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Prediction and estimation of effective population size

J Wang1, E Santiago2 and A Caballero3

Effective population size (Ne) is a key parameter in population genetics. It has important applications in evolutionary biology,
conservation genetics and plant and animal breeding, because it measures the rates of genetic drift and inbreeding and affects
the efficacy of systematic evolutionary forces, such as mutation, selection and migration. We review the developments in
predictive equations and estimation methodologies of effective size. In the prediction part, we focus on the equations for
populations with different modes of reproduction, for populations under selection for unlinked or linked loci and for the specific
applications to conservation genetics. In the estimation part, we focus on methods developed for estimating the current or recent
effective size from molecular marker or sequence data. We discuss some underdeveloped areas in predicting and estimating Ne
for future research.
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INTRODUCTION

The concept of effective population size, introduced by Sewall Wright
(1931, 1933), is central to plant and animal breeding (Falconer and
Mackay, 1996), conservation genetics (Frankham et al., 2010;
Allendorf et al., 2013) and molecular variation and evolution
(Charlesworth and Charlesworth, 2010), as it quantifies the magnitude
of genetic drift and inbreeding in real-world populations. A substantial
number of extensions to the basic theory and predictions were made
since the seminal work of Wright, with main early developments by
James Crow and Motoo Kimura (Kimura and Crow, 1963a; Crow and
Kimura, 1970) and later by a list of contributors. Several review papers
(Crow and Denniston, 1988; Caballero, 1994; Wang and Caballero,
1999; Nomura, 2005a) and population genetic books (Fisher, 1965;
Wright, 1969; Ewens, 1979; Nagylaki, 1992) have summarised the
existing theory in predicting the effective size of a population at
different spatial and timescales under various inheritance modes
and demographies. Comparatively, methodological developments
(reviewed by Schwartz et al., 1999; Beaumont, 2003a; Wang, 2005;
Palstra and Ruzzante, 2008; Luikart et al., 2010; Gilbert and Whitlock,
2015) in estimating the effective size of natural populations from
genetic data lag behind but are accelerating in the past decade, thanks
to the rapid developments of molecular biology.
The classical developments of effective population size theory are

based on the rate of change in gene frequency variance (genetic drift)
or the rate of inbreeding. The effective population size is defined in
reference to the Wright–Fisher idealised population, that is, a
hypothetical population with very simplifying characteristics where
genetic drift is the only factor in operation, and the dynamics of allelic
and genotypic frequencies across generations merely depend on the
population census (N) size. The effective size of a real population is
then defined as the size of an idealised population, which would give
rise to the rate of inbreeding and the rate of change in variance of gene
frequencies actually observed in the population under consideration,

which correspond to the so-called inbreeding and variance effective
sizes, respectively (Crow and Kimura, 1970).
Predictions of the effective population size can also be obtained

from the largest nonunit eigenvalue of the transition matrix of a
Markov Chain which describes the dynamics of allele frequencies.
Such derived effective size is called as eigenvalue effective size (see
Ewens, 1979, pp. 104–112), which is equivalent to the random
extinction effective size (Crow, 1954; see also Haldane, 1939). The
transition matrix can be written for many genetic models and is
particularly useful for complex scenarios such as populations varying
in size, having age structures or being subject to demographic changes
(for example, Charlesworth, 2001; Pollak, 2002; Wang and Pollak,
2002; Engen et al., 2005). A less often used approach is that for the
mutation effective size, defined by the probability of identity in state of
genes rather than identity by descent under an infinite allele model of
mutations with a defined mutation rate (Whitlock and Barton, 1997).
Later developments based on coalescence theory (Wakeley, 2008)

have also proved to be useful in the prediction of effective population
size, particularly in the evolutionary context for predicting genetic
variability at the molecular level (Charlesworth, 2009; Nicolaisen and
Desai, 2012, 2013). The coalescence theory states that the chance of
coalescence of any two random gene copies in one generation time is
1/2N, which is the same as the rate of increase in identity by descent
occurred from one generation to the next one. Thus, the probability of
coalescence t generations ago is (1− (1/2N))t− 1(1/2N). Therefore, the
average time of coalescence of two randomly chosen genes is T= 2N.
The coalescent effective population size refers to the expected time of
coalescence T, in generations, of gene copies such that T= 2Ne

(Nordborg and Krone, 2002; Wakeley and Sargsyan, 2009).
In this paper, we present a general overview of the main develop-

ments for predicting the effective population size (Ne). The review
does not attempt to be exhaustive, and some of the material
mentioned in previous reviews will not be repeated. We mainly focus
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on populations with different modes of reproduction, populations
under selection and populations under genetic management in captive
breeding conservation programmes, complementing previous reviews
and adding material not covered or only partially covered by them. We
also review the developments in estimating contemporary effective
sizes from genetic marker data, focussing on the estimation principles
and ignoring the technical details that were covered in the original
papers. The underlying assumptions, application scopes, robustness
and accuracies of different estimation methods are discussed and
compared.

PREDICTION OF THE EFFECTIVE POPULATION SIZE

In this section, we will summarise the main predictive equations for
the asymptotic effective population size reached after a number of
generations in a regular breeding system. In this case, all of the above
approaches generally lead to the same predictive equations of Ne,
except for a few particular scenarios. For example, in a regular
breeding system for an undivided population the asymptotic inbreed-
ing and variance effective sizes converge. Only in situations such as
when the population is subdivided permanently in independent
sublines with completely independent pedigrees (Wang, 1997a, b) or
when the population is decreasing or increasing in size, these types of
Ne will differ permanently. In fact, many of the equations shown
below have been derived by two or more of the above approaches, and
we will only mention some of these. For clarity and a better
understanding of the main principles, several simplifying assumptions
will also be made in this prediction section. Unless otherwise stated,
we will assume that populations do not change size through time and
are large enough so that second-order terms of 1/Ne can be safely
ignored. These terms are generally of little relevance but make the
derivations and the Ne equations rather cumbersome. Finally, a single
undivided population with discrete generations under a regular
breeding scheme will be generally assumed unless otherwise indicated,
so that prediction equations refer to asymptotic (Caballero, 1994)
effective population sizes.

Populations with different modes of reproduction
As a starting point, we consider the simple equation derived by Wright
(1938), which takes account of the variance of the contributions from
parents to progeny S2k

� �
in a population of constant size N,

Ne ¼ 4N

2þ S2k
: ð1Þ

This expression also assumes a population either containing only
hermaphrodites or comprising equal numbers of males and females,
diploid autosomal inheritance and random mating (including selfing
for hermaphrodites). In Equation (1), the term S2k accounts for the
genetic drift caused by the variable contributions among parents,
whereas the first term ‘2’ in the denominator accounts for the genetic
drift caused by the Mendelian segregation of heterozygotes (that is, the
drift in allele frequency arising from the fact that the progeny from a
heterozygote can alternatively receive one or the other allele). It can
also be seen as the variance in contributions between paternal and
maternal genes at a locus within an individual or part of the variance
in contribution between grandparents (the term δ2 in Equation (2) of
Wang and Hill (2000)).
An illustrative generalisation of Equation (1) to the case of different

numbers of males (Nm) and females (Nf) is

Ne ¼ 16NmNf =ðNm þ Nf Þ
2þ S2k

; ð2Þ

with

S2k ¼
Nf

Nm þ Nf
S2mm þ 2

Nm

Nf

� �
Smm;mf þ Nm

Nf

� �2

S2mf

" #

þ Nm

Nm þ Nf
S2f f þ 2

Nf

Nm

� �
Sfm;f f þ Nf

Nm

� �2

S2f m

" #
; ð3Þ

where S2xy is the variance of the number of offspring of sex y from
parents of sex x and Sxm,xf is the covariance of the numbers of male
and female offspring from parents of sex x. Equation (2) is the same as
that derived by Hill (1979), although it is expressed in a different form.
It reduces to the classical equation of Wright (1933, 1939) for a Poisson
distribution of progeny number (that is, S2xy ¼ Ny=Nx; Sxm;xf ¼ 0 for
sex x, y=m, f),

Ne ¼ 4NmNf

Nm þ Nf
; ð4Þ

which shows that unequal numbers of males and females in a
population introduce a systematic variance in contribution between
male and female parents and thus a reduction in effective size.
Predictive formulae for the effective size of X-linked genes were

originally given by Wright (1933) and later extended by other authors
(see Caballero, 1995). Later developments have also been made for
Y-linked and maternally transmitted genes (Charlesworth, 2001;
Laporte and Charlesworth, 2002; Evans and Charlesworth, 2013).
The generalisation of Equation (1) to the case of a partially selfed

population (in which there is partial selfing with proportion β,
random mating otherwise) is

