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Modeling additive and non-additive effects in a hybrid
population using genome-wide genotyping: prediction
accuracy implications

J-M Bouvet1, G Makouanzi2, D Cros1 and Ph Vigneron1,2

Hybrids are broadly used in plant breeding and accurate estimation of variance components is crucial for optimizing genetic
gain. Genome-wide information may be used to explore models designed to assess the extent of additive and non-additive
variance and test their prediction accuracy for the genomic selection. Ten linear mixed models, involving pedigree- and marker-
based relationship matrices among parents, were developed to estimate additive (A), dominance (D) and epistatic (AA, AD and
DD) effects. Five complementary models, involving the gametic phase to estimate marker-based relationships among hybrid
progenies, were developed to assess the same effects. The models were compared using tree height and 3303 single-nucleotide
polymorphism markers from 1130 cloned individuals obtained via controlled crosses of 13 Eucalyptus urophylla females with
9 Eucalyptus grandis males. Akaike information criterion (AIC), variance ratios, asymptotic correlation matrices of estimates,
goodness-of-fit, prediction accuracy and mean square error (MSE) were used for the comparisons. The variance components and
variance ratios differed according to the model. Models with a parent marker-based relationship matrix performed better than
those that were pedigree-based, that is, an absence of singularities, lower AIC, higher goodness-of-fit and accuracy and smaller
MSE. However, AD and DD variances were estimated with high s.es. Using the same criteria, progeny gametic phase-based
models performed better in fitting the observations and predicting genetic values. However, DD variance could not be separated
from the dominance variance and null estimates were obtained for AA and AD effects. This study highlighted the advantages of
progeny models using genome-wide information.
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INTRODUCTION

Quantitative genetic models partition genetic variance into additive,
dominance and epistatic components (Falconer and Mackay, 1996).
This partitioning has been widely analyzed in plant genetics and
breeding using robust statistical methods based on linear mixed model
theory. Some studies have shown very little involvement of dominance
variance (Gallais, 1990), whereas others have found that this factor can
contribute substantially, for example, in annual plants (Wardyn et al.,
2007) or tree species (Bouvet et al., 2009). In addition, combining
dominance and additive effects in models can improve genotype
prediction, for example, in genomic selection (Denis and Bouvet,
2013). Epistatic effects—although a potential source of bias in
estimating additive and dominance effects—are often overlooked in
experimental quantitative genetic studies (Lynch and Walsh, 1998).
Research is now underway to determine its importance with regard to
complex traits (Mäki-Tanila and Hill, 2014). Different strategies have
been implemented through quantitative genetics models, quantitative
trait loci (QTL) or mutation-QTL experiments (Mackay, 2014), but
there is still no consensus on its importance. For plants, depending on
the population and trait considered, some studies have shown that
epistasis can significantly contribute to total genetic variance, for
example, in maize (Dudley and Johnson, 2009), rice (Luo et al., 2009)

or cotton (Li et al., 2014), while also improving the prediction
accuracy (Dudley and Johnson, 2009; Hu et al., 2011). Meanwhile,
other studies have shown that epistasis has a little impact regarding the
genetic architecture of some traits in maize (Buckler et al., 2009) or in
the prediction accuracy (Lorenzana and Bernardo, 2009).
Recently, with the advent of high-throughput molecular technology,

numerous markers distributed throughout the whole genome have
been used to develop new models of genetic variation (Legarra et al.,
2009). Additive and non-additive genetic relationship matrices can, for
instance, be constructed from genome-wide single-nucleotide
polymorphism (SNP) markers to disentangle confounding factors
for the estimation of genetic variance, leading to more accurate models
than those based on pedigree (Lee et al., 2010; Su et al., 2012;
Muñoz et al., 2014).
This new approach in estimating relationships among individuals

has markedly broadened the prospects for modeling genetic effects.
This is especially the case regarding animal breeding, when purebred
animals are evaluated for their crossbred performance, where models
that take the allele origin into account are implemented. Some rely on
the relationship among purebred parents (Lo et al., 1997), which are
referred to as ‘parent models’ in the following, while others are based
on the relationship among crossbred progenies estimated by their
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gametotype (haplotype of each parental gamete) (Ibánez̃-Escriche
et al., 2009; Kinghorn et al., 2010; Zeng et al., 2013), which are
referred to as ‘progeny models’ hereafter. Although both parent and
progeny models have been fully studied in assessing the performance
of crossbreeds, they have mainly been focused on genetic additive
effects. However, it could be important to take the magnitude of non-
additive effects into consideration in some breeding contexts.
In plants, significant progress has been achieved in estimating

additive and non-additive variance within a single population, but
modeling the genetic variation requires further investigations with
hybrids resulting from the cross of two different species or from the
cross of two different populations of the same species presenting
different allelic frequencies. The gene origin should be taken into
account when estimating variance in hybrid progenies, as shown by
Stuber and Cockerham (1966). Massmann et al. (2013) and Technow
et al. (2012), with dense genotyping in maize, implemented such an
approach to estimate additive and dominance effects, but further
investigations are needed to address pending questions in hybrid
populations. Does a marker-based relationship matrix perform better
than one that is pedigree-based for estimating non-additive variance?
Are variance estimation and prediction of genetic value improved by
using parent or progeny models?
Beyond the advantages of using appropriate models, hybrids derived

from a pure species cross or from two different populations of a single
species are often used in crop and perennial species breeding to
capture the genetic gain resulting from heterosis (Gallais, 2009).
Estimating additive and non-additive variance components is crucial
to understand adaptive trait expression and guide breeding programs
for long rotation species.
In that setting, the objectives of this study were as follows: (i) to test

the performance of pedigree- or marker-based models, (ii) to analyze
the influence of parent- and progeny-based relationship matrices in
estimating additive and non-additive effects (dominance, epistasis) in
hybrid populations, and (iii) to assess the impact of including non-
additive effects on the model prediction accuracy.
Data of a first-generation hybrid population, resulting from an

Eucalyptus urophylla×Eucalyptus grandis cross achieved under field
conditions and genotyped with SNP, were used to model the
environmental and genetic effects, estimate the additive and non-
additive variance and analyse the prediction efficacies of the different
models.

MATERIALS AND METHODS

Field experimental data
Thirteen E. urophylla females and 9 E. grandis males were crossed by controlled
pollination to generate 69 full-sib families and 1415 progenies. The males and
females were selected in progeny/provenance trials set up in the Republic of the
Congo. Each parent tree was selected in a different family. Previous studies have
shown that panmixy is the mating pattern in continuous natural E. urophylla
populations (Tripiana et al., 2007) with a preferential out-crossing system for
both species (Horsley and Johnson, 2007). We thus considered that the
coefficient of inbreeding and the coefficients of relationship among parents
within each species were null. Each of the 1415 progenies was replicated three
times using cutting and a clonally replicated progeny test was planted with 1415
clones (4415 trees at a stocking density of 833 trees ha− 1). The field experiment
involved a complete block design with three replications. Around 25 trees
replicated in three blocks represented each full-sib family. At 32 months, the
total number of trees used in this study was reduced to 3596, representing 1130
clones, owing to natural mortality and elimination of non-genotyped trees.
The trial site was located in the Republic of the Congo, east of Pointe-Noire
(11°59′21″ E, 4°45′51″ S). Rainfall averaged 1200mm year− 1. The soils were

characterized by low water retention and a very low level of organic matter as
well as a poor cationic exchange capacity.
The total tree height (HT) at 32 months was used for model comparison. It

averaged 12.02m and had a high among-individual coefficient of
variation (30%).

Molecular data
Among the 20 000 SNP identified, 3303 were finally selected based on the
repeatability, a minor allele frequency 42.5% and a rate of missing data per
marker o5%. The 1152 individuals (13 females, 9 males and 1130 progenies)
were genotyped with the 3303 SNPs using the DArTseq technology (Wenzl
et al., 2004). Haplotype phasing and missing-data inference were done with the
localized haplotype clustering method developed in Beagle version 4.0
(Browning and Browning, 2007). Pedigree information among the 1152
individuals, that is, the parent–offspring, half-sib and full-sib relationships,
was used by the Beagle algorithm to estimate haplotypes and missing data
(Browning and Browning, 2013).

Genetic model
The models developed in the next section are derived from the Stuber and
Cockerham (1966) model. The authors considered two genetically divergent
populations (species or populations of the same species but with different allele
frequencies) and the hybrid population generated by the crosses of random
individuals from the two parent populations. By considering the hybrid
population with the gene effect depending on the parent origin, that is, female
parents from population F (E. urophylla in our experiment) and male parents
from population M (E. grandis in our experiment), assuming linkage
equilibrium in each parent population and limiting epistatic effects to first-
order epistasis, the total genetic variance was partitioned as follows:

s2G ¼ s2aF þ s2aM þ s2dFM þ s2aFaF þ s2aMaM þ s2aFaM þ s2aFdFM þ s2aMdFM

þ s2dFMdFM ½hybrid variance model�
where σ2aF and σ2aM are the female and male additive variances of the hybrid
population due to alleles from females (males) crossed with males (females);
σ2dFM is the dominance variance due to the female×male cross; σ2aFaF and
σ2aMaM are the female (male) additive× additive epistatic variances; σ2aFdFM
and σ2aMdFM are the female (male) epistatic additive× dominance variances and
σ2dFMdFM is the dominance×dominance epistatic variance involving alleles
from the M and F parent populations.
The genetic covariance among two individual hybrids x and y:

cov x; yð ÞG ¼ jfs
2
aF þ jms

2
aM þ jfjms

2
dFM þ j2

f s
2
aFaF þ j2

ms
2
aMaM

þ jfjms
2
aFaM þ j2

fjms
2
aFdFM þ jfj

2
m2s

2
aMdFM

þ j2
fj

2
ms

2
dFMdFM ½hybrid covariance model�

where φf and φm denote the coancestry coefficient among females of
population F and males of population M, respectively; for example, for half-
sib hybrids with the same female from F and different males from M:
φf= (1+Ψf/2) and φm= 0 and for full sib hybrids, with the same female from F
and the same male from M: φf= (1+Ψf/2) and φm= (1+Ψm/2). Ψf and Ψm are
the coefficients of inbreeding of the parent in population F and M that are
considered null in this study.

Statistical model
We developed two types of model based on the equation by Stuber and
Cockerham (1966). The first, called the parent model, was based on the
relationship among female (f= 13) and male (m= 9) parents of the hybrid
progenies:

y ¼ Xbþ Zcolcol þ Zr:br :b

þZpplot þ Z faf þ Zmam þ Z fmd þ Z iiþ e ½parent�model�
where y is the vector of the phenotypic variable (tree height at 32 months), β is
the vector of fixed effects due to the general mean and blocks, col~N
(0, σ2colId) is the vector of random spatial environmental effects due to the field
design column, with σ2col being the variance related to the spatial effects, Id is
the identity matrix, r:b~N(0, σ2r:bId) is the vector of random spatial
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environmental effects due to field design row by block interaction, with σ2r:b
being the variance related to the spatial effects, plot~N(0, σ2plotId) is a vector
of random spatial environmental effects common to the individuals planted in
the same square plot, with σ2plot being the variance related to the spatial effects,
af ~N(0, σ2afAf) is a vector of random additive effects due to E. urophylla
females, with Af[f,f] being the coancestry coefficient matrix among females {φf}
estimated from the pedigree (AfP) or marker (AfG), with σ2af being the additive
variance of the hybrid population due to alleles from females crossed with
males, am~N(0, σ2amAm) is the vector of random additive effects due to
E. grandis males, with Am[m,m] being the coancestry coefficient matrix among
males {φm} estimated from the pedigree (AmP) or marker (AmG), with σ2am
being the additive variance of the hybrid population due to alleles from males
crossed with females, d~N(0, σ2dD) is a vector of random dominance effects
due to the female×male cross, D[f×m,f×m] is estimated from the pedigree
(DP) or marker (DG), with σ2d being the dominance variance of the hybrid
population due to alleles from males crossed with females (see the estimation in
the next section), i~N(0, σ2iE) is the term representing random epistatic effects
modeled by either the sum of three additive × additive effects aaf~N
(0, σ2aaf EAAf), aam~N(0, σ2aam EAAm) and afam~N(0, σ2afam EAfAm) or the
sum of additive× dominance effects afd~N(0, σ2afd EAfD), amd~N
(0, σ2amd EAmD) or by the dominance×dominance effects dd~N(0, σ2dd
EDD) and ε~N(0, σ2εId) is the vector of residual effects. The epistatic matrices
EAAf[f,f], EAAm[m,m], EAfAm[f×m,f×m], EAfD[f ×m,f×m], EAmD[f×m,f ×m]
and EDD[f×m,f×m] were calculated with the Hadamard and Kronecker
products (formulas detailed in the next section).
X, Zcol, Zr:b, Zp, Zm, Zf, Zmf and Zi are the incidence matrices connecting the

fixed and random effects to the data. The coancestry matrices AfG, AmG and DG

were estimated using the formulas defined in the next section. Based on the
generic model, 10 parent models combining additive, dominance and epistatic
effects and marker or pedigree coancestry matrices were developed (Table 1).
Additive× additive, additive × dominance and dominance×dominance
epistatic effects were estimated in separate models because the restricted
maximum likelihood (REML) algorithm failed to converge when all effects
were included in a single model.
The second type of models, called the progeny model, was developed using

relationships among the (c= 1130) hybrid progenies. They differed from the
parent models because they were defined using the female- and male-origin
haplotypes of each progeny inferred by long-range phasing. Such models were
implemented in previous studies (Ibánẽz-Escriche et al., 2009; Kinghorn et al.,
2010; Zeng et al., 2013) while only considering additive effects in the model.
We extended this approach by including dominance and epistatic effects.

Y ¼ Xbþ Zcolcolþ Zr:br :b

þZpplotþ Zcaf þ Zcam þ Zcd þ Zciþ e ½progeny �model�
The fixed effects and environmental random effects were defined as for the

first model. The genetic effects are defined by: af ~N(0, σ2af AH
fG), am~N

(0, σ2am AH
mG), d~N(0, σ2d DH

G) and i~N(0, σ2i EHG), with AH
fG[c,c] and

AH
mG[c,c] the molecular-based female and male additive relationship matrices,

respectively, and DH
G[c,c] the dominance relationship matrix. The i~N

(0, σ2iEH) is the term representing random epistatic effects modeled by either
the sum of three additive × additive effects aaf ~N(0, σ2aaf EHAAf), aam~N
(0, σ2aam EHAAm) and afam~N(0, σ2afam EHAfAm), or the sum of additive
× dominance effects afd~N(0, σ2afd EHAfD), amd~N(0, σ2amd EHAmD), or by
the dominance×dominance effects dd~N(0, σ2dd EHDD). The ε~N(0, σ2εId)
is the vector of residual effects. The epistatic matrices all had the same
dimensions [c,c] and were estimated using the male and female haplotype of
each progeny with the Hadamard products (formulas detailed in the next
section). Five progeny models combining additive, dominance and epistatic
effects were developed (Table 1).
The best linear unbiased predictors (BLUP related to the genetic effects) were

computed by solving the mixed model equations. The variance component
estimation based on the REML method and the BLUP calculations were done
using the ASReml version 3 program (Gilmour et al., 2006) implemented in R
software (R Development Core Team, 2011).
Narrow- and broad-sense heritabilities were defined by h2= σ2a/σ

2
p and

H2= σ2g/σ
2
p, and dominance and espistatic variance ratios by d2= σ2d/σ

2
p,

i2= σ2i/σ
2
p, with σ2a, σ

2
i, σ

2
g and σ2p being the total additive, epistatic, genetic

and phenotypic variances, respectively, that varied according to the model.
Details on variance components are given in Table 1. The delta method was
used to obtain a first-order approximate s.e. for a nonlinear function of a vector
of random variables with known or estimated covariance matrix
(Oehlert, 1992).

Pedigree and marker relationship matrices
For the parent models, the pedigree coancestry coefficients (or kinship) φf and
φm were estimated based on the pedigree of the female and male parent
population. As the pedigree was unknown within the E. urophylla and E. grandis
parents, the AfP and AmP matrices were simply the identity matrix multiplied by
0.5 (equal to the self coancestry of a non-inbred individual), DP was the identity
matrix with 0.25, epistatic EAAf, EAAm EAfAm were diagonals with 0.25, EAfD,
EAmD were diagonals with 0.125 and EDD was a diagonal with 0.0625. The
molecular marker-based coancestry between two individuals, defined as the
probability that two alleles at the locus taken from each individual are equal,
that is, identical by state, was defined using Van Raden’s estimator (Van Raden,
2008). The female AfG[f,f] and male AmG[m,m] coancestry matrices were
calculated as follows:

AfG ¼ 1=2
ðMf � Pf ÞðMf � P0

f Þ
2
Ps

1 pfið1� pfiÞ

AmG ¼ 1=2
ðMm � PmÞðMm � P0

mÞ
2
Ps

1 pmið1� pmiÞ
where Mf[f,s] (Mm[m,s]) is the matrix of female (male) marker information
(coded as 0, 1 and 2 for, respectively, AA, Aa and aa) and s the total number of
SNPs (3303 SNPs). Pf[f,s] (Pm[m,s]) contains frequencies pfi (pmi) of the second
allele at each locus such that column i of Pf(Pm) is 2pfi (2pmi).
The dominance relationship matrices DP and DG were defined as follows.

For two individual hybrids X and Y resulting from the cross of female fi and
male mi and female fj and male mj, respectively, the dominance relationