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Life-history traits and effective population size in species
with overlapping generations revisited: the importance of
adult mortality

RS Waples

The relationship between life-history traits and the key eco-evolutionary parameters effective population size (Ne) and Ne/N is
revisited for iteroparous species with overlapping generations, with a focus on the annual rate of adult mortality (d). Analytical
methods based on populations with arbitrarily long adult lifespans are used to evaluate the influence of d on Ne, Ne/N and the
factors that determine these parameters: adult abundance (N), generation length (T), age at maturity (α), the ratio of variance to
mean reproductive success in one season by individuals of the same age (ϕ) and lifetime variance in reproductive success of
individuals in a cohort (Vk•). Although the resulting estimators of N, T and Vk• are upwardly biased for species with short adult
lifespans, the estimate of Ne/N is largely unbiased because biases in T are compensated for by biases in Vk• and N. For the first
time, the contrasting effects of T and Vk• on Ne and Ne/N are jointly considered with respect to d and ϕ. A simple function of d
and α based on the assumption of constant vital rates is shown to be a robust predictor (R2=0.78) of Ne/N in an empirical data
set of life tables for 63 animal and plant species with diverse life histories. Results presented here should provide important
context for interpreting the surge of genetically based estimates of Ne that has been fueled by the genomics revolution.
Heredity (2016) 117, 241–250; doi:10.1038/hdy.2016.29; published online 8 June 2016

INTRODUCTION

Virtually all evolutionary processes depend to some extent on effective
population size (Ne) that directly determines the rates of stochastic
processes such as genetic drift and loss of neutral genetic variability
and also influences the effectiveness and predictability of selection and
migration. Effective population size is an elegantly simple concept that
rapidly becomes complex when simplistic assumptions are confronted
with practical realities. Because obtaining the demographic data to
calculate Ne directly is challenging in natural populations, effective size
is often estimated using indirect genetic methods that quantify a
genetic index that is theoretically linked to Ne (Wang, 2005; Luikart
et al., 2010).
Ne accounts for disparities among individuals in lifetime reproduc-

tive success. This is particularly difficult to measure in iteroparous
species with overlapping generations because it is necessary to
integrate information on production of offspring across multiple years
or seasons. The most general and widely used method for calculating
Ne in species with overlapping generations was developed by
Hill (1972):

Ne ¼ 4N1T

Vk� þ 2
: ð1Þ

In this formulation, N1 is the number of offspring produced each
time period, T is generation length and Vk• is lifetime variance in
reproductive success (production of offspring) among the N1 indivi-
duals in a cohort. Although generation length is straightforward to
calculate from basic life-history information, Vk• is more challenging

because it requires integrating reproductive contributions across
entire lifetimes of individuals with variable lifespans and expected
fecundities.
Much of what we know about how life-history traits influence Ne

and the ratio of effective size to census size (N) when generations
overlap is because of a body of work by Len Nunney during the 1990s
(Nunney, 1991, 1993; Nunney and Elam, 1994; Nunney, 1996). These
studies evaluated the influence of a variety of factors, including
primary and secondary sex ratio, mating system, variation in
fecundity, generation length and the way N is defined in computing
the Ne/N ratio. However, most of these evaluations involved simplify-
ing assumptions and approximations that considered the effects of
varying one factor while holding others constant. In reality, however, a
variety of life-history traits that can change over the course of an
individual’s lifetime jointly affect recruitment, generation length,
variance in reproductive success and hence both Ne and Ne/N.
This study adopts a three-pronged approach to revisit the general

question of how life-history traits influence Ne and the Ne/N ratio
when generations overlap. First, ‘true’ Ne is calculated using a recently
developed method (AgeNe; Waples et al., 2011) based on the
population’s vital rates (age-specific patterns of survival, fecundity
and variance in reproductive success). This allows one to directly
calculate the elusive parameter Vk• in Hill’s equation.
Next, analytical methods explore how a single parameter (annual

rate of adult mortality) affects the other factors that determine Ne and
Ne/N. This produces some simple relationships that allow one to
predict the Ne/N ratio that has been the subject of much controversy
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in the literature (Husband and Barrett, 1992; Hedgecock, 1994;
Frankham, 1995; Nunney, 1995; Vucetich et al., 1997; Kalinowski
and Waples, 2002). Finally, performance of these analytical relation-
ships is evaluated using artificial life tables and a large published data
set of vital rates for 63 species of vertebrates, invertebrates and plants.
Results provide heuristic insights into the factors that determine Ne/N
and show that a simple function of adult mortality can be a robust
predictor of that key ratio.

MATERIALS AND METHODS

Notation and the AgeNe model
AgeNe is a discrete-time, age-structured model with separate sexes that requires
one to specify a finite number of time steps that represent a maximum lifespan.
Here we assume that the time steps are years, but periods such as days, weeks or
months can also be used and might be appropriate for some species (see
Waples et al., 2013 for examples of each). Following Felsenstein (1971) and Hill
(1972), the underlying model used here assumes that population size is
constant, age structure is stable and probabilities of survival and reproduction
are independent across time.
Table 1 summarizes the notation used. Following Nunney and Elam (1994),

N is defined as the adult population size (all mature individuals, including those
that might not breed in a given year). In the model, x is used as an index of age,
and hence Nx represents the number of individuals alive at any given time that
are age x. Age-specific vital rates that we will be concerned with include
mx=mean number of offspring per year produced by an individual of age x;
sx=probability of survival from age x to age x+1; dx= 1− sx=probability of
dying between age x and age x+1; and lx= cumulative survival through age x
(with l1= 1 and lx ¼

Q
x41

sx�1). This formulation of cumulative survivals

corresponds to a prebreeding census in which individuals are counted just

before breeding and age-one individuals (‘newborns’) are actually almost 1-year

old (Caswell, 2001, equation 2.40). When survival varies with age, it can be

useful to calculate the geometric mean survival rate (s), the constant adult

survival rate that would produce the observed value of lx at age ω: ðsÞo�a ¼ lo,

so s ¼ lo
1=ðo�aÞ, assuming la is set to 1.0. The analogous term d ¼ 1� s is a

useful way to approximate the annual rate of adult mortality when it varies

by age.
Finally, to calculate Vk• AgeNe requires age-specific information on variance

in reproductive success. If Vx is the variance in number of offspring produced
in one time period among all individuals of age x, then ϕx=Vx/mx= the ratio
of the variance to mean reproductive success in one time period for individuals
of age x. In the AgeNe model, each of these vital rates and reproductive
parameters can take different values for males and females, but for simplicity in
the notation below and in Table 1, sex-specific indices are not used. Although
AgeNe can accommodate any primary sex ratio, it is assumed here that the sex
ratio of recruits is 1:1, but the adult sex ratio can depart from unity because of
different survival rates and/or different rates of maturation between sexes.
In the default AgeNe model, age at maturity (α) is the youngest age at which

reproduction can occur, and ω is the maximum realistic age. Adult lifespan
(AL) is then defined as the maximum number of seasons in which an
individual can reproduce and is given by AL=ω−α+1 (the ‘+1’ term accounts
for the fact that an individual could potentially reproduce in years α and ω and
every year in between). As discussed below, a better definition of age at
maturity would be the first age at which at least 50% of the survivors of a
cohort have matured, and hence that definition is used here.
Hill (1972) used N1 to represent the number of individuals in a newborn

cohort. In practice, N1 can be defined in terms of any life stage up to age at
maturity, provided that Vk• is measured for these same cohorts of recruits.
Because of the interest in adult census size, focus here instead is on Nα= the
number of recruits in a cohort that survive to age at maturity. The underlying
model assumes a constant N, and hence relative fecundities are scaled to
produce a constant number of Nα recruits each year. Random mortality before
age at maturity of course will reduce the number of recruits that survive to
become adults, but it has no effect on the Ne/N ratio that is the primary
interest here.

Analytical explorations
The core analyses here involve analytical exploration of how changes in vital
rates and reproductive parameters affect N, T, Vk• and hence Ne and Ne/N.

Table 1 Notation used in this paper

N Adult population size (all mature individuals)

Nx Number of individuals alive at any given time that are age x
N1 Number of offspring produced each year

Nα Number of offspring produced each year that survive to age at maturity and hence are considered recruits

Ne Effective population size per generation

α Age at maturity (first age at which at least 50% of the individuals are mature)

ω Maximum age

sx Probability of survival from age x to age x + 1

dx = 1− sx=probability of dying between age x and age x + 1

lx Cumulative survival through age x
s Constant survival that would produce the observed value of lx at age ω; s ¼ lo1=ðo�aÞ , with la set to 1.0

d Constant probability of dying associated with s; d ¼ 1� s
mx Mean number of offspring that survive to age of recruitment produced per time period by an individual of age x
T Generation length; T=Σxlxmx/Σlxmx= average age of parents at birth of a cohort

Vk• Lifetime variance in reproductive success among individuals in a single cohort

k� Mean lifetime reproductive success of individuals in a single cohort; k� = 2 in a stable population

~ Indicates an estimate based on analytical results for populations with arbitrarily long adult lifespans (~T , ~N , ~V k�, ~Ne)

SSx The sum of squared numbers of offspring produced in one time period by individuals of age x
Vx Variance in number of offspring produced in one time period by individuals of age x; Vx=SSx/Nx−mx

2

ϕx Ratio of the variance to the mean reproductive success in one time period of individuals of age x; ϕx=Vx/mx

kðzÞ� Mean lifetime reproductive success of individuals that die at age z
Dz Number of individuals that die after reproducing at age z
SSz The sum of squared numbers of lifetime offspring produced by individuals that die at age z
Vk(z)• Lifetime variance in reproductive success of individuals that die at age z; V k zð Þ� ¼ SSz=Dz � kðzÞ�
ϕz Ratio of the variance to the mean lifetime reproductive success of individuals that die at age z; fz ¼ V k ðzÞ�=kðzÞ�
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Most of these are based on a model that assumes adult lifespan can be
arbitrarily long and hence involve sums of infinite series. Proofs for the
solutions to these infinite series can be found in the Supplementary
Information. Because all real populations have finite longevity, the degree of
bias that results when these relationships are applied to finite life tables was
evaluated.

Sensitivity analysis with empirical data
Although the analytical evaluations considered a range of age-specific patterns
of vital rates, real populations have complex mixtures of life-history traits that
often do not correspond to assumptions of simple models. Therefore,
robustness of the analytical results was evaluated by applying them to a large
data set of published life tables for a diverse group of species, from seaweed and
polychaetes to chimpanzees and pine trees. Original sources, full life tables and
notes for each of the 63 species are given in the online appendices to Waples
et al. (2013). A summary of the data for each species that were used in this
study can be found in Supplementary Table S1. The modified life table
produced by Waples and Antao (2014) was used for the loggerhead turtle. To
deal with diverse types of data reported for these species, Waples et al. (2013)
adopted a simple rule to define age at maturity: the first age that has a non-zero
probability of producing offspring. But this can be misleading in literal
conversion of stage-based matrices (as in the case of the loggerhead turtle),
or if a small fraction of individuals mature early. Accordingly, each species was
reviewed according to the conceptual definition (see above) that age at maturity
is the first age for which at least half of the survivors are adults. Information on
age-specific probability of maturity was available for some species; if not, for
species in which fecundity increased with age, age at maturity was increased
until the ratio mx/mx+1 was approximately 0.5 or higher. If males and females
had different age-specific fecundity, this was done separately for each sex and
an average taken across males and females. Because N represents the number of
adults alive at any given time in the population, changes in α also required
adjustments to adult census size. The net result was changes to α and N for
several species (see Supplementary Table S1). In addition, s and d were
calculated for each species as described above.

