All DNA samples were characterized at six
microsatellites loci using an AB3130xl automated DNA sequencer and allele
lengths were determined using GeneMapper v4.1 (Applied Biosystems, Foster
City, CA, USA).
We constructed a social pedigree using social male identities (that is, males

caught in nest boxes while feeding the young) and a genetic pedigree using
genetic father identities (that is, males assigned as fathers using genetic analyses
—see below). In both pedigrees, dam identities were first determined by female
captures during egg incubation and then verified genetically based on locus
mismatches with nestlings (2.1% of broods with two females captured within
the same nest box, from which only 3.6% were from mixed maternity;
11 nestling genotypes (0.15%) mismatched at more than two loci with their
social mother genotype). Genetic fathers were determined by parental
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assignations with CERVUS v3.0.7 (Kalinowski et al., 2007; Lemons et al., 2015) in
a three step procedure. First, we proceeded to father assignments each year
separately following a method slightly modified from Lessard et al. (2014).
Candidate fathers considered in analyses included all males captured during a
given breeding season within 15 km of the nest box of interest (see Lessard
et al., 2014 for the rationale behind this approach), but also all males not
captured in a given year but suspected of being present outside of our nest box
system (that is, captured on the same farm on both previous and following
years). These assignations were based on a 90% confidence level, assuming a
2% mistyping error rate and we used the percentage of social fathers captured
as the percentage of candidate fathers known (variable among years, range:
64–88%). Second, social fathers, when known, were tested for being genetic
fathers of offspring in their nest using the likelihood-based approach of Lemons
et al. (2015). Briefly, we re-ran the parental analysis with the social father as the
unique candidate father for a given nestling, and we defined the proportion of
sampled fathers as the proportion of nestlings without any locus mismatch with
its social father (that is, the probability of the social male being the true father).
We then extracted, for each nestling, the critical logarithm of odds score
associated with 95% confidence that its social father was not its true father and
we compared these scores with those observed in regular parental analyses.
Males significantly assigned to nestlings in the initial parental analysis (that is,
step 1) were considered as their genetic fathers. For the remaining nestlings
(that is, without a significant male assignment at step 1), if their social fathers
could not be excluded (that is, step 2), they were considered as their genetic
fathers but otherwise no genetic father were assigned to them (see
Supplementary Figure A1 for the exact number of fathers assigned to a nestling
at each step).
Summary statistics for both pedigrees were obtained with the package

PEDANTICS (Morrissey et al., 2007; Morrissey and Wilson, 2010) in R v3.2.0
(R Core Team, 2015). These statistics were computed for complete pedigrees,
but also for pedigrees pruned to contain only informative individuals based on
the availability of phenotypic data for each trait (hereafter pruned pedigrees)
and are presented for each trait category in Table 1 (see also Supplementary
Table A2 for more information on each trait).

Estimations of quantitative genetic parameters
To estimate additive genetic (co)variances of our focal traits, we used both
univariate and multivariate animal models (Kruuk, 2004; Wilson et al., 2010).
Fixed effects (for example, age, sex) were included for some traits based on
mixed model analyses detailed in Supplementary Information. For adult
morphological and reproductive traits, full univariate animal models were
constructed as follows:

VP ¼ VA þ VPE þ VY þ VR ð1Þ

and for nestling traits:

VP ¼ VA þ VBY þ VB þ VR ð2Þ
where VP is the phenotypic variance after accounting for fixed effects, VA is the
additive genetic variance, VPE is the permanent environmental effect, VY and
VBY are the variance among years and among birth years, respectively, VB is the
variance among broods and VR the residual variance. All traits followed a
Gaussian distribution and animal models were resolved with a restricted
maximum likelihood method (REML), using both the social and the genetic
pedigree. Final animal models were constructed by sequential model-building
from a model with only residual variance to more complex ones, with a
comparison of models at each step using a likelihood ratio test (LRT; see
Supplementary Tables C1 for the increasing levels of complexity). Only VA in
the incubation duration models did not significantly improve the model
likelihood (χ2o0.01, P40.99).
We also constructed three multivariate animal models, one for each trait

category. For each of them, we first included the same variance terms as for
univariate models. However, due to convergence problems when including VPE

for morphological and reproductive traits, we decided to use a model without
the VPE term on a reduced dataset comprising only one observation by
individual (randomly chosen). Moreover, as we observed no VA for incubation
duration, this trait was not included in the multivariate analysis of reproductive
traits. Covariances among traits for each variance components were estimated
using unstructured variance models. Significance was tested by comparing a
model including covariance estimation to a model where covariance was
constrained to be equal to zero using LRT.
We estimated heritability (h2=VA/VP, Falconer and Mackay, 1996) and

coefficient of genetic variation (CVA=
ffiffiffiffiffiffiffi

VA
p

=X, where X is the trait mean,
Houle, 1992) for all traits within each analysis. For multivariate analyses we also
estimated additive genetic correlations (rA) between each pair of traits. All
animal model analyses were conducted with ASRemL v3.0.5 (VSN International
Ltd, Hemel Hempstead, UK). Standard errors (SEs) for variance components
and h2 estimates were computed directly by ASRemL. For CVA, standard
deviations were approximated following the equation provided by Lynch and
Walsh (1998; equation A1.26c, Appendix 1).

Simulation analyses
We simulated three different datasets of phenotypic data within both the social
and genetic pedigree structures with different levels of complexity. In all cases,
simulated traits were normally distributed among all individuals, with VP= 1,
X = 0 and h2 of 0.1, 0.3 and 0.5 for the focal trait. In dataset 1, we simulated
one phenotype per individual with the parameters mentioned above to reflect
the simplest scenario possible. In dataset 2, we simulated phenotypic traits with
a more complex underlying structure based on equations (1) and (2) to better
reflect our empirical dataset, with similar value of h2 as dataset 1. For nestling

Table 1 Summary statistics for social and genetic pedigrees, in complete pedigrees (total) or pruned pedigrees detailed for each trait category

(means for all morphological, reproductive and nestling traits) based on data collected between 2004 and 2014 in our study system in

southern Québec

Social pedigree Genetic pedigree

Total Morphological Reproductive Nestling Total Morphological Reproductive Nestling

Records 13 446 2541 1531 7500 13 491 2539 1523 7487

Maternities 10 509 116 54 5797 10 509 116 54 5797

Paternities 7325 81 36 5292 5656 64 25 4456

Full sibs 18 077 5 3 12 315 6811 1 1 5341

Maternal sibs 47 124 9 5 23 164 47 124 9 5 23 164

Paternal sibs 35 452 6 4 22 979 29 309 4 2 20 160

Maternal grandmothers 381 4 1 270 381 4 1 270

Maternal grandfathers 277 2 1 221 207 2 1 159

Paternal grandmothers 465 6 3 360 397 4 3 328

Paternal grandfathers 315 3 1 260 242 0 0 204

Summary statistics for all traits are presented in Supplementary Table A2.
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traits, we simulated phenotypes with VY= 0.1 and VB= 0.3, whereas for
morphological and reproductive traits we simulated phenotypic values with
VY= 0.1 and VPE= 0.1, thus implying multiple observations per individual.
Finally, in dataset 3, different genetic and environmental correlations between
traits were also implemented in simulations to assess the difference in power,
precision and accuracy when using multivariate models. More specifically, we
simulated phenotypes with h2 similar to dataset 1 for the focal trait, whereas
fixing h2 of the two other traits at 0.3, for three different values of rA, 0.1, 0.3
and 0.5, whereas fixing environmental correlation at 0.3. No other variance
components were simulated. Simulations were performed in R, and breeding
values were simulated with the package PEDANTICS. Although simulations were
performed within total social and genetic pedigree structures, only individuals
with complete information in the empirical dataset were kept in these three
simulated datasets.
Different analyses were performed on simulated datasets to answer two

different questions. First, to assess if there was a bias created by not accounting
for EPP, we used datasets simulated with the genetic pedigree in animal models
using either the genetic pedigree (GG analysis) or the social pedigree (GS
analysis), and then the results were compared. Second, to look at inherent
differences in reliability caused by pedigree structures, datasets simulated with
the social pedigree were analyzed using the social pedigree (SS analysis) and
were compared with GG analysis. Animal models used
for datasets 1 and 3 included only VA and VR as variance components
(and covariance in dataset 3), whereas for dataset 2 they included all
components described in equations (1) and (2). All these scenarios within
each analysis were repeated 100 times for each trait, and animal model analyses
were conducted with ASRemL.
Precision and accuracy for h2 and rA estimates were checked visually with