Ne ¼ 4N

2 1� að Þ þ S2k 1þ að Þ; ð5Þ

(Crow and Morton, 1955), where

a ¼ b= 22bð Þ ð6Þ
(Haldane, 1924) quantifies the deviation from Hardy–Weinberg
equilibrium or the correlation of genes within individuals relative to
the genes taken at random from the population (Wright, 1969). The
value of α in a large random mating population is approximately 0
(slightly negative when second-order terms are considered; see
Equation (23) below and Wang, 1996a). For the case of biparental
inbreeding such as partial full-sib mating in dioecious species, the
expression is the same as Equation (5) except that the term (1+α)
should be replaced by (1+3α) (Caballero and Hill, 1992). The
equilibrium value of α for biparental inbreeding is also different from
Equation (6) (for example, Ghai, 1969).
The generalisation of Equation (5) for different numbers of males

and females was made by Wang (1996b), adding some covariance
terms not considered by Caballero (1994) (Equation (17)). Equation
by Wang (1996b) also allows for different numbers of males and
females varying over generations.
An excess of inbred matings (α40 in Equation (5)) has the effect of

increasing the correlation of genes within individuals and decreasing
the frequency of heterozygotes by a factor of α. It results in a decrease
in the genetic drift owing to a decrease in Mendelian segregation
variance and an increase in the genetic drift owing to an increase in
the variance of contributions among individuals. Compared with
random mating (α= 0), whether an excess (α40) or a deficit (αo0)
of inbred matings may increase or decrease Ne depends on the
variance in family size, S2k . For the case of partial selfing (Equation
(5)), inbreeding (α40) increases Ne when S2ko2 and decreases Ne

when S2k > 2. At exactly S2k ¼ 2, selfing has no effect on Ne.
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Predictions of the effective size for X-linked genes in non-random
mating populations were given by Wang (1996c). Nomura (2002a,
2005b) also provided predictions of the effective size for a variety of
mating systems in animals (see also Balloux and Lehmann (2003)).
For example, for harem polygamy, where successful males generally
mate with most or all of the females in their harem and the females
generally mate with only one male, the effective size, for a Poisson
distribution of progeny number, is better approximated by

Ne ¼ 4NmNf

2Nm þ Nf
; ð7Þ

rather than by Equation (4), showing the larger impact of male
number for this type of mating system. Other predictions of Ne for
different mating systems and overlapping generations have been
provided by Nunney (1993).
Equation (5) can also be obtained following the concept of long-

term contributions from ancestors to descendants developed by Wray
and Thompson (1990) in the context of populations under selection.
As suggested by Woolliams and Thompson (1994) and shown by
Caballero and Toro (2000, 2002), the expressions can be approxi-
mated by

NeE
2N

1þ VNð Þ 1� að Þ; ð8Þ

where V∞ is the variance of long-term contributions from ancestors to
descendants. For random mating (α= 0), V∞= 1 and Ne=N, as
expected.
For a proportion β of partial selfing, VNES2k= 2 1� bð Þ½ � if α is not

too close to 1 (Caballero and Toro, 2000), which, when substituted
into Equation (8), gives Equation (5). When the numbers of selfed and
nonselfed progeny are independently Poisson distributed, S2kE2þ 2b
(see Nomura, 1999a for a more precise prediction), and both
Equations (5) and (8) reduce to

Ne ¼ N

1þ a
ð9Þ

(Li, 1976, p. 562; Pollak, 1987; Caballero and Hill, 1992; Nordborg and
Krone, 2002). For a population with Poisson distribution of family size
and complete selfing, Equation (9) reduces to Ne=N/2. Equation (8)
can also be applied to the scenario of partial full-sib mating with the
appropriate approximation for V∞ (Caballero and Toro, 2000).
Predictions of the effective size for populations with mixed sexual

and asexual reproduction systems and discrete and overlapping
generations have been developed by Yonezawa (1997). Assuming a
monoecious plant species carrying out asexual propagation with a
proportion δ in a population of constant size N (that is, an average
progeny number of one and two for asexual propagation and sexual
reproduction, respectively), Equation (5) of Yonezawa (1997) can be
rearranged to

Ne ¼ 4N

2 1� að Þ þ S2k 1þ að Þ� �
1� dð Þ þ 4dS2c 1þ að Þ; ð10Þ

where S2c is the variance of the number of asexually produced progeny
among plants. If there is no asexual reproduction (δ= 0), Equation
(10) reduces to Equation (5), as it should. If all reproduction is asexual
(δ= 1), Equation (10) reduces to

Ne ¼ N

S2c 1þ að Þ: ð11Þ

Interestingly, if the number of asexually produced progeny is Poisson
distributed S2c ¼ 1

� �
, the expression is the same as for a sexually

reproducing partially selfed population where the numbers of selfed
and nonselfed progeny are independently Poisson distributed, that is,
Equation (9). If all individuals are homozygotes (α= 1), Ne=N/2, the
same as for a fully selfed population.
An extension of Equation (10) to overlapping generations was also

given by Yonezawa (1997). Equation (10) assumes that sexual and
asexual contributions are independent. Predictions relaxing this
assumption and extensions to more complex models were given by
Yonezawa et al. (2000, 2004). Analytical expressions for these models
of mixed sexual and asexual species were also given by Orive (1993)
and Balloux et al. (2003) using coalescence theory.
Predictions of effective size for haplo–diploid species can generally

be made by the standard formula for sex-linked genes (see review by
Caballero, 1994). Some situations occur, however, where reproduction
of these species is more complex than assumed by the simplest models.
For example, in many eusocial Hymenoptera species, males can be
produced by workers rather than only by queens. Predictions of Ne for
this scenario have been developed by Nomura and Takahashi (2012).

Populations under selection
In the absence of selection or when selection acts on a non-inherited
trait, the effective size is simply a function of the variance of the
number of offspring per parent, as in Equation (5). However, predic-
tions of Ne are more complicated when selection acts on an inherited
trait, such as when artificial selection is carried out for a quantitative
trait in animal or plant breeding, or when natural selection acts on
fitness traits against deleterious mutations or in favour of advanta-
geous ones. In these scenarios, the drift process is amplified over
generations because the random associations originated in a given
generation between neutral and selected genes remain in descendants
for a number of generations until they are eliminated by segregation
and recombination. This problem was first addressed by Robertson
(1961) and later on by other authors (for example, Wray and
Thompson, 1990; Woolliams et al., 1993; Santiago and Caballero,
1995) for directional selection in quantitative traits. Extensions of the
model were made later for populations under natural selection,
linkage, overlapping generations and animal breeding schemes, as will
be reviewed below.

Selection assuming unlinked genes. When selection acts on an
inherited trait, changes in gene frequency at a focal neutral locus are
positively correlated over generations because the selective values
randomly associated with the neutral locus are not completely
removed by segregation and recombination from one generation to
the next. For unlinked genes and weak selection, the random
association generated by sampling in a single generation is halved in
consecutive generations by segregation and recombination. Therefore,
the accumulative selective association has a limiting value Q ¼PN

i¼0 ð1=2Þi ¼ 2 times the value of the original random association
(Robertson, 1961), and the corresponding variance of the long-term
contributions of copies of the neutral gene will increase by a factor Q2.
With regards to drift, the effective variance of contributions of
individuals (with average 2) increases owing to selection by the same
factor up to 4Q2C2, where the term C2 is the genetic variance of the
individual trait measures (for the quantitative trait subject to artificial
selection or fitness-related traits in the case of natural selection)
relative to the mean of the trait in the population. This variance has to
be added to the expected variance of random contributions not caused
by selection S2k

� �
to predict the total variance of contributions. In

reality, the associations are also reduced each generation to a
proportion equal to the fraction of genetic variance remaining after
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selection (G), which, in turn, can be increased by the correlation
between the selective advantages of male and female parents (r), and
the series becomes

Q ¼
XN
i¼0

Gð1þ rÞ=2½ �i ¼ 2

2� Gð1þ rÞ ð12Þ

(Santiago and Caballero, 1995). In the case of partial selfing (or partial
full-sib mating), the term r in Equation (12) should be replaced by β (the
proportion of inbred matings), because the correlation between
the expected selective values of males and females (r) is approximately
1 for inbred matings (which take place with proportion β) and
approximately 0 for non-inbred matings, that is, Q=2/(2−G(1+β)).
Therefore, the equation accounting for selection as an extension of

Equation (5) is

Ne ¼ 4N

2 1� að Þ þ S2k þ 4Q2C2
� �

1þ að Þ: ð13Þ

Nomura (1999b, 2005a) showed that Equation (13), obtained by a
genetic drift approach, could also be derived from an inbreeding
approach by considering the variance of long-term contributions as
used by Wray and Thompson (1990) and Wray et al. (1990), when
appropriate corrections are made in the latter (see also Woolliams and
Bijma, 2000).
The application to different numbers of males and females was

given by Santiago and Caballero (1995). That equation, however,
lacked the same covariances as the equation without selection, as
shown by Nomura (1997a) and Wang (1998). For random
mating (α= 0) and Poisson distribution of family sizes S2k ¼ 2

� �
,

Equation (13) reduces to the simplest expression (Robertson, 1961),

Ne ¼ N

1þ Q2C2: ð14Þ
Equation (14) can be expressed in terms of heritability (h2) of

fertility, as shown by Nei and Murata (1966) and Nomura (2002b). Let
Vk be the observed variance of family sizes, which would be Vk ¼
S2k þ 4C2 if the decay in the cumulative effect of selection is ignored
(that is, Q= 2). The first term, S2k ¼ Vk 1� h2

� �
, is the non-heritable

component of this variance, and the second term, 4C2=Vkh
2, is the

heritable component. Thus substituting these into Equation (14) yields

Ne ¼ 4N

2þ 1þ 3h2
� �

Vk
ð15Þ

(Nei and Murata, 1966). The extension of Equation (15) to dioecious
populations was developed by Nei and Murata (1966) assuming
random union of gametes. A more general equation was developed by
Nomura (2002b), who also suggested a form of the equation that
avoids estimating the heritability,

Ne ¼ 4N

2þ Vk þ 3 covk;m þ covk;f
� �; ð16Þ

where covk,f and covk,m are the offspring–mother and offspring–father
covariances of sibship size, respectively.
The prediction of effective population size under selection with

overlapping generations was considered by Nomura (1996) and Bijma
et al. (2000). As for the non-selection case (Hill, 1979), Ne is the same
as that for populations with discrete generations having the same non-
selective and selective components of variance in lifetime progeny
numbers and the same number of individuals entering the population
each generation. Another interesting result is that the average age of
parents in populations under selection is smaller than that in

populations under no selection, as, in the former, younger parents
tend to have higher selective advantages.
Genetic marker data can be used to assist selection (that is, marker-

assisted selection (MAS)) for a quantitative trait. Nomura (2000)
investigated the predictive equation of Ne in this scenario and showed
that it depends on the relative values of the genetic (r, 0.5 for full-sib
families) and phenotypic (t) correlation between family members,
where t≈ h2/2+ c2, h2 is the trait heritability and c2 is the fraction of
the phenotypic variance owing to the shared common environments
of family members. When an index (I) is considered using individual
phenotype (P) and molecular marker (M) information with given
weights, that is, I=BPP+BMM, the effective size with MAS is reduced
relative to that for phenotypic selection alone (Equation (14)) when
tor and is increased when t4r.
The prediction of effective population size under index selection

was addressed by Wray et al. (1994), Caballero et al. (1996b) and
Nomura (1998b, 2005a). Assume truncation selection is carried out
based on an index selection of the individual phenotype (P) and the
mean phenotype of its full-sib family (Pf, including the individual),
I=Bw(P−Pf) +Bb(Pf), where Bw and Bb are the corresponding selection
weights. The effective size can then be predicted using Equation (14),
where Q= 2/(1 + kBb) and C2 ¼ S2k þ 4i2 rI � rAð Þ þ 4i2rA, where ρI
is the correlation of full sibs for the index values, ρA is the correlation
of full sibs owing to the breeding value of the parents, k= i(i− x), i is
the selection intensity and x is the truncation point in the
standardised normal distribution. This predictive equation corrects
a typographical error in a sign in the equation of Caballero et al.
(1996b, p. 77). When the whole pedigree information is available,
estimation of breeding values can be made by Best Linear Unbiased
Prediction selection. Predictions of the effective size under this
selection method were investigated by Nomura et al. (1999) Bijma
and Woolliams (2000) and Bijma et al. (2001).
Other extensions for the prediction of the effective population size

under selection refer to sex-linked loci (Nomura, 1997b; Wang, 1998),
gynodioecious species (that is, species which have both hermaphrodite
and female individuals, Laporte et al., 2000), open nucleus schemes
(Nomura, 1997c; Bijma and Woolliams, 1999) and selection on traits
affected by maternal effects (Rönnegård and Woolliams, 2003).

Selection at linked loci. The above formulations predict the rates of
inbreeding that are usually calculated by tracing paths in genealogies of
individuals. However, the real rates of inbreeding are expected to be
larger than those predictions when selection acts on a system of linked
genes. The reason for this is that the two gene copies at a neutral locus
in an individual have different probabilities of propagation to the next
generation, because they are embedded in homologous chromosomes
with different alleles at linked selected loci. The problem of predicting
Ne in populations under purifying selection with linkage (the back-
ground selection model; Charlesworth, 2013) was addressed by
Hudson and Kaplan (1995) and Nordborg et al. (1996) focussing on
the effect of selection on nucleotide diversity, by Santiago and
Caballero (1998) analysing the cumulative effect of selection over
generations with a genetic drift approach (the Robertson effect) and by
Nicolaisen and Desai (2012, 2013) using the coalescence theory. All
these papers derived the same equation for the asymptotic Ne, which is
a function of the haploid deleterious mutation rate U, the effect s of
mutations and the length L of the whole-genome or genome segment
given in Morgans,

Ne ¼ Ne�U=ðsþL=2Þ: ð17Þ
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This equation is the exponential version of Equation (14),
Ne ¼ Ne�Q2C2

, which was derived from the multiplicative fitness
model assumed under background selection. Here C2=Us is the
variance for fitness and the cumulative term, Q, for a rate of
recombination c between the neutral and selected loci, is Qc ¼PN

i¼0 ð1� sÞð1� cÞ½ �iE1=ðsþ cÞ (Santiago and Caballero, 1998). If
the focal neutral locus is located in the middle of the genome segment
and the selected loci are uniformly scattered, the average value of the
Qc

2 terms over the segment is Q2= 1/(s(s+ L/2)). Substituting this and
C2=Us in Equation (14), we obtain Equation (17).
It is important to note that this equation predicts the magnitude of

drift or inbreeding in the long term. For the focal neutral allele,
this magnitude is effectively reached after a number of generations
counted since it first appeared by mutation. Until that moment,
drift at the neutral locus is expected to increase with time. The
increasing drift acting on neutral mutations in consecutive generations
can be predicted by the partial Ne(t) values for generation t forward in
time that can be calculated using the partial cumulative terms
Qc tð Þ ¼

Pt
i¼0 1� sð Þ 1� cð Þ½ �i ¼ ð1� e� sþcð ÞtÞ=ðsþ cÞ (Santiago and

Caballero, 1998). An equivalent conclusion was reached by Nicolaisen
and Desai (2012, 2013) from the point of view of the coalescent
process. The consecutive Ne(− t) values that predict the increasing
probability of coalescence under selection t generations backwards in
time (thus the negative sign) reach an asymptotic value given by
Equation (17) and the predictions of the partial Ne values given by
both methods, forward and backward, are exactly the same for any
generation t,

NeðtÞ ¼ Neð�tÞ ¼ Ne�
Us
L=2

R L=2

0
Q2

cðtÞdc: ð18Þ
Illustrations of the decline in Ne(t) over generations are given in Figure
3 of Santiago and Caballero (1998) and Figure 3 of Nicolaisen and
Desai (2013). This shows that the distortion of coalescent genealogies
under selection and the cumulative effect of selection over generations
are both specular images of the same process. Moreover, the pattern of
neutral variation in populations under selection can be predicted by
accumulating the expected distributions of neutral mutations origi-
nated in all the previous generations with the corresponding con-
secutive effective sizes given by the Ne(t) values (Santiago and
Caballero, 1998; Nicolaisen and Desai, 2012, 2013). This means that
the intensity of genetic drift varies over mutations that occurred at
different generations backward in time. Therefore, strictly speaking,
there is not a single Ne value representing the intensity of the drift
process and, consequently, the amount and spectrum of variation
under selection, even in populations at mutation–selection–drift
equilibrium.
If mutations are advantageous (selective sweep model), predictions

are generally cumbersome, because the genetic variance at selected loci
is a function of the gene frequencies. Moreover, the stochastic
distribution of selective sweeps over time is far away from the constant
flux of variation usually assumed to simplify derivations. Wiehe and
Stephan (1993) and Gillespie (2000) derived equations for the
expected heterozygosity at neutral loci using a model in which
recurrent favourable mutations pass quickly through the population
to fixation, wiping out linked variation. The first key simplification in
these derivations is that the time of fixation of favourable mutations is
so short relative to the timescale of genetic drift that it can be
considered as occurring instantaneously. The second simplification is
that the rate of recovery of neutral variation after a selective sweep is
very slow when compared with the rate of occurrence of the sweeps.
The recurrent substitutions lead to a roughly constant level of neutral

variation in a stochastic process that is often referred to as ‘genetic
draft’. A simple solution for Ne can be obtained by directly applying
the concept of variance of long-term contributions to an evolutionary
timescale:

Ne ¼ N

1þ 2Nyy2
ð19Þ

(Gillespie, 2000), where θ is the rate of selective sweeps and y is the
final frequency of the neutral copy that was initially associated with the
favourable mutation when it first appeared. The frequency of this
neutral copy is expected to increase to Ny copies after the sweep, and
the frequency of each of the other 2N−1 copies is expected to be
reduced to (1− y) copies. Therefore, the variance of the expected long-
term contributions for a single selective sweep is about 2Ny2. As
selective sweeps occur at a rate θ, the second term of the denominator
in Equation (19) is the total variance of the expected long-term
contributions, that is, Q2C2 in Equation (14).

Effective population size in conservation practices
The concept of effective size is key to conservation genetic practices, as
it summarises the past history of the population regarding inbreeding
and genetic drift and provides the prospects for the sustainability of
the population if the current effective size is maintained in the future.
The effective population size is directly related to the statistics widely
used to monitor conservation breeding schemes, such as the number
of genome equivalents Nge≈Ne/t (Lacy, 1995), where t is the number
of generations of management.
Minimising the loss of genetic variation is one of the main

objectives of captive breeding programmes. This is achieved through
minimising genetic drift and, therefore, maximising Ne. A classical
strategy to follow is the equalisation of family sizes. By choosing one
couple from each pair of parents, the variance of parental contribu-
tions is null S2k ¼ 0

� �
, and from Equation (1), Ne≈ 2N (Wright, 1938;

Crow, 1954), which is twice the effective size of an unmanaged
population with a Poisson distribution of family size. This is known as
minimal inbreeding and it is the recommended procedure for
applications in germplasm collection and regeneration in plants (see,
for example, Vencovsky et al., 2012). However, effective sizes 42N
can actually be obtained by population subdivision (Wright, 1943;
Wang and Caballero, 1999) and other strategies, as shown below. The
extension of the strategy in the case of different numbers of males and
females was developed by Gowe et al. (1959). In their selection
scheme, each male contributes one son and rfm=Nf /Nm daughters,
and each female contributes one daughter and has a probability of
Nm/Nf of contributing one son. Thus S

2
f m ¼ Nm=Nf

� �
1� Nm=Nf

� �� �
and all of the other variances and covariances in Equation (2) are 0.
Substituting these into Equations (2) and (3) gives

Ne ¼ 16NmNf

3Nf þ Nm
: ð20Þ

Compared with no selection (random Poisson distribution of the
number of offspring per parent, Equation (4)), this scheme can
increase Ne by a proportion of (rfm+3)/(3rfm+1). When the female/
male ratio, rfm=Nf/Nm, is 2, for example, Ne is increased by 71.4%.
Wang (1997c) proposed an alternative design that produces further

increases in Ne of about 17% when rfm= 2. In this scheme, among the
rfm females mated with each male, one is selected at random to
contribute one son and each of the remaining rfm− 1 females contri-
butes one daughter. In this scenario, S2f m is as for Equation (20),
but S2f f ¼ 2Nm=Nf , and a negative covariance is induced between
the numbers of male and female offspring from female parents,
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Sfm,ff=−Nm/Nf. Substituting these terms into Equations (2) and (3),

Ne ¼
16NmN2

f

3N2
f þ 2N2

m � NmNf
: ð21Þ

The benefit of this scheme over that from Gowe et al. (1959) is
decreased as rfm gets larger. For sex-linked loci, a benefit is also
produced if males are the heterogametic sex. The above equations
refer to random mating of parents. Wang (1997c) also proposed a
system of non-random mating in which each male is mated with one
of the groups of half-sib females who are not sisters of the male. This
is a sort of population subdivision where the half-sibs are like
‘subpopulations’ and there is random migration of males and no
migration of females among the ‘subpopulations’ (see Wang and
Caballero, 1999). The mating scheme can further increase Ne over that
predicted by Equation (21).
Wang (1997c) method applies to a single generation. Sánchez et al.

(2003) extended the method across generations to account for long-
term contributions, further improving its efficiency. With the avail-
ability of pedigree or molecular marker information, a more general
method, based on finding the contributions from parents to progeny
that minimise the average coancestry among the progeny (minimum
coancestry contributions), is the most widely proposed criterion to
maintain genetic diversity (Toro and Pérez-Enciso, 1990; Ballou and
Lacy, 1995; Fernández et al., 2003; Meuwissen, 2007). This method has
been shown to minimise the variance of the long-term contributions
from ancestors to descendants and, therefore, to maximise effective
population size (Caballero and Toro, 2000, 2002).
The above methods are all designed to reduce the variation in

family sizes, the term S2k in Equation (1) and its corresponding
components when the numbers of males and females are different
(Equation (2)). It is also possible to increase the effective population
size by decreasing the Mendelian segregation variance, which is
represented by the constant term ‘2’ in Equation (1). This latter can
be achieved by the use of MAS to minimise the variation in
contribution between the paternally and maternally derived genes at
a locus (Wang and Hill, 2000). Thus, for example, for equal numbers
of males and females and equalisation of individual contributions, Ne

can be expressed as

Ne ¼ 2N

Pm;mf þ Pf ;mf
; ð22Þ

where Pm,mf (Pf,mf) is the probability that the two genes coming from
the male (female) parent and contributing to their male and female
progeny are copies of the same gene. By MAS, it is possible to reduce
these probabilities below the value of 0.5 expected under no control of
Mendelian segregation, depending on the amount of marker informa-
tion, the genome size and the number of marker-genotyped offspring
per family, achieving values of Ne42N. MAS can also be used in a
more general framework of different numbers of males and females to
minimise global genetic drift and inbreeding (Wang, 2001a).
An alternative and complementary method is to use reproductive

technologies for meiosis manipulation, such as in vitro culture of
premeiotic germ cells and microinjection of primary spermatocytes
into oocytes. By using more than one gamete from a single meiosis,
variation from Mendelian segregation can be partially or completely
removed (Santiago and Caballero, 2001). Thus, for example, if
equalisation of family sizes is carried out and the gametes from both
male and female parents are managed to come from the same meiosis
in each case, the resulting effective size becomes 3N, rather than the
typical 2N.

The control of the increase in inbreeding and genetic drift in
conservation programmes is mainly addressed by reducing the
variances of genetic contributions between paternally and maternally
derived genes within and between individuals by equalising family
sizes and minimising Mendelian segregation variance, as discussed
above. A minor contribution to this control can also be achieved by
the avoidance of inbred matings and other types of non-random
mating. The simple avoidance of sib mating has a very minor effect
(Wang, 1997d) and methods such as the maximum avoidance of
inbreeding proposed by Wright (1921) have a higher, although still
relatively low, impact. These can be carried out after the design of
parental contributions has been implemented (Caballero et al., 1996a;
Meuwissen, 2007). Alternatively, avoidance of inbreeding and optimal
parental contributions can be realised in a single step (Fernández et al.,
2004) by the so-called mate selection method. Systems of mating
involving circular (half-sib mating) (Kimura and Crow, 1963b;
Theodorou and Couvet, 2010) or rotational schemes (Nomura and
Yonezawa, 1996) generally reduce the ultimate rate of inbreeding but
at the cost of higher initial rates (Robertson, 1964), so that their use in
conservation is not recommended because of the high risk of
extinction from inbreeding depression. Some methods are of parti-
cular application in selection programmes, such as the compensatory
mating proposed by Santiago and Caballero (1995), where individuals
from large families are mated to individuals from small ones. This
produces negative correlations between the drift caused by selection
and the drift caused by sampling, partly counteracting the cumulative
effect of selection represented by the term Q in Equation (12). This
system of mating in combination with maximum avoidance of
inbreeding allows for a substantial reduction of inbreeding
(Caballero et al., 1996a).
A conservation strategy of high relevance in fisheries is supportive

breeding (Hare et al., 2011), where a population is typically divided
into a captive and a wild group and the offspring of the captive group
are released into the wild habitat to mix with the offspring from the
wild group. Because the captive group (permanent or transitional) is
bred to produce a lot of offspring that are released into the wild group
at each generation, the variance in family size is greatly elevated
artificially and thus the Ne of the entire population is reduced.
Ironically, the more successful the supportive programme is in
augmenting the wild population, the greater the reduction in Ne and
the greater the loss of genetic diversity in the total population
(supportive+wild). This paradox is overcome only when successful
supportive breeding in augmenting the wild population is carried out
over a long period of time such that the excessive drift and inbreeding
in the initial generations of supportive breeding is compensated for by
weaker drift and inbreeding in later generations because of the increase
in census size. Ryman and Laikre (1991), Ryman et al. (1995) and
Wang and Ryman (2001) have provided approximations for the
inbreeding and variance effective sizes, respectively, which can be
different in this case, with one generation of supportive breeding.
Nomura (1998a) obtained an expression of Ne from the change in
coancestry, which agrees with the variance effective size, as expected.
In this scenario, with various census sizes and a mixture of groups,
predictions depend, however, on the generations considered (see
Ryman et al., 1999).
For endangered species in the wild, estimating the effective

population size and monitoring its changes over time is important
in understanding the genetic health, evaluating the risk of inbreeding
and inbreeding depression and thus the risk of extinction, assessing the
effectiveness of the genetic managements (for example, human-aided
migration/relocation, habitat protection or modification) and
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projecting the future demographic trajectories of the populations.
Simulations (Tallmon et al., 2010) showed that monitoring the
effective size is most often a more robust means of identifying stable
and declining populations than monitoring census size. If a population
is detected to have a small or declining Ne, the managers of the
populations should be alerted to investigate the causes and to take
effective measures for reversing the course. Using noninvasive
sampling (for example, from faeces, feathers, hair and so on), genetic
marker data can be obtained from a population even without
observing (disturbing) the animals. The data can then be analysed
normally, except for accounting for the possibility of genotyping errors
and allowing for a high frequency of missing data (for example, Wang,
2004), in estimating Ne. For example, in a long-term monitoring
project, Kamath et al. (2015) sampled and genotyped (at 20 micro-
satellite loci) 729 Yellowstone grizzly bears (Ursus arctos) born in the
period 1962–2010 from an isolated and well-studied population in
the Greater Yellowstone Ecosystem. They used the data to study the
population demographic trajectories, estimating the changes in Ne and
generation interval, over this time period.

METHODS FOR ESTIMATING THE EFFECTIVE POPULATION

SIZE FROM GENETIC DATA

Given the concepts of effective size, different approaches can be used
to predict the effective size of a population from its demographic
parameters, such as census size and variance of reproductive success.
In parallel, different methodologies can also be developed to estimate
the realized effective size of a population from its genetic properties
revealed by genetic markers, such as temporal changes in allele
frequency and linkage disequilibrium (LD).
Quite a few methods (Schwartz et al., 1999; Beaumont, 2003a;

Wang, 2005; Palstra and Ruzzante, 2008; Luikart et al., 2010; Gilbert
and Whitlock, 2015) have been developed and applied to estimating
Ne in widely different spatial and timescales, from ancient, past to
current (parental) population sizes. Herein we focus on the effective
size of the current generation or just a few generations in the past, as
this timescale is the most relevant for conservation genetics (Luikart
et al., 2010) and plant and animal breeding and is most likely to yield
accurate estimates in current practices.

Heterozygosity excess
Compared with an infinitely large population at Hardy–Weinberg
equilibrium, a population generated from a number of Nm male
parents and a number of Nf female parents is expected to show a
deficit of homozygotes and an excess of heterozygotes at a neutral
locus when Nm, Nf or both are small. This is because male and female
parents are expected to have different allele frequencies owing to drift.
The smaller the value of Nm or Nf, the greater the difference between
paternal and maternal allele frequencies and thus the greater the excess
in heterozygosity of the offspring population. There is a simple
functional relationship between the Ne of the parental population
and the amount of heterozygosity excess in the offspring population
(for example, Robertson, 1965; Wang, 1996a). For a Wright–Fisher
ideal population except for separate sexes with Nm male and Nf female
parents, the heterozygosity excess is expected to be

DE� 1

8Nm
� 1

8Nf
¼ � 1

2Ne
; ð23Þ

where Ne= 4NmNf/(Nm+Nf) is the effective size of the parental
population given by Equation (4). The value of D is negative,
indicating an excess of heterozygosity and a corresponding deficit of
homozygosity. For a non-ideal population with arbitrary distributions

of family sizes, Equation (23) is still valid when Nm and Nf are replaced
by Nem and Nef, respectively, the effective numbers of male and female
breeders.
Equation (23) suggests that measuring the heterozygosity excess, D,

at a number of marker loci in a population yields an estimate of the
parental population effective size. Pudovkin et al. (1996) proposed
such a Ne estimator by accounting for the sampling effect,

N̂ e ¼ 1

2D̂
þ 1

2ðD̂ þ 1Þ; ð24Þ

where the observed heterozygosity excess is estimated by
D̂ ¼ Ĥ e=ðĤ e � Ĥ oÞ, Ĥ e ¼ 2p̂ð1� p̂Þ is the expected heterozygosity
from the observed gene frequency p̂ and Ĥ o is the observed
heterozygosity. D̂ is calculated for each allele in a multiallelic locus
and for each locus, and the average value is used in Equation (24)
(Luikart and Cornuet, 1999). The accuracy of the estimator was
evaluated by Pudovkin et al. (1996) using simulations and was applied
to a few empirical data sets (Luikart and Cornuet, 1999). The method
is simple and is implemented in several computer programs (for
example, Zhdanova and Pudovkin, 2008; Jones and Wang, 2010; Do
et al., 2014). However, the method has a low precision and accuracy,
frequently providing infinitely large estimates of Ne for small popula-
tions. The estimator is also highly sensitive to non-random mating
(for example, population subdivision, close relative mating), which
also causes deviation from Hardy–Weinberg equilibrium. Its poor
performance renders it useless in applications to empirical data set
analysis, except when the actual population size is very small and
marker information is ample.

Linkage disequilibrium
In a large unselected random mating population, alleles are indepen-
dent within and between loci, producing Hardy–Weinberg equili-
brium and linkage equilibrium. In a finite population, however,
random genetic drift leads to associations between alleles at a locus
and between alleles of different loci. The former results in hetero-
zygosity excess, and the latter leads to gametic LD. In addition to drift,
LD can also be induced by factors such as migration and direct or
indirect (for example, hitchhiking) selection (Hedrick et al., 1978). For
neutral loci unlinked with selected loci in an isolated population under
random mating, LD would come exclusively from genetic drift and
can be used to estimate Ne (Hill, 1981).
An LD estimator of Ne for a random mating population at

equilibrium is based on the formulation (Hill, 1981),

E r2
� � ¼ V r½ � ¼ ð1� cÞ2 þ c2

2Necð2� cÞ þ 1

n
; ð25Þ

where c is the recombination rate (c= 1/2 for unlinked loci), r is the
correlation of allele frequencies between two loci owing to LD and n is
the sample size (number of sampled individuals). In an equilibrium
population, allele frequencies at two neutral loci are expected to be
uncorrelated (that is, E[r]= 0), such that the expectation of squared r,
E[r2], is equal to the variance of r, V[r]. Equation (25) shows that V[r]
is composed of two distinctive parts. The first comes from genetic
drift, determined by Ne and linkage c. The second comes from
sampling, determined by sample size n. Using the genotypes at a
number of loci of n sampled individuals, we can estimate V[r], which
can then be inserted in Equation (25) to obtain an estimate of Ne if the
recombination fraction c between loci is known. Note that a slightly
different expression for the population V[r] (that is, the first part on
the right-hand side of Equation 25) was derived by Sved (1971) from
an identity by descent approach. For a dioecious population with
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monogamy, the right side of Equation (25) should be increased by
c/(2Nec(2− c)) (Weir and Hill, 1980).
Hill (1981) also derived the formula for the sampling variance of

the estimator such that uncertainties of the Ne estimates can also be
evaluated. For the case of no linkage, Waples (2006) showed by
simulations that the LD estimator can seriously underestimate Ne

when sample size is small. He derived empirical equations to correct
for the bias caused by small sample sizes and showed by simulations
that the accuracy of the modified estimator is comparable to the
temporal method described in the next section. To facilitate the
applications of the LD estimator, Waples and Do (2008) published a
computer program, LDNE, and further evaluated its performance in
comparison with the temporal method, using simulated data (Waples
and Do, 2010). They concluded that, under similar conditions in
terms of marker information and the actual population size, LD
estimator can yield Ne estimates that have equivalent or better qualities
than the temporal estimators, except when the sampling interval of the
temporal method is long.
The LD estimator is simple to calculate and requires just a single

sample of multilocus genotypes instead of two or more samples, as is
with the temporal method (see below). It is especially suitable for
species with a long generation interval where obtaining two samples
separated by a couple of generations means many years and for genetic
monitoring (Schwartz et al., 2007) to track population trajectories on a
yearly basis. As a result, the LD estimator has gained popularity in
recent years (Palstra and Ruzzante, 2008; Luikart et al., 2010).
However, some assumptions inherent to the LD estimators are often
violated in real populations and as a result may lead to biased Ne

estimates. For example, it is assumed that LD is produced solely from
the finite population size, and other confounding factors, such as non-
random mating and population structure, are absent. Any departure
from random mating (for example, an excess or deficit of close
relatives mating including selfing) will affect LD and thus LD-based
estimates of Ne. Waples et al. (2014) evaluated the effect of age
structure on LD estimators and found that LD calculated from mixed-
age adult samples is overestimated and thus Ne is underestimated in all
of the 21 simulated species with different life tables. Similarly, the LD
in a subpopulation is reduced by a constant and high rate of
immigration and elevated by a low rate of immigration, compared
with that of an isolated population of the same Ne. Therefore, as
observed by Waples and England (2011) in their simulation study, LD
calculated from a sample from a subpopulation leads to an over-
estimate or an underestimate of local Ne when immigration rate is
high or low, respectively. In the former case, the estimated local Ne

converges to the global Ne of the entire population (Waples and
England, 2011).
LD is highly dependent on the recombination rate between loci

(Hill, 1981). Pairs of closer linked loci have higher LD and thus
provide better information about Ne (suitably defined in timescale) if
the linkage information among loci is known. Although Hill (1981)
derived his LD estimator of Ne allowing for an arbitrary level of
linkage and he advocated the use of linked markers, most often
unlinked markers are used in practice because either truly unlinked
markers are used or potentially linked markers are used but their
linkage relationship is unknown. LD of markers of different recombi-
nation rates sheds light on the effective size of the population in
different time periods in the past (Wang, 2005). Quite a few methods
(Hayes et al., 2003; Barbato et al., 2015; Mezzavilla and Ghirotto, 2015;
Saura et al., 2015) have been developed to exploit the LD information
from many densely spaced markers on a chromosome segment in
inferring the Ne at different time points in the past.

Temporal changes in allele frequency
For an infinitely large population under Hardy–Weinberg equilibrium,
both allele frequencies and genotype frequencies remain unchanged
over time. In reality, these frequencies never stay constant and change
systematically owing to the forces of mutation, selection and migra-
tion, stochastically due to the random force of genetic drift, or both. In
the absence of the action of all of the systematic forces in a population,
any observed allele frequency change must come solely from genetic
drift and can thus be used to infer the rate of drift or the Ne of the
population. Based on this logic, Krimbas and Tsakas (1971) proposed
to measure allele frequency changes at a number of marker loci
between two temporally separated samples of individuals and thereby
to estimate the Ne of the population during the sampling interval. This
so-called ‘temporal method’ was subsequently developed by many
others in both (allele frequency) moment (for example, Nei and
Tajima, 1981; Pollak, 1983; Waples, 1989) and likelihood (for
example, Williamson and Slatkin, 1999; Anderson et al., 2000;
Wang, 2001b; Berthier et al., 2002; Beaumont, 2003b; Laval et al.,
2003) approaches.
Moment estimators calculate a standardised variance in the

temporal changes of allele frequency, F, from marker genotypes in
two temporally spaced samples. F is essentially similar to Wright’s FST,
the differences being that F measures the temporal differentiation for
the same population and it also includes sampling effect. There are a
few F estimators (for example, Nei and Tajima, 1981; Pollak, 1983)
available, the one being widely applied was derived by Nei and Tajima
(1981). This estimator is calculated by

F̂ ¼ 1

k

Xk

i¼1

ðxi � yiÞ2
ðxi þ yiÞ=2� xiyi

; ð26Þ

for a locus with k alleles, where xi and yi are the observed frequencies
of allele i in the first and second samples, respectively. For multiple
loci, F̂ is obtained by averaging single-locus estimates. The expectation
of F̂ depends on the sampling schemes (sampling with or without
replacements) and is a function of Ne and sample sizes to account for
genetic drift and sampling effects. Solving the expectation equation of
F̂ for Ne yields the temporal estimate of the (harmonic) mean Ne

during the sampling period (Nei and Tajima, 1981; Waples, 1989).
Moment estimators rely on the summary statistic, F, which is

simple to calculate. However, they do not use the full allele frequency
information and are thus less accurate than the probabilistic methods.
The latter, likelihood or Bayesian, are much more complicated in
statistical modelling and in computation. In general, temporal
methods provide good estimates of Ne when it is not large, sampling
interval is not too short (for example, one generation) and the
assumptions of the methods are satisfied, using a typical set of 10–20
microsatellites. Likelihood methods generally have higher accuracy and
precision than moment methods, especially for markers with rare
alleles, as verified by several extensive simulations (for example, Wang,
2001b; Berthier et al., 2002; Tallmon et al., 2004). They are, however,
much more computationally demanding than moment methods,
which complete an analysis almost instantly. Recently, the computa-
tional efficiency of likelihood methods has been improved substan-
tially by Hui and Burt (2015), using a hidden Markov algorithm and
applying continuous approximations to allele frequencies and transi-
tion probabilities. The new method can deal with Ne values as high as
several millions and is implemented in an R package called NB.
A constraint on the applications of temporal approaches is the

requirement of at least two samples taken at one or preferably more
generations apart. The longer this sampling interval, t, is, the stronger
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the drift signal will be in the temporal data and the more accurate the
Ne estimate will become. The extent of drift is proportional to t and is
inversely proportional to Ne. For the same population and the same
sampling intensity (in terms of the number of markers, number of
samples and number of individuals per sample), increasing the
sampling interval t could improve the accuracy of the temporal
methods tremendously, as has been repeatedly verified by simulations
(for example, Nei and Tajima, 1981). Moment estimators have
especially low accuracy when t is small (say, to3) because of the
weak drift signal and also because of the approximations made to the
estimators. In practice, it is unfortunately difficult or unrealistic to
increase t, especially for long-lived species having a long generation
interval.
Compared with other Ne estimating approaches, the temporal

approach makes fewer assumptions and is more robust to some
complications (realities) in real populations. For example, the
approach is robust to population structure. It applies to a single
unsubdivided population under non-random mating (including self-
ing) and to a subdivided population when sampling is representative
and the aim is to estimate the Ne of the entire subdivided population
rather than that of a single subpopulation. It is also robust to age
structure in a population with overlapping generations, so long as the
sampling interval t is large (for example, Nei and Tajima, 1981). When
t is small, however, Waples and Yokota (2007) showed by simulations
that typical sampling regimes (sampling only newborns, only adults
and all age classes in proportions) result in biased Ne estimates. Jorde
and Ryman (1995) developed a moment estimator of Ne applicable to
populations with overlapping generations. They derived an age–
structure correction factor, which, when applied to the standard
moment estimator for populations with discrete generations, leads to
unbiased Ne estimates for populations with overlapping generations.
Unfortunately, however, the correction factor is a function of
numerous age-specific survival rates and age-specific reproduction
rates of the focal population. These rates are usually unknown. In fact,
once all these rates are known for a population, the Ne of the
population can be calculated from standard Ne prediction equations
(for example, Felsenstein, 1971; Hill, 1972, 1979) without the need of
genetic data. A method to calculate the Ne of a population with
overlapping generations from its demographic parameters has been
implemented in an R-package Neff (Grimm et al., 2016).
The standard temporal approach for a single unsubdivided popula-

tion was also extended to estimate the Ne of a subpopulation that is
connected to other subpopulations by gene flow (Wang and Whitlock,
2003). Although both drift and immigration change allele frequencies
of a subpopulation, the detailed patterns of the changes are different
between drift and immigration. Using temporal samples from a focal
subpopulation and a sample from a large source population (the
island–mainland model) or from two focal subpopulations (the
island–island model), a moment estimator and a likelihood estimator
can yield joint estimates of Ne and migration rates, m. Simulations
showed (Wang and Whitlock, 2003) that both moment and likelihood
estimators gave reasonably good estimates of Ne and m under typical
sampling intensities. However, no estimators are available for the more
general case of multiple (n42) subpopulations. Part of the difficulty is
with the number, n2, of parameters to be jointly estimated, including n
effective sizes and n(n− 1) migration rates. More work is badly needed
in this direction as spatial and temporal genotype data are becoming
easy to collect thanks to the rapid developments in molecular
technologies.
One of the assumptions in the temporal approach is the absence of

selection so that any change in allele frequency comes solely from drift

and thus indicates the effective size of the population. For most
marker loci, the assumption is valid, especially for a small population
over a short sampling interval of just a few generations. However, over
a long period, some loci could be affected by adaptive selection or
purging selection and their allele frequencies could change faster or
slower than those of neutral loci unaffected by selection. Allele
frequencies at neutral loci could also evolve faster or slower because
of LD with those under selection. The temporal methods have been
extended to estimate Ne of a population and the selection coefficient, s,
of a locus from time series data of allele frequencies (for example,
Bollback et al., 2008; Mathieson and McVean, 2013; Foll et al., 2015).
These methods are usually Bayesian, based on hidden Markov models
to explain the observed allele frequency changes owing to drift and
selection. How well these methods perform has yet to be checked,
perhaps by a simulation study.

Relatedness and relationship
The pattern of genetic relatedness or relationship between individuals
in a population has a direct functional relationship with the inbreeding
effective size of the population (Wang, 2009). Two individuals taken at
random from a population with a smaller Ne will have a higher
probability of sharing the same father, mother or both. More
generally, the mean and variance in pairwise relatedness within a
generation are expected to increase with decreasing Ne. Based on this
logic, Nomura (2008) proposed a method to use the increase in
average coancestry between two consecutive generations to estimate
Ne. He showed by simulations that his coancestry method is more
biased but more precise than the heterozygosity excess method. The
overall accuracy (measured by mean squared errors) of the two
methods is similar. A major problem which causes the bias of the
method, as recognised by Nomura (2008), is that some non-sib pairs
must be selected from a sample of individuals to act as reference in
estimating the mean coancestry. The selection of non-sib pairs is
difficult and somewhat subjective, because it is now well known that
classifying dyads into even well-separated relationship categories, for
example, full sibs, half sibs, parent offspring and unrelated, from
pairwise relatedness estimates is highly error prone (for example,
Blouin et al., 1996). Although many marker-based pairwise relatedness
estimators are unbiased, they have high sampling errors with no
exceptions (Wang, 2014).
A more robust and powerful method is to estimate the frequencies

of half-sib (sharing a single parent) and full-sib (sharing both parents)
dyads, QHS and QFS, in a sample taken at random from a single cohort
of a population (Wang, 2009; Waples and Waples, 2011). Wang
(2009) derived a formula of Ne in terms of half- and full-sib
frequencies using both an inbreeding and a drift approach,

1

Ne
¼ 1þ 3a

4
QHS þ 2QFSð Þ � a

2

1

Nm
þ 1

Nf

� �
: ð27Þ

The equation has the parameter α as in Equation (5), so that the Ne

for a population under non-random mating (for example, partial
selfing) can be estimated. While QHS and QFS can be estimated from a
sibship assignment analysis of the multilocus genotypes (Wang and
Santure, 2009; Jones and Wang, 2010), α can be estimated from the
same data with an FST-like approach (Wang, 2009). Alternatively, α
can be assumed to be 0 for an outbred population when marker
genotype frequencies do not deviate significantly from those expected
under Hardy–Weinberg equilibrium. The difficulty comes from the
estimation of the numbers of breeding males, Nm, and females, Nf,
because sibship analysis generally makes no distinctions between
paternal and maternal sibships from autosomal marker data,
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except in some specific situations (Wang, 2009). However, as
detailed in Wang (2009), the bias brought about by the last term of
Equation (27), a

2ð 1
Nm

þ 1
Nf
Þ, is usually negligible because α is usually

small and the estimate of 1
Nm

þ 1
Nf

by a sibship analysis is also not too
far from its true value.
There are several advantages of this sibship approach compared

with other single-sample approaches to Ne estimation. First, sibship
can be inferred more accurately than other quantities such as
relatedness, which leads to more accurate estimates of Ne. Second,
the approach applies to non-random mating populations, as an
inbreeding coefficient α (Equation (5); equivalent to Wright’s FIS)
can be calculated from the genotype data and incorporated into the Ne

estimate. Similarly, the approach is also robust to population subdivi-
sion, as discussed by Wang (2009). Third, it applies to diploid species,
haplodiploid species, dioecious as well as monoecious species with
selfing. Fourth, a great advantage is that it provides not only an
estimate of the summary parameter Ne but also some information
about the numbers of male and female parents and variance in family
sizes through the sibship assignment analysis. This detailed informa-
tion is especially valuable for conservation management, as a low Ne

owing to high variance in family size or a low number of parents
would imply different management strategies. Simulations verified that
the approach is much more accurate than the heterozygosity excess
method and is similar in accuracy to the temporal methods (Wang,
2009). However, it is unclear how its accuracy compares with that of
the LD method. More work is needed to clarify this issue.
The above sibship frequency approach assumes a population with

discrete generations. For a population with overlapping generations,
the estimate provided by the sibship frequencies in a sample of single-
cohort individuals is the effective number of breeders, Nb. This
parameter summarises the effects of variation in reproductive success
between age classes, between sexes and between individuals within an
age–sex class on genetic drift in a single breeding season, instead of in
a lifetime. It is less useful than Ne, and no population genetic
equations are in terms of Nb. However, in the absence of an estimate
of Ne, Nb provides some information about the risks of inbreeding and
loss of genetic variation in conservation populations (for example,
Waples and Antao, 2014; Whiteley et al., 2015). For the case of
overlapping generations, Wang et al. (2010) proposed a parentage
assignment method to estimate the Ne and generation interval from
the sex, age and multilocus genotype information of a single sample of
individuals taken at random from a population. Essentially, the
method estimates the life table by parentage assignments, and both
Ne and generation interval are then calculated from the life table.
Simulations showed that the method yields unbiased and reasonably
accurate estimates of Ne under realistic sampling and genotyping
effort. Application of the method to empirical data yields sensible Ne

estimates that are supported by other sources of information from the
population (Kamath et al., 2015).

Multiple sources of drift/inbreeding information
The above approaches to Ne estimation use a single source of
information, such as heterozygote excess, LD, temporal allele fre-
quency changes and sibship/parentage frequencies. Each piece of
information reflects a facet of the stochastic process (genetic drift or
inbreeding) and combining multiple pieces of information may
potentially allow for a better delineation of the process and thus yield
a more accurate estimate of Ne. Tallmon et al. (2008) proposed to use
approximate Bayesian computation (ABC) to estimate Ne from a
sample of microsatellite genotypes. Their method, implemented in a
computer program ONESAMP, calculates and uses eight summary

statistics that are known to have functional relationships with Ne

from population genetic theory or simulations. These statistics include,
among others, the number of alleles per locus, expected hetero-
zygosity, LD, Wright’s FIS and the mean and variance of multilocus
homozygosity. In essence, the ABC approach simulates populations of
different Ne and tries to find the Ne value that yields the same or
similar summary statistics to those calculated from the real data.
Tallmon et al. (2008) demonstrated this ABC approach by analysing
an introduced increasing population of ibex Capra ibex.
It is arguable that the ABC approach uses more information than

other approaches. On the one hand, it uses multiple sources of
information such as heterozygosity, number of alleles and LD.
However, on the other hand, for each source of information, it uses
a summary statistic rather than the full information that is used by the
probability methods (likelihood or Bayesian). Furthermore, it is
unclear how these different summary statistics should be optimally
weighted, given that these statistics are, apparently, highly correlated
and may reflect the inbreeding and drift processes of different
timescales. For a population changing in size, these different summary
statistics are relevant for Ne in different timescales. For example, FIS
(similar to heterozygosity excess) is pertinent to the parental Ne, and
LD implicates Ne in the past few or more generations (depending on
the linkage of the markers), while the number of alleles can be
determined by the ancient Ne many generations (in the order of Ne or
1/u, whichever is smaller, where u is mutation rate) ago. So far, an
extensive simulation study to compare the accuracy of ABC and other
approaches is lacking but is urgently needed.

DISCUSSION

Since the seminal work of Wright (1931, 1933), great progress has
been made on the pivotal population genetic parameter, Ne, in its
concepts (for example, inbreeding, variance, eigenvalue effective sizes
and so on), its predictions for various species under different mating
systems and population structures and its estimation methodologies
using various marker information. In parallel, estimates of Ne, from
both demographic and genetic data, have been made for many
populations in the past 30 years, thanks to the rapid developments
in both molecular technologies and statistical and computational
methodologies.
Much work has been carried out to predict the effect of selection on

Ne. However, developing useful predictive models on the effect of
selection acting on an inherited trait remains difficult. The reason is
that the impact of linked genes propagates over a number of
generations, resulting in a long-term effect that is difficult to combine
in a simple equation with parameters referred to only one generation
time. Coalescence theory runs into similar difficulties in predicting Ne,
because the probabilities of coalescence for consecutive generations are
not independent under selection on an inherited trait. In addition to
the variation of Ne across generations, there is also variation over the
genome. It is nowadays quite clear that there is a significant
heterogeneity in levels and patterns of genetic variation across the
genome caused by selection (Charlesworth, 2009; Gossmann et al.,
2011), which complicates the inferences of Ne.
Another important remaining problem about selection is the inter-

relationship between Ne and genetic variation. Most equations of Ne

are linear functions of the census size N where genetic variation of the
selected trait is an independent variable. However, genetic variation
itself depends on Ne. Ignoring this fact is irrelevant for some purposes
but is troublesome in some models of closely linked loci. This
reciprocal dependence is on the basis of the Hill–Robertson effect
(Hill and Robertson, 1966) and Mullerś ratchet (Haigh, 1978), both
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being different aspects of the same issue, an additional reduction of
genetic variance owing to genetic drift induced by selection.
Demographic estimation of Ne can be made by application of the

predictive equations reviewed here when information on census sizes,
variances of progeny numbers, type of mating system and other
demographic data are available. The lack of these data and the
increasing availability of genetic markers make the estimation of Ne

through genetic data to be, however, the leading procedure. Most
factors affecting the populations in real situations imply a reduction of
the effective size relative to the census size. In fact, the observed ratio
Ne/N has been found to be about 10–20% (Frankham, 1995; Palstra
and Fraser, 2012) on average in meta-analyses across many species and
populations. Overall, these figures are in agreement with theoretical
expectations obtained from some of the predictive equations presented
in this review when fluctuations in population size are considered
(Vucetich et al., 1997). However, this average Ne/N ratio may be an
overestimate, as marine species are under-represented in these meta-
analyses and can have extremely low Ne/N ratios.
Each Ne estimation method with genetic data is based on a certain

population genetic model and has a number of assumptions. It is
important to realise that, when these assumptions are violated, which
is unfortunately the rule rather than the exception in the real world, an
estimation method may yield invalid or biased estimates of Ne. For
example, most methods reviewed herein assume an isolated random
mating population with discrete generations. Yet, in practice such
populations are rare. The robustness of different methods has not been
fully investigated.
Another important issue is the interpretation of the estimates

obtained from a certain method. First, what is the spatial scale
relevant to an Ne estimate? Is it the effective size of the local popu-
lation from which samples are taken or that of the metapopulation of
which the sampled local population is a part? Apparently, the local and
metapopulation effective sizes are very different in quantities and in
applications. Local and metapopulation Nes signify the intensities of
inbreeding and genetic drift processes at the local and global levels,
respectively. A small local Ne but a large global Ne (that is, many small
interconnected populations) and a large local Ne but a small global Ne

(that is, a few large interconnected populations) have different
ecological, evolutionary and conservation genetic implications.
Second, what is the temporal scale relevant to a Ne estimate

(Waples, 2005)? Is it the Ne of the sampled population, of the parental
population, of an ancestral population or the average Ne over several/
many previous generations? The heterozygosity excess method and
sibship methods estimate the parental population Ne, and temporal
methods estimate the (harmonic) average Ne over the generations in
the sampling interval, while LD and ABC methods estimate the
average Ne over an unspecified number of previous generations
(Wang, 2005). Of course, the temporal scale becomes irrelevant for
a population with a constant unchanging demography. In practice,
however, a natural population never stays the same.
Third, does the estimate refer to inbreeding or variance effective

size? The question is irrelevant for the case of an isolated population
with a constant demography or an incompletely subdivided (that is,
with migration) population of constant size, as the inbreeding (NeI)
and variance (NeV) effective sizes are the same. Otherwise, however,
NeI and NeV can be dramatically different. A decreasing (increasing)
population will always have an NeI greater (smaller) than NeV, because
the former and latter depend on the stochastic processes in the
parental and the offspring generations, respectively (Crow and
Kimura, 1970; Caballero, 1994; Wang and Caballero, 1999). Although
usually unspecified in the original work describing the estimators, they

estimate NeI, NeV or a combination of both. The heterozygosity excess
and sibship method estimate NeI, while the temporal methods estimate
NeV. It is unclear what the LD and ABC methods estimate, but they
likely estimate a combination of both NeI and NeV.
Fourth, are the estimators unbiased and accurate when their

underlying assumptions are met and are violated? Most estimators
are not fully evaluated for their performances and statistical behaviours
by simulation studies, especially those that are computationally
intensive. In measuring the overall accuracy of an estimator, both
precision and bias should be considered and better incorporated into a
single measurement, such as mean squared errors. It is better to
measure the mean squared errors of 1/(2Ne) rather than Ne, because
the latter can be infinitely large and, more importantly, it is invariably
1/(2Ne) rather than Ne that enters a population genetic equation
(Wang and Whitlock, 2003). The dominating factor in determining
accuracy is precision and bias when marker information is scarce and
ample, respectively.
More work is also needed in developing estimators that make fewer

restrictive assumptions and thus are more widely applicable to real
populations. A common challenge to the current estimators is
population genetic structure, including age structure (that is, over-
lapping generations) and spatial structure (that is, population sub-
division with migration). Blindly applying an estimator developed for
a single isolated population with discrete generations under random
mating to an age- or space-structured population may yield unpre-
dictable results.
Most current estimators have good performance for a population

with a small Ne, partly because the drift or inbreeding signal is strong.
For a large population with Ne in the thousands or more, drift and
inbreeding in the population is weak and is thus difficult to pick up by
the typical sampling intensity (say, ~ 100 individuals, 10–20 micro-
satellites). With the rapid developments of genotyping (sequencing)
technology, an increasing number of studies use many genome-wide
markers to investigate population structure and demography. Use of
thousands of single-nucleotide polymorphisms may compensate for
the weak signal of stochasticity in a large population and thus may
allow for a good estimate of large Ne. Future work is needed in
evaluating current methods to estimate large Ne using many markers.
It can be reasonably assumed that, for an accurate estimate of Ne (say,
a narrow 95% confidence interval of roughly (0.5Ne, 2Ne)) by any
efficient method, a sample size of individuals, of the total number of
effective alleles across loci or of both in the order of Ne might be
required.
A related issue with large Ne and many markers is the computa-

tional efficiency of likelihood or Bayesian estimators. Efficient algo-
rithms, such as that proposed recently for the likelihood temporal
estimator (Hui and Burt, 2015), are urgently needed to deal with big
data sets. Another option is to exploit the modern multicore and
multi-CPU computers and to parallel computer program codes using
techniques such as MPI (Message Passing Interface) and OpenMP.
In some applications, the parameter, Ne, is all that is required in

describing the current and predicting the future genetic variation in a
population, and the demographic details that determine Ne are
irrelevant. In other applications such as the conservation management
of endangered species, however, both Ne and the demographic details
of the population are useful in designing the most effective manage-
ment to maintain the genetic diversity (Wang, 2009). When a
population is estimated to have a small Ne and thus is prone to the
loss of genetic variation, we may ask what the causes are. Is the small
Ne caused by a small number of breeders, by a large variance in
reproductive success among breeders, by an unbalanced sex ratio and
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so on? Different causes imply different optimal management strategies.
The utility of future Ne estimators could be improved if they provided
joint estimates of Ne and important demographic quantities, such as
variance of reproductive success.
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