RESULTS

Analytical results
Population size. If N1 newborns each year survive to age 1, the
number of individuals alive at each age x41 is Nx=N1lx, and the total
census size is

NT ¼
X
x¼1;o

Nx ¼
X
x¼1;o

N1lx ¼ N1

X
x¼1;o

lx:

With Nα recruits reaching age at maturity each year, the adult census
size is

N ¼ Na

X
x¼a;o

lx; ð2Þ

where lα (survivorship to age at maturity) is defined to be 1.

Constant vital rates. Consider a simple model in which annual
survival is constant (all sx= s and all dx= d) and maximum age can be
arbitrarily large. Under these conditions, the survivorship function
lx= (1− d)x-1= 1, 1− d, (1− d)2, … for x= 1, 2, 3, … As x can be
arbitrarily large, Σlx is an infinite sum that can be shown to equal 1/d
(see Supplementary Material online). Therefore, the adult census size
is given by

N ¼ Na

X
x¼a;o

lx ¼ Na

d
: ð3Þ

That is, adult census size is simply the number of recruits per year
divided by the annual mortality rate. Although this result is exact for
an infinite series, all natural populations have a finite number of age

classes, and hence an ‘~ ’ is used to denote an estimate for practical
applications.

~N ¼ Na

X
x¼a;o

lx ¼ Na

d
: ð3aÞ

Survival declines with age. In many species, including humans and
many large mammals with Type I survivorship, adult mortality
increases with age. This can be modeled with a type of Gompertz
function where mortality increases each year by a constant factor λ41
according to the compound interest principle. If dα is annual
mortality at age of maturity, then dx,x4α= dαλ

x-α, sx= 1− dαλ
x-α, and

lx ¼
Q

sx�1.
Figure 1 shows some typical patterns of Type I survival for different

adult lifespans. These curves all used dα= 0.05 and solved for λ as the
value that would produce lx= 0.01 at the end of the adult lifespan
(when x=ω). Applying this criterion produced λ= 2.695, 1.43, 1.137
and 1.038 for adult lifespans of 5, 10, 20 and 40 years, respectively. The
Gompertz function does not lend itself to the infinite series analysis
because eventually the mortality rate will exceed 1, which is
biologically impossible. Therefore, numerical methods were used to
generate results for the scenarios shown in Figure 1, as well as
comparable scenarios with different levels of initial mortality (dα).
These results are shown in Supplementary Table S2. For each
scenario, it is possible to calculate d ¼ 1� s that, using an analog
of Equation (3), can be used to produce estimates of adult census
size as

~N � ¼ Na

d
: ð4Þ

As shown later, Equation (4) will underestimate adult census size
when mortality increases with age.
Another simple way to model increasing adult mortality is to have

annual survival be inversely proportional to age: sx= 1− dx= f(1/x).
As an example, consider a population with sx= 1/x. In this case

Σlx= 1+1/x+1/x2…, and hence
PN
1
lx =

PN
0

1
x!= e= 2.718. Thus, overall

Figure 1 Typical patterns of Type I survival in species with adult lifespans of
5, 10, 20 and 40 years. Annual mortality at age of maturity was dα=0.05;
dx increased each year by the proportion λ that was chosen to produce
cumulative survivorship of lx=0.01 at the maximum age. The filled circles
are d ¼ 1� s, the constant mortality rate that would produce the same
cumulative survivorship over the adult lifespan.
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population size is NT= 2.718N1, the same result expected in a
population with constant mortality at level d= 1/(2.718)= 0.368.

Generation length. Generation length does not depend on population
size or the number of recruits—only on age-specific vital rates.
A general definition (see, for example, Charlesworth, 2009) is the
mean age of parents of a cohort of newborn offspring:

T ¼
P

xlxmxP
lxmx

; ð5Þ

with the term in the denominator accounting for population growth
rate. We are interested in stable populations, in which case Σlxmx= 2.
(Note that if we were only counting production of females by females,
we would use Σlxmx= 1, as is common in ecology. However, Ne

requires considering reproduction in terms of genetic contributions by
both sexes, and hence in a stable diploid population Σlxmx= 2 as each
parent on average contributes half the genes to two offspring.)

Constant vital rates. If fecundity is constant, all mx=m and the
fecundity terms cancel, producing this general result:

T ¼
P

xlxP
lx

assumes constant fecundityð Þ ð6Þ

As Σlxmx=mΣlx= 2 when fecundity is constant, m= 2/Σlx. If adult
mortality is also constant, then Σlx= 1/d (from above), implying that
m= 2d. That is, in a stable population with constant vital rates, the
mean number of offspring produced each year by an individual is
twice the annual mortality rate, d.
As Σlxmx= 2 in our stable population, T=Σxlxmx/2= 2dΣxlx/2=

dΣxlx. It can be shown (see Supplementary Information online) that
Σxlx= (1/d)2. Therefore,

T ¼ d
X

xlx ¼ d
1

d

� �2

¼ 1

d
: assumes constant vital rates and a ¼ 1ð Þ ð7Þ

That is, with constant survival and fecundity, the generation length
is simply the inverse of the annual mortality rate. Nunney (1991)
obtained a similar result. Note that in this model of constant vital
rates, T is also the multiplier by which one expands N1 to get total
population size NT, as in Felsenstein (1971).