boxplots (that is, median for accuracy and distribution of estimates for
precision) and also by computing the mean squared error (MSE) for each
scenario. MSE is defined as E½ðd̂ � dÞ2�, where d is the true value
(for example, the simulated parameter of h2 or rA; these values are highly
correlated (r40.99) with the realized value within our simulated population)
and d̂ is the estimated value; a small MSE indicates high precision and accuracy
(Bolker, 2008). Root MSE (RMSE) was used to allow a comparison at the scale
of the estimates (de Villemereuil et al., 2013). Power to detect significant h2 and
rA within each scenario were estimated using a ‘rule of thumb’ approach by
computing the proportion of estimates that were two times larger than their SE.
Although LRTs could have provided a formal hypothesis testing, they were not
possible to implement in our simulations procedures. Instead, the ‘rule of
thumb’ approach is a practical indicator of statistical testing that could be easily
integrated to simulation analyses and lead to results comparable to a LRT
approach (Supplementary Table A3; see also Wilson et al., 2011 for a similar
approach). Finally, we also checked the identifiability of variance terms in
dataset 2 using a Spearman’s rank correlation between estimates of phenotypic
variance components. In this case, a low correlation between two components
would indicate a high identifiability, whereas a high correlation would indicate
a low identifiability.

RESULTS

Pedigrees
Our total dataset comprised 13 446 individuals, with 2839 individuals
observed only as adults, 10 472 observed only as nestlings and 135
observed at both states (that is, recruits). From the field observations,
we were able to determine the identity of the social father for 69.2% of
nestlings (82.2% since 2006). Parental analyses allowed us to
determine the genetic father for 53.3% of nestling (66.3% since
2006). On average, 1.74± 0.82 (range: 1− 5) genetic fathers were
assigned per brood, and each adult male had on average 4.81± 5.44
(range: 0− 37) nestlings assigned over its entire lifespan. Overall,
49.3% of nestlings successfully genotyped with a known social father
were extra-pair young (Ntotal= 6382).
Pedigree size varied among the type of pedigree and traits (Table 1).

As expected, the social pedigree always had a higher number of links
related to father identities than its genetic counterpart, a difference

mainly caused by unsampled males contributing to the genetic pool of
nestlings. Nestling traits had a much higher number of links than
morphological and reproductive traits, which were both of similar
order of magnitude, but with slightly fewer links for the latter
(Table 1). Pedigree sizes were similar for each trait within a given
category (Supplementary Table A2).

Estimations of quantitative genetic parameters (empirical data)
Variance components, and resulting heritability values, estimated from
empirical data varied among traits and also often importantly between
pedigrees (social versus genetic) and between models (univariate
versus multivariate) (Figure 1; Table 2). Biases in h2 and CVA resulting
from using social instead of genetic pedigrees were moderate for
morphological traits (h2: − 0.21 to − 0.02; CVA: − 0.008 to − 0.001),
almost null for reproductive traits (almost all around 0) and highly
variable for nestling traits (h2: − 0.04–0.21; CVA: − 0.001–0.051).
Estimates of rA obtained with the social and genetic pedigree were
similar, except between nestling wing length and body mass where rA
was positive and significantly different from 0 with the social pedigree
(rA= 0.56± 0.13, χ2= 9.92, P= 0.002), but not with the genetic
pedigree (rA= 0.25± 0.19, χ2= 1.32, P= 0.25; Supplementary
Figure C1). Raw phenotypic variance for all traits can be found in
Supplementary Table C4.

Reliability of quantitative genetics estimates (simulated data)
Visual inspection of boxplots (Figures 2b, d, f and 3b) and comparison
of RMSE values (Supplementary Figures D1) showed complementary
information on precision and accuracy of h2 and rA estimates.
Precision of h2 and rA estimates varied greatly depending on trait
category (nestling4morphological4reproductive; mean± s.d. RMSE
for h2/rA: Xnestling =0.055±0.045/0.081±0.025, Xmorpho =0.122±0.026/
0.342±0.061, Xrepro =0.200±0.045/0.430±0.025) but also among data-
sets used (dataset 2 (simulation of h2 and other source of resemblance
among individuals)43 (simulation of h2 and rA)41 (simulation
of h2 only); mean± s.d. RMSE for h2: Xdataset1 = 0.144± 0.086,
Xdataset2 = 0.100± 0.047, Xdataset3 = 0.127± 0.072). Accuracy for h2

estimates was high for all GG and SS analyses (except for reproductive
traits in dataset 3), but downwardly biased in GS analyses for
nestling and reproductive traits, an effect more important as
simulated h2 increased (mean± s.d. RMSE: XGG = 0.117± 0.076,
XGS = 0.143± 0.061, XSS = 0.115± 0.075). Accuracy for rA were similar
for all type of analysis (mean± s.d. RMSE: XGG = 0.283± 0.160,
XGS = 0.294± 0.151, XSS = 0.275± 0.158).
Power to detect significant h2 or rA was greater for traits with

larger sample size (nestling4morphological4reproductive;
Figures 2a, c, e and 3a), but we observed no difference among traits
within each category (data not shown). For multivariate animal
models from dataset 3, power to detect h2 was similar for the different
genetic correlations tested (data not shown), whereas power to
detect genetic correlation increased with increasing heritability
(Figure 3a). Within a trait category, power was similar between GG
and SS analyses, except for nestling traits from dataset 2 were the
simulated brood effect decreased power in SS analysis (Figure 2c).
Finally, power comparison between GG and GS analyses revealed
generally lower power in morphological and nestling trait for GS
(Figures 2a, c, e and 3a).
For adult traits, VA and VPE estimates from dataset 2 were highly

negatively correlated, suggesting that these terms were almost com-
pletely confounded (morphological traits: rs=− 0.95, Po0.001; repro-
ductive traits: rs= �0.94, Po0.001, results from GG analysis with
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h2= 0.3; Supplementary Figures D3). For nestling traits, VA and VB

estimates were also correlated, but to a lesser extent (rs=− 0.42,
Po0.001; Supplementary Figure D5). All other variance terms showed
correlations non-significantly different from 0 (all |rs|o0.09, P40.12).
Finally, given the large differences observed for some reproductive

traits between SEs of h2 estimates from empirical and simulated
dataset (Table 2; Supplementary Figure D6a), we further inspected the
impact of model parameters on SEs. More specifically, we assessed the
impact of not accounting for an important cause of resemblance
among individuals by running dataset 2 animal models and omitting
VPE or VB components. By doing so, we observed a power of 1
at all traits, and all h2 estimates were very precise but showed
a bias equivalent to the variance component not accounted for (that
is, 0.1 for morphological and reproductive trait and 0.4 for nestling
traits; Figure 4). As suspected, SEs for these biased h2 estimates were
small and similar to those obtained in empirical analyses, where VPE

was almost completely confounded with VA (Supplementary
Figure D6b).

DISCUSSION

Despite the importance of obtaining precise and accurate genetic (co)
variance estimates when assessing a population’s adaptive potential,
their reliability is rarely explicitly tested or reported in wild popula-
tions. Here, we formally assessed the reliability of genetic (co)variance
estimates, in a species with a high rate of extra-pair reproduction and
low recruitment, with a combination of empirical and simulated data.
Altogether, our simulation analyses emphasized the limits of this
particular dataset by revealing an important lack of precision in h2 and
rA estimates for all adult traits, a lack of power to detect significant
effects and identifiability problems between VA and VPE. Moreover, we
observed a large bias in h2 when using the social pedigree instead of
the genetic one, and also when non-genetic causes of resemblance
among individuals (that is, repeated measurements or brood effects)
were not accounted for in our analyses. We briefly discuss below
(i) the factors contributing to estimate reliability, (ii) the caution
needed with model parameterization, (iii) the impacts of high levels of
EPP on genetic variance estimates and (iv) we finally conclude with
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Figure 1 Proportion of phenotypic variance estimated from final animal models on empirical dataset, for (a) morphological, (b) reproductive and (c) nestling
traits. Different models were assessed for each trait: univariate models using social (SU) and genetic (GU) pedigree, and multivariate models using social
(SM) and genetic (GM) pedigree.
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remarks on the accessibility and utility of simulation analyses to
address all these potential problems.

Estimate reliability and generalization among studies
At first glance, our sample size seemed large enough to be powerful,
with more than 10 years of sampling and a number of records within
our pruned pedigrees that was larger than the median number of
records typically reported for similar studies in the literature. Indeed, a
recent compilation of quantitative genetics estimates obtained from
wild populations by Postma (2014) showed that for estimates obtained
with animal models, the median number of records for life history
traits was 377 (range 6–4992; from 39 studies, covering 19 species) and
363 for morphological traits (range 50–38 024; from 47 studies,
covering 22 species). This suggests that sample size alone is not
sufficient to infer pedigree quality, as it does not reflect the
connectivity of pedigrees (Wilson et al., 2010). In our study system,

the low recruitment of nestlings (1.3%) results in very few grandparent
links within our pedigree, which greatly reduces its power. However,
this problem is far less important for nestling traits as the high-EPP
rate results in a genetic pedigree containing several half-sib families,
which increase its power (see GG versus SS, Figure 2c) despite a
smaller number of observations compared with the social pedigree for
all categories (Table 1). Thus, given that pedigree structures are
different from one study system to another, their impact on reliability
of quantitative genetic estimates is best predicted from simulation
analyses.
Various ecological and population specific factors could generate

fluctuations in the precision and accuracy of quantitative genetic
estimates among study systems. Here, our study system was
characterized by a high rate of EPP and a low recruitment, two
characteristics that affected the reliability of quantitative genetic
estimates for some trait types. Although these characteristics are

Table 2 Summary of final A) univariate and B) multivariate animal models using empirical datasets and either the social pedigree or the

genetic pedigree

Social pedigree Genetic pedigree Difference

h2 CVA h2 CVA h2 CVA

(A) Univariate models
Morphological traits

Wing length 0.24 (0.11) 0.013 (o0.001) 0.30 (0.11) 0.015 (o0.001) −0.06 −0.002

Body mass 0.31 (0.10) 0.040 (0.001) 0.40 (0.10) 0.046 (0.001) −0.09 −0.006

Tarsus length 0.38 (0.13) 0.021 (o0.001) 0.44 (0.13) 0.023 (o0.001) −0.06 −0.002

Reproductive traits

Laying date 0.38 (0.04) — 0.38 (0.04) — 0.00 —

Clutch size 0.35 (0.03) 0.095 (0.002) 0.35 (0.03) 0.095 (0.002) 0.00 0.000

Incubation duration — — — — — —

Nestling traits

Wing length 0.25 (0.06) 0.082 (0.001) 0.04 (0.02) 0.031 (o0.001) 0.21 0.051

Body mass 0.29 (0.08) 0.053 (o0.001) 0.23 (0.04) 0.047 (o0.001) 0.06 0.006

Tarsus length 0.18 (0.06) 0.018 (o0.001) 0.22 (0.04) 0.019 (o0.001) −0.04 −0.002

(B) Multivariate models
Morphological traits

Wing length 0.04 (0.18) 0.006 (o0.001) 0.26 (0.17) 0.014 (o0.001) −0.21 −0.008

Body mass 0.25 (0.15) 0.035 (0.001) 0.28 (0.16) 0.037 (0.001) −0.02 −0.002

Tarsus length 0.51 (0.13) 0.025 (o0.001) 0.54 (0.13) 0.025 (o0.001) −0.04 −0.001

Reproductive traits

Laying date 0.41 (0.46) — 0.52 (0.46) — −0.11 —

Clutch size 0.82 (0.48) 0.153 (0.004) 0.83 (0.48) 0.154 (0.004) −0.01 0.001

Incubation duration — — — — — —

Nestling traits

Wing length 0.24 (0.06) 0.081 (0.001) 0.04 (0.02) 0.031 (o0.001) 0.21 0.051

Body mass 0.31 (0.07) 0.055 (0.001) 0.23 (0.04) 0.047 (o0.001) 0.07 0.008

Tarsus length 0.20 (0.06) 0.018 (o0.001) 0.21 (0.04) 0.019 (o0.001) −0.01 −0.001

Differences between estimates obtained from the social pedigree relative to the genetic one are presented. SEs for h2 estimates and standard deviations for CVA are in parenthesis. Note that CVA
could not be computed for laying date because of an arbitrary zero for this trait (0= January 1; see Garcia-Gonzalez et al., 2012).

Figure 2 Power, precision and accuracy of heritability estimated from animal models for dataset 1 (a and b; simulation of h2 only), dataset 2 (c and d; simulation
of h2 and other source of resemblance among individuals) and dataset 3 (e and f; simulation of h2 and rA) simulated on the pedigree structure of morphological
traits (dark gray lines), reproductive traits (light gray lines) and nestling traits (black lines). Power of detecting significant heritability over 300 simulated trait values
(100 simulations per trait) are presented in a, c and e. Distributions of these estimates are represented by boxplots (1st quartile, median, 3rd quartile) for 2 levels
of heritability (dotted lines represent the h2 simulated value of 0.1 and 0.5) in b, d and f. Analysis types refer to datasets simulated with the genetic pedigree and
analyzed with the genetic (GG analysis, solid lines) or the social pedigree (GS analysis, dashed lines), and datasets simulated with the social pedigree and analyzed
with the social pedigree (SS analysis, dotted lines). For graphical representation, rA was fixed at 0.3 in e and f.

Reliability of quantitative genetics estimates
A Bourret and D Garant

234

Heredity



certainly common in other migratory species (for example,
Common reed bunting (Emberiza schoeniclus) and Red-eyed vireo
(Vireo olivaceus), Griffith et al., 2002), other characteristics, such as

low-recapture rate between years in open study systems, a sex bias in
sampling or large natal dispersal may also have important conse-
quences on the precision of estimates. Moreover, differential mortality
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or capture rate might bias the sampling of some traits, and consequently
affect the accuracy of estimates that can be obtained (for example,
Dingemanse et al., 2009). It is thus important to appropriately identify
the limits in a particular system and assess their impacts on the
reliability of quantitative genetic estimates by using simulations.

Caution needed with model parameterization
The choice of which variance terms to include in a model is a crucial
step that can have substantial impacts on reliability of genetic variance

estimates (Kruuk and Hadfield, 2007; Wilson, 2008). Here, the
decision to include or not a particular variance term relied on LRTs,
which is a widely used approach (Wilson et al., 2010). However, in
some cases even if the inclusion of a particular component is not
improving the model likelihood, it may still have to be included
(Wilson et al., 2010). This is the case for component of variance
attributable to repeated measurement of a given individual (VPE). In
our models, we had to account for multiple observations by fitting a
VPE term in our model, but this component was almost completely
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Figure 3 Power, precision and accuracy of genetic additive correlation estimated from multivariate animal models, for dataset 3 (simulation of h2 and rA)
simulated on the pedigree structure of morphological traits (dark gray lines), reproductive traits (light gray lines) and nestling traits (black lines). Power of
detecting significant genetic correlation over 300 simulated trait values (100 simulations per trait), is presented in a and distributions of these estimates are
represented by boxplots (1st quartile, median, 3rd quartile) in b (for 1 value of rA—dotted lines represent the rA true value of 0.5 simulated; 5 estimates41
are not presented). Analysis types refer to datasets simulated with the genetic pedigree and analyzed with the genetic (GG analysis, solid lines) or the social
pedigree (GS analysis, dashed lines), and datasets simulated with the social pedigree and analyzed with the social pedigree (SS analysis, dotted lines). For
graphical representation, h2 was fixed at 0.5 in b.
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Figure 4 Precision and accuracy of heritability estimated from animal models omitting an important cause of resemblance among individuals (VPE or VB), for
morphological traits, reproductive traits and nestling traits simulated in dataset 2. Distribution of these estimates are represented by boxplots (1st quartile,
median, 3rd quartile) for 2 levels of heritability (dotted lines represent the h2 true value of 0.1 and 0.5 simulated). Analysis types refer to datasets simulated
with the genetic pedigree and analyzed with both the genetic and the social pedigree (GG and GS analyses, respectively), and datasets simulated with the
social pedigree and analyzed with the social pedigree (SS analysis).

Reliability of quantitative genetics estimates
A Bourret and D Garant

236

Heredity



confounded with VA. This situation probably occurred because of the
low number of observations per individual (mean of 1.5 (averaged
across traits; range: 1–7) for morphological traits and 1.2 (range: 1–7)
for reproductive traits), a situation that should be present in other
short-lived species datasets. Not accounting for repeated measurements
in an animal model is equivalent to considering each repeated
measurement as a clone of the same individual, which is inappropriate.
In such cases, using a dataset with only one observation per individual
may lead to more accurate estimates and easier model convergence.
Standard errors are often viewed as predictors of an estimate’s

accuracy or significance, but this can be misleading (Krzywinski and
Altman, 2013). Estimates from animal models have generally smaller
standard errors than those obtained with parent–offspring regressions
(Kruuk, 2004; Postma, 2014), partly due to their integration of multiple
observations for a given individual (Åkesson et al., 2008). As previously
stated, failing to account for multiple observations can create unpre-
dictable bias in phenotypic variance component estimates (Kruuk and
Hadfield, 2007) and considerably reduce standard errors around these
biased estimates (Supplementary Figure D6). Moreover, it seems that
problems of identifiability could also result in reduced standard errors.
For example, in our empirical analyses, small standard errors were
estimated around h2 estimates for reproductive traits from univariate
animal models with repeated measurements per individual (SE range:
0.03–0.04), which could have led us to misleadingly conclude that our
dataset was powerful and our estimates were precise for these traits.
This study was performed with a frequentist method (that is,

REML) rather than a Bayesian method (that is, MCMC) because it
generally gives more precise and accurate estimates for traits following
a Gaussian distribution and it necessitates a shorter computation time
(de Villemereuil et al., 2013). Bayesian methods have other advantages,
such as the use of posterior distributions for the calculation of derived
parameters (for example, heritability) and associated standard errors
and they are particularly useful for analyses of non-Gaussian traits
(Morrissey et al., 2014). In the present context, problems related to
missing of an important source of resemblance among individuals are
not method specific and could impact any model regardless of the
method used for its estimation. However, it is less clear if identifiability
problems could be better uncovered with Bayesian approach, for
example through an appropriate MCMC checking. Simulation studies
such as this one could be applied to animal models resolved with a
Bayesian approach to better assess its limits.

Impact of high level of EPP on estimates
In theory, EPPs, if not accounted for, could downwardly bias additive
genetic variance and resulting heritability estimates (Charmantier and
Réale, 2005). Yet, previous simulation studies showed that even if
biases increased with the importance of EPPs, with increasing
heritability and when focal traits were directly related to the number
of extra-pair young produced, underestimations were generally smaller
than 15% (Firth et al., 2015). In our study, the rate of EPP was higher
than those previously tested so far (up to 40% in Charmantier and
Réale, 2005, 12.5% in Firth et al., 2015), but its effect on quantitative
genetics estimates was complex. First, our simulation analyses showed
that the bias in h2 estimates resulting from using the social instead of
the genetic pedigree changed depending on the trait category (that is,
higher for nestling traits). Also, our empirical analyses suggested that
the impact of not accounting for EPP was noticeable for morpholo-
gical and nestling traits, but sometimes resulted in higher h2 and CVA

when using the social pedigree (that is, for nestling wing length and
body mass). A similar unexpected finding was previously reported in
blue tits (Cyanistes caeruleus), where h2 estimates from a social

pedigree were sometimes higher than those from a genetic pedigree
(Charmantier and Réale, 2005). These positive biases observed in
empirical data could be due to the influence of the social father
(for example through parental care), which could be captured in VA

components (Griffith et al., 1999; Charmantier and Réale, 2005) rather
than due to pedigree errors. To assess this possible problem, we
performed an additional animal model analysis including mother and
social father identities as additional variance components. We found
that new h2 and CVA values obtained using the social pedigree were
smaller than values obtained with the genetic one (change in estimates
for body mass h2=− 0.06, CVA=− 0.011; wing length h2=− 0.04,
CVA=− 0.041; difference calculated with univariate animal models;
see Supplementary Table C5 for details). This further emphasizes the
importance of model parameterization on reliability of variance
component estimates. Finally, even if the genetic pedigree better
represents relationships among individuals than the social pedigree, it
probably still contains a few incorrect links among individuals and
thus the estimated heritabilities might also be slightly downwardly
biased.

CONCLUSION

Simulation analyses are now widely accessible to anyone with minimal
programming skills in R, for instance by using the ‘phensim’ function
within the package PEDANTICS, the ‘rbv’ function within the package
MCMCglmm (Hadfield, 2010) or the ‘drfx’ and the ‘grfx’ function
within the package NADIV (Wolak, 2012). Moreover, other methods
such as profile likelihoods (Meyer, 2008; implemented in the ‘proLik’
function within the package NADIV, Wolak, 2012) are more accessible
and can also improve our comprehension of a particular dataset limits
(Houle and Meyer, 2015). As each study system is unique, in terms of
pedigree structure, number of repeated measures per individual or
potential causes of pedigree errors, it is difficult to predict the
reliability of quantitative genetics estimates without testing it formally.
Detailed simulations should be routinely included when reporting
quantitative genetics analyses performed within a new study system, or
when applying more complex modeling to previously studied popula-
tions, to explicitly assess the precision and accuracy of genetic variance
components (Morrissey et al., 2007).
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