Delayed age at maturity. Equation (7) equals 1/d if the summation
begins from x= 1, which in effect assumes that age at maturity is
α= 1. More generally, assume that age at first maturity is α, and from
that age on the demographics follow the patterns described above in
terms of annual changes (or not) in vital rates. Delayed maturity can
be accommodated by simply resetting the age index to 1 at age α, as in
Equation (2). For generation length, we also have to account for the
fact that each individual is α− 1 years older when it reproduces than is
the case when α= 1. Therefore, a general expression for generation
length in our constant vital rate model is

T ¼ 1=d þ a21 assumes constant vital ratesð Þ: ð8Þ

Survival declines with age. Under Type I survivorship with constant
fecundity, it is still the case that T=Σxlx/Σlx (Equation (6)), but
Equation (7) no longer applies. Supplementary Table S2 records the
values of Σxlx, Σlx and T that apply to the Type I survival scenarios
described above. As expected, generation length increases with adult
lifespan and declines when initial adult mortality is higher. We also see

from Supplementary Table S2 that ~T � ¼ 1=d, which is a naive
estimate of generation length computed by replacing constant d in
Equation (7) with d, underestimates true T for short adult lifespans.
For a model in which fecundity is constant but adult survival

declines with age such that sx= 1/x, we showed above that Σlx= 2.718
and census size is the same as would be found in a population
with constant mortality at level d= 1/(2.718)= 0.368. This model
also produces Σxlx= 5.437, and hence generation length is
T=Σxlx/Σlx= 5.437/2.718= 2.0 as compared with T= 1/d= 2.718 if
mortality were constant and α= 1.

Fecundity increases with age. Although constant fecundity with age
might be approximately true for many species (for example, birds,
many mammals), in species with indeterminate growth (as in many
plants or ectotherms with indeterminate growth) fecundity commonly
increases with size and age. For illustration, we evaluate a single
scenario of this type, where fecundity is proportional to age: mx= xβ.
We want to find the value of β that will produce a stable population, in
which case Σlxmx= 2. Substituting for mx leads to Σxlxβ= 2= βΣxlx.
From above we know that Σxlx= (1/d)2, so β= 2d2 and mx= 2xd2.
From above we also have T=Σxlxmx/2, and substituting for mx

produces T= d2Σx2lx. It can be shown (see Supplementary
Information) that Σx2lx= (2-d)/d3, so

T ¼ 2� dð Þd2=d3 þ a21
¼ 2� dð Þ=d þ a21 ðassumesmxpxÞ: ð9Þ

Figure 2 shows how generation length varies as a function of
patterns of adult survival and fecundity. Because T is a function of 1/d,
generation length increases very rapidly when adult mortality drops
below ∼ 0.2.

Variance in reproductive success. AgeNe calculates lifetime variance in
reproductive success among individuals in a cohort (Vk•) in a three-

Figure 2 Relationship between adult survival (assumed to be constant at
annual rate 1−d) and generation length (T) and lifetime variance in
reproductive success (Vk•). These are analytical and numerical results based
on relationships in Equations (8, 9, 11 and 12). Three scenarios are
considered: constant fecundity (m) with ϕ=1; fecundity that is proportional
to age (mx= βx) with ϕ=1; and mx and ϕ both proportional to age. Changes
in ϕ do not affect generation length, and hence in the last scenario the
curve for T vs 1−d is also given by the black dashed line. When survival is
constant with age, the rate of increase of adult N with increasing survival is
identical to the rate of increase in T with constant vital rates (solid
black curve).
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step process that takes advantage of fact that a variance is the mean of
the squares minus the square of the mean: V ¼ SS=n� k

2
, where SS

is the sum of squares of n observations and k is the mean. A simple
rearrangement gives SS ¼ nðV þ k

2Þ. AgeNe sequentially builds the
overall SS in this three-step process and then uses the above relation-
ship to calculate the overall variance. The first step is the user-input
values for ϕx=Vx/mx, the ratio of the variance to the mean
reproductive success of individuals at age x. This means that
Vx=ϕxmx, which is just a scalar times the mean fecundity for age x,
and n=Nx, which is the number of potential parents of age x over
which the variance is computed, and hence SSx=Nx(ϕxmx+mx

2).
The next step is to group the individuals within a cohort by age

at death (for example, all those that die at age z). The number of
individuals that die after reproducing at age z but before reaching
age z+1 is Dz=Nz–Nz+1=N1(lz–lz+1). These Dz individuals have
the same expected lifetime reproductive success kðzÞ� ¼ Smx,
with the summation from age at maturity through age z. The
lifetime variance in reproductive success among individuals that
die at age z (VkðzÞ�) and the value of fz ¼ VkðzÞ�=kðzÞ� depend on
age-specific patterns of vital rates as described below. Once ϕz and
VkðzÞ� are calculated, then SSz= the sum of squared lifetime
offspring numbers for all individuals dying at age z is obtained
as SSz ¼ DzðVkðz�Þ þ Smxð Þ2Þ.
Finally, the overall ΣSSz for lifetime reproductive success of all N1

individuals in a cohort is obtained by summing across all ages at death,
and that is used to compute Vk� ¼ SSSz=N12k�. Because the mean
lifetime number of offspring per individual must be k� ¼ 2 in a stable
population,

Vk� ¼
X

SSz=N124:

Constant vital rates. If we assume constant survival and fecundity,
then Dz=N1[(1-d)

z-1–(1 − d)z]. At each age up to and including
age z, this group of individuals has produced a mean of m= 2d
offspring/individual, and hence the mean lifetime production
through age of death is kðzÞ� ¼ Smx ¼ 2dz. For the moment,
we assume that ϕ does not vary by sex or age, in which case
ϕz=ϕ and VkðzÞ� is just the product of ϕ and the lifetime
mean reproductive success of individuals that die at age z:
VkðzÞ�= ϕkðzÞ� = 2ϕdz, and hence SSz=Dz ½2ϕdz þ ð2dzÞ2�. Sub-
stituting from above produces the following for overall lifetime
reproductive success:

Vk� ¼
Xo
z¼a

SSz=N1 � 4

¼
Xo
z¼a

Dz ½2ϕdz þ ð2dzÞ2�� �
=N1 � 4

¼
Xo
z¼a

N1½ð1� dÞz�1 � ð1� dÞz �½2ϕdz þ ð2dzÞ2�� �
=N1 � 4

¼
Xo
z¼a

½ð1� dÞz�1 � ð1� dÞz �½2ϕdz þ ð2dzÞ2�� �� 4:

ð10Þ
This equation is not very tractable analytically, but numerical
methods show that the relationship is actually very simple and
perfectly linear (see Figure 2). Equation (10) produces a family of
relationships between Vk• and annual survival (1 − d) that are
parallel to that for ϕ= 1 but have intercepts that are higher by the

amount 2ϕx (Supplementary Figure S1). The general relationship
therefore can be expressed as

Vk� ¼ 4 1� dð Þ þ 2f assumes sx;mx; and f are constant with ageð Þ:
ð11Þ

The intercept (2ϕ) gives the value of Vk• when annual survival is 0,
corresponding to a semelparous population with discrete genera-
tions. In this case, and (assuming ϕ= 1), the entire population
behaves like an ideal population with variance in reproductive
success equal to the mean (More precisely, an ideal population has
random variance in reproductive success, in which case Vk is the
binomial variance: Vk ¼ kðN � 1Þ=N . This is very close to the
Poisson variance (where the variance equals the mean) unless N is
very small.)

Survival declines with age. For the model above with constant
fecundity and survival the inverse of age (sx= 1− dx= 1/x), we can
numerically solve for Vk• by modifying the formula for Dz to account
for the different age structure. For this scenario, the result is
Vk� ¼ 2:414, compared with the value expected (4.528) for a constant
mortality scenario with d= 0.368 (from Equation (10) with ϕ= 1).

Fecundity increases with age. We can accommodate effects of
changes in fecundity on Vk• as follows. When fecundity is constant,
mean lifetime production of offspring for individuals that die at age z
is 2zd. When fecundity is proportional to age, mx= 2xd2, and hence
mean lifetime reproductive success of individuals that die at age z is
Σ2xd2= 2d2Σx, where the summation is taken through age z.
Implementing this modification and summing across ages at death
produces the following result for lifetime variance in reproductive
success of an entire cohort:

Vk� ¼
Xo
z¼a

1� dð Þz�1 � 1� dð Þz� �
2ϕd2

Xo
x¼a

x þ 2ϕd2
Xo
x¼a

x

 !2" #" #

� 4 assumes mx p xð Þ:
ð12Þ

Results are plotted in Figure 2. A polynomial of the form Vk� ¼
16 1� dð Þ þ 4 1� dð Þ2 þ 2f that accommodates the quadratic effect
of mortality on fecundity provides an essentially perfect fit to the
numerical results (R2 ~ 1.0). Note that when fecundity increases with
age, Vk• rises very sharply with increases in adult survival, because in
that case more individuals live to older ages and make dispropor-
tionate contributions to overall production of offspring.

Variance in reproductive success increases with age. Equations
(10–12) assume that ϕ can take different values but does not vary
with age. If we assume that ϕ and mx are both proportional to
age (ϕx= βx), the result gets complicated because the overall ratio
ϕz=Vk(z)•/kðzÞ� for individuals that die at age z is a function of the ϕx

values for each age. It can be shown that ϕz is the weighted mean of
the ϕx values, with the weights being proportional to the cumulative
mean reproductive success of individuals that die at age z; results are
depicted in Figure 2. Supplementary Table S3 summarizes the general
patterns of change in key life-history parameters described above.

Effective size and the effective to census size ratio. The above informa-
tion can be integrated as follows to develop estimators of Ne and Ne/N
for a couple of common scenarios.
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Constant vital rates:

~NeE
4Na 1=d þ a� 1ð Þ
4 1� dð Þ þ 2fþ 2

¼ Na 1=d þ a� 1ð Þ
3þ fð Þ=2� d

; ð13Þ

~Ne= ~NE
1þ d a� 1ð Þ
3þ fð Þ=2� d

: ð14Þ

If ϕ= 1, this reduces to

~Ne= ~NE
1þ d a� 1ð Þ

2� d
: ð15Þ

If α= 1, this further simplifies to

~Ne= ~NE
1

2� d
: ð16Þ

Fecundity proportional to age:

~NeE
4Na 2� dð Þ=d þ a� 1½ �

16 1� dð Þ þ 4 1� dð Þ2 þ 2fþ 2
; ð17Þ

~Ne= ~NE
4d 2� dð Þ=d þ a� 1½ �

16 1� dð Þ þ 4 1� dð Þ2 þ 2fþ 2
: ð18Þ

If α= 1, this reduces to

~Ne= ~NE
2 2� dð Þ

8 1� dð Þ þ 2 1� dð Þ2 þ fþ 1
: ð19Þ

If in addition ϕ= 1, this further simplifies to

~Ne= ~NE
2� d

d2 � 6d þ 6
: ð20Þ

Bias assessment. Biases associated with model misspecification were
evaluated in two ways. First, all results based on solutions to infinite
time series are subject to bias when applied to populations with finite
lifespans. Second, results based on simple assumptions such as
constant vital rates are subject to bias when age-specific patterns of
survival, fecundity and variance in reproductive success do not
correspond to assumptions. The first issue was evaluated numerically
using computer-generated data for adult lifespans of varying lengths,
and the second issue was evaluated using published life tables for over
60 species (see next section).
Figure 3 addresses the first issue for the three key parameters that

determine the Ne/N ratio: N, T and Vk•. These scenarios all had
constant adult mortality at a rate of either d= 0.1 or 0.4, constant
ϕ= 1 and either constant fecundity (top) or fecundity proportional to
age (bottom). Several points can be made from results shown in this
figure. First, as adult lifespan increases, the estimates converge on the
theoretical values predicted from the solutions to infinite series. This
demonstrates that those solutions are asymptotically correct. Second,
the rates of convergence for all parameters are faster when mortality is
higher. This is logical, as high adult mortality ensures that few
individuals live very long, and hence short life tables capture most
of the biologically relevant information. Third, the rates of conver-
gence are slower (and hence typical biases more severe) when
fecundity increases with age. This is also logical, as the consequences
of truncating life tables will be more severe when the oldest individuals
have the highest reproductive output. Finally, using the estimators
based on the infinite series leads to overestimates of all of these
parameters.

When fecundity is constant (Figure 3, top), relatively little bias
occurs for any of the parameters when d= 0.4, but all three (and
especially T) have a strong upward bias for d= 0.1 unless adult lifespan
is ⩾ 20 years. The pattern is similar when fecundity is proportional to
age (Figure 3, bottom), except the upward bias is generally higher and
the strongest bias occurs with Vk•. Qualitatively similar patterns of bias
are seen when ϕ is held constant at 5 (Supplementary Figure S2), with
one difference. Because N and T do not depend on ϕ, increasing ϕ
only affects Vk•, and the bias in at short lifespan is actually reduced
when ϕ is larger. This occurs because the effects of large and constant
ϕ are influential for young ages, even if few individuals live very long.
The consequences for estimates of Ne and Ne/N of these biases in ~T ,

~N and ~V k� are seen in Figure 4. When fecundity is constant and
d= 0.1, ~Ne has a strong upward bias for adult lifespans o20 years,
reflecting an even stronger upward bias in ~T (Figure 3 top). However,
this strong bias in Ne does not lead to appreciable bias in Ne/N,
presumably because the upward bias in T is offset by the combined
upward biases of Vk• and N, both of which reduce the ratio Ne/N.
When fecundity is proportional to age and d= 0.4, both Ne and Ne/N
are effectively unbiased if AL ⩾ 20 years. When mortality is low, Ne/N
has a persistent downward bias until AL is well over 40 years.
Figure 5 shows biases associated with estimating T and N for

species with Type I survivorship, based on the scenarios shown in
Supplementary Table S2. It is apparent that using d in Equations (4)

Figure 3 Bias in estimates of key demographic parameters when applying
analytical results based on infinite series to populations with finite adult
lifespan. These scenarios used constant adult mortality at the levels
indicated, constant ϕ=1 and either constant fecundity (top) or fecundity
proportional to age (bottom). ‘Estimated’ parameters were based on the
expectations from infinite series analysis and ‘True’ values were calculated
for the actual time series using the AgeNe method described by Waples
et al. (2011).
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and (7) can be expected to substantially underestimate both T and N
in all but the longest-lived species, with the downward bias in ~N being
stronger. These underestimates occur because the survivorship curve is
consistently higher for Type I survival than it is assuming constant
mortality to produce the same end point, and T and N are both
functions of Σlx.
Figure 6 integrates results obtained in this paper for all key

parameters into an overall assessment of the expected value of the
Ne/N ratio as a function of adult mortality. These results assume
constant survival and either constant fecundity or fecundity propor-
tional to age. Results are presented for two ages at maturity (1 and 5)
and two values of ϕ (1 and 4). Although these results are only
asymptotically correct for populations with long adult lifespan, they
are useful heuristically to illustrate the relative importance of some key
variables. With age at maturity fixed at one year (top panel) and ϕ
fixed at 1, expected Ne/N varies from4 0.9 to ∼ 0.5 when fecundity is
constant and from ∼ 0.8 to 0.33 when fecundity is proportional to age.
These results are consistent with the conclusion by Nunney (1993)
that Ne/N should generally be 40.5 and only rarely as low as 0.25;
they are also generally consistent with empirical estimates of single-
generation Ne/N reviewed by Frankham (1995).
However, two other factors can substantially reduce or increase the

Ne/N ratio. First, even if all individuals mature at age 1, Ne/N is lower
if reproductive success of same-age individuals is overdispersed
(ϕ41). In that case, whether fecundity is constant or increases with
age has little effect, as the Ne/N ratio is driven by ϕ that is only mildly
sensitive to adult mortality and hence adult lifespan. Because lifetime
Vk• increases in direct proportion to ϕ (Figure 2), the Ne/N ratio
approaches 0 as ϕ becomes arbitrarily large. As discussed below, this has
relevance to the hypothesis of Hedgecock (1994) of sweepstakes
reproductive success. Vk• can also become very large in species with
low adult mortality if ϕ increases with age (Figure 2). Second, every year
of delayed maturity increases generation length by 1 year (equation (8))
but by itself has no effect on the other parameters. Because Ne is
proportional to T (equation (1)), increasing age at maturity increases
both Ne and Ne/N, as others have reported (Nunney, 1993; Waite and
Parker, 1996; Lee et al., 2011). It is easy to show that the Ne/N ratio can
considerably exceed 1 when the age at maturity is substantially 41
(Figure 6, bottom; see also Waples et al. 2013).
An interesting observation from Figure 6 is that, quite consistently,

the expected Ne/N ratio declines with increasing adult survival and
hence longer adult lifespan. This occurs in spite of the fact that
reduced mortality increases generation length that (all else being
equal) should increase Ne. However, unlike the situation with delayed
maturity, T does change independently of the other parameters when
survival increases—that same phenomenon also increases both N and
Vk•. The combined effects of these increases more than offset the
increases in T, with the result that increases in survival generally are
associated with a net reduction in Ne/N.

Empirical data
Supplementary Table S1 reproduces key data for the 63 life tables
compiled by Waples et al. (2013), with modifications to age at
maturity and adult census size as described in Methods. Waples
et al. (2013) reported a multiple R2 value of 0.5 for the correlation
between Ne/N and the log of the ratio AL/α; with the modifications
here, the correlation has strengthened to R2= 0.61, indicating that this
ratio of simple life-history traits explains just over 60% of the variation
in Ne/N across these diverse species. The improvement in this
association suggests that the adjustments to age at maturity and hence
adult N made here are biologically reasonable.

Figure 4 Bias in estimates of Ne and Ne/N when applying analytical results
based on infinite series to populations with finite adult lifespan. These
scenarios used constant adult mortality at the levels indicated, constant
ϕ=1 and either constant fecundity (top) or fecundity proportional to age
(bottom). ‘Estimated’ parameters were based on the expectations from
infinite series analysis and ‘True’ values were calculated for the actual time
series using the AgeNe method described by Waples et al. (2011).

Figure 5 Bias in estimates of adult census size and generation length when
assuming constant survival for species with Type I survivorship. These
scenarios used constant fecundity and survivorship followed the Gompertz
functions depicted in Figure 1. True parameters were calculated for the
observed data using the AgeNe method described by Waples et al. (2011)
and the estimates were calculated using the d values in Supplementary
Table S2 to represent mortality in Equations (4) and (7), assuming α=1.
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For the simplest general model considered in this paper that
incorporates age at maturity (constant vital rates; Equation (14)),
the correlation between the estimated N̂e=N and the predictor
[d(1− d + α− 1)/(2− d)] is very strong (R2= 0.78). That is, this

simple function of adult mortality and age at maturity explains over
three-fourths of the empirical variation in Ne/N, which spans a
48-fold range, from 0.44 to 3.69 (Supplementary Table S1).
Figure 7 shows the distribution of the ratio estimated/true Ne/N for
the 63 species. The median ratio is 1.08 and the range is 0.6–2.1,
indicating a slight upward bias. A comparison of estimated and true
Ne/N for all species reveals a couple of outliers with unusual life-
history features and estimates of Ne that are well above the true value
(Figure 8, top). The mosquito (Chubachi, 1979) has sharply declining
patterns of both adult survival and fecundity that departs strongly
from the assumed simple model of constant vital rates. The elephant
seal has strongly asymmetric maturity and fecundity schedules
between males and females (LeBoef and Reiter, 1988) that reduces
Ne in ways not considered here.
If we restrict attention to only those species with constant (or nearly

constant) adult survival (Figure 8, bottom), for all species that also
have constant fecundity (filled circles) the true Ne/N is very similar to
the estimate based on Equation (14). The estimator is also fairly
accurate for most other species with constant survival but varying
patterns of fecundity. The simple model considerably overestimates
Ne/N for brown trout (presumably because of divergent vital rates in
males and females; see Jorde and Ryman, 1996) and the mole crab
(perhaps because fecundity increases sharply with age; see Diaz, 1980).

Figure 6 Relationship between annual survival (s=1−d, assumed to be
constant) and predicted Ne/N, for scenarios involving different combinations
of age at maturity, ϕ and fecundity (constant or proportional to age).
Predictions for constant fecundity use Equation (14) and those for fecundity
proportional to age use Equation (18).

Figure 7 Estimates of Ne/N compared with the true ratio for 63 species with
diverse life histories. True parameters were calculated using the life tables
compiled by Waples et al. (2013), with modifications as described in
Methods and shown in Supplementary Table S1. Estimates of Ne/N were
calculated from Equation (14) using the actual age at maturity and the
values of d shown in Supplementary Table S1.

Figure 8 Relationship between estimated and true Ne/N for individual
species, using data from Figure 7. The top panel show results for all 63
species; the bottom panel shows results only for species with survival that is
constant with age, or nearly so. Some outlier species are identified. The
legend indicates general patterns of age-specific survival and fecundity.
‘Flat’= constant with age; ‘UpFlat’= increasing in the first few years after
maturity before leveling off; ‘Up’= increasing with age; ‘other’=decreasing
with age, complex patterns or different patterns in males and females.
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For species with constant survival but increasing fecundity with age,
the estimator of Ne/N from Equation (18) was also evaluated. This
estimator consistently underestimated true Ne/N (data not shown).
This is consistent with results in Figure 4, which show that when
fecundity is proportional to age, Ne/N is substantially underestimated
using Equation (18) unless adult lifespan is very long. This result, in
turn, can be traced to the pronounced upward bias in T, N and
especially Vk• for this model (Figure 3), with the latter having a strong
effect of reducing Ne.

DISCUSSION

The influence of generation length and variance in reproductive
success
It is useful to review the factors that can influence the key parameters
N, T and Vk•, and hence Ne and Ne/N in iteroparous species
(Equation (1)). Adult abundance depends on only two parameters
(Equation (2)): the number of recruits that reach age at maturity (Nα)
and Σlx. Because survivorship does not depend on patterns of
fecundity or variance in reproductive success, the age-specific pattern
of adult mortality directly determines N.
Generation length (Equation (5)) depends entirely on (1) age at

maturity and (2) functions of age-specific survival and fecundity; as a
consequence, T is also unaffected by variance in reproductive success
among individuals. In contrast, lifetime Vk• is sensitive to three
parameters (Equations (10–12)): age-specific patterns of survival,
fecundity and variance in reproductive success by individuals of the
same age (ϕx).
Like census size, Ne is a linear function of Nα, and hence the level of

recruitment does not affect the Ne/N ratio. Because generation length
appears in the numerator of Equation (1) and variance in reproductive
success appears in the denominator, the two parameters have
contrasting effects on Ne. All else being equal, increases in T increase
Ne, whereas increases in Vk• reduce Ne and vice versa. But these
parameters are not independent; life-history traits that increase one
generally increase the other, although they typically change at different
rates with changes in the population’s vital rates. Therefore, a key
determinant of Ne/N is how the ratio T=Vk� changes with the species’
life history. Because ϕx affects Vk• (but not T or N), and α affects T
(but not N or Vk•), these parameters can also have an important
influence on both Ne and Ne/N.
Lifetime Vk• is a complicated parameter that has been little studied,

no doubt in part because it is not very tractable analytically. Waples
et al. (2011) showed how to calculate Vk• using a species’ vital rates
but did not conduct a sensitivity analysis. To the best of my
knowledge, Figure 2 represents the first attempt to jointly evaluate
the effects of life-history parameters on Vk• and T. This figure provides
several important insights. First, when vital rates are constant, Vk• is a
linear function of d. As d drops and survival increases, Vk• also
increases because more individuals live to ages at which they can
amass large numbers of lifetime offspring. Second, regardless of the
value of d, Vk• is increased by exactly 2 units for every unit increase
in ϕ. This makes it easy to account for the consequences of over-
dispersed variance in reproductive success of individuals of the same
age. Third, the slope of the regression of Vk• on 1−d is shallow, and
hence (regardless of the value of d) different levels of mortality do not
lead to dramatically different values of Vk•, provided survival and
fecundity do not vary with age. In contrast, generation length is a
simple inverse function of d, and hence as adult mortality becomes
very low T increases sharply. This means that when adult survival is
high, the relationship between T and Vk• (and consequently the
Ne/N ratio) can be very sensitive to small changes in (or errors in

estimating) mortality. Finally, when ϕ and fecundity both increase
with age, Vk• increases very rapidly and nonlinearly with reductions
in mortality. A caveat is that the relationships shown in this
figure are based on analytical results for populations with arbitrarily
long lifetimes. As shown in Figure 3, these relationships can
substantially overestimate both T and Vk• in scenarios in which
fecundity increases with age, mortality is low and adult lifespan
is short.

Estimating Ne/N
Surprisingly, the simplest model with constant vital rates (Equation (14))
proved to be a very robust estimator of Ne/N in the 63 species for
which empirical life-history data are available. Furthermore, this
simple estimator appears to perform about as well for species with
strongly age-specific patterns of survival and fecundity as it does for
species with constant vital rates. Some of the outliers are species (such
as the elephant seal and brown trout) that have strongly asymmetric
vital rates in males and females. This scenario was not formally
evaluated here, but its effects on Ne are well understood (and for
example are fully incorporated into AgeNe calculations of Ne and
Ne/N), and hence separate adjustments could be made to the estimate
of Ne/N in these cases.
It should be noted that the general results shown in Figure 6 are

based on the assumption that d and α can be estimated accurately.
Estimating geometric mean mortality is perhaps not unreasonable, as
its calculation depends only on the adult lifespan and the (somewhat
arbitrary) decision as to what value of lx to assign to age ω (lω= 0.01
was used here). An accurate determination of age at maturity is
important because that directly affects generation length; achieving
this is straightforward for some species but can be complicated when
maturation occurs across a variety of ages. This topic merits careful
attention. Finally, as information on age-specific values of ϕ are rare
for natural populations, these analyses followed Waples et al. (2013) in
using the default assumption that ϕ is constant at 1 (equivalent to
assuming, for example, that reproductive success of all age-6 females
corresponds to a mini Wright–Fisher ideal population). Values of ϕ
almost certainly vary among species, meaning that the strength of the
relationship between Ne/N and d shown in Figure 6 (R2= 0.78) is
probably optimistic. Nevertheless, integration of all the key factors
affecting the Ne/N ratio into a single analysis expressed as a function of
adult mortality should help advance our understanding of this key
eco-evolutionary parameter.
Some additional factors that can affect Ne and Ne/N also were not

considered here. The Felsenstein–Hill model that AgeNe is based upon
assumes that (1) N is constant and age structure is stable, and (2)
probabilities of survival and reproduction are independent and not
affected by previous timesteps. Felsenstein (1971) showed that his
model accurately calculated Ne for populations that are increasing or
declining at a constant rate, and Waples et al. (2011, 2014) showed
that AgeNe results are robust for dynamically stable populations with
random demographic stochasticity. However, caution should be used
in applying these results to species that are characterized by large or
chaotic changes in abundance.
In many species, females (and sometimes males) generally skip one

or more years after breeding. Waples and Antao (2014) showed that
although this reduces the effective number of breeders each year (Nb),
particularly for species with Type III survivorship, this life-history
feature has only a slight (o10%) positive effect on Ne. Constraints on
litter size that can result in ϕx o 1 also lead to only small increases in
Ne (Waples and Antao, 2014). On the other hand, if some individuals
consistently are either good or bad at producing offspring across their
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lifetime, this will increase lifetime variance in reproductive success and
reduce Ne (Lee et al., 2011). This is difficult to track in natural
populations but for some species it could significantly reduce the
Ne/N ratio.
Hedgecock (1994) proposed that a pattern of ‘sweepstakes’ repro-

ductive success, in which only a small fraction of families leave
offspring that survive to reproduce, could produce tiny Ne/N ratios
in marine species with high fecundity and high mortality in early life
stages. The framework discussed here can evaluate that scenario, but it
requires that ϕ be very high (⩾103) for most or all ages, which in turn
can only occur if the fraction of parents of a given age that successfully
produce offspring in a given year is as small as 1/ϕ.

Genomic estimates of Ne

Although this paper considered only demographic data, genetically
based estimates of effective size have skyrocketed in recent years
(Palstra and Fraser, 2012), and this trend is only likely to increase with
the ability to use next-generation DNA sequencing techniques to
generate thousands of markers for nonmodel species (for example, see
Hollenbeck et al., 2016; Jones et al., 2016). To provide context for
interpreting these estimates, most of these new studies will have to
consider the Ne/N ratio, and hence results presented here will be
relevant. Furthermore, for the majority of the earth’s species that do
not have discrete generations, it will be necessary to consider the
effects of age structure on the genetic estimates. In these cases, careful
attention must be paid to sampling design to evaluate whether the
resulting estimates are more relevant to effective size in one
reproductive cycle (Nb) or to Ne for an entire generation. Researchers
interested in applying the two-sample (temporal) method to age-
structured species can find useful guidance in Waples (1990), Jorde
and Ryman (1996) and Waples and Yokota (2007). The single-sample
sibship method can be applied to species with overlapping generations
using an approach suggested by Wang et al. (2010). Robinson and
Moyer (2013) and Waples et al. (2014) have evaluated performance of
the single-sample method based on linkage disequilibrium with
iteroparous species.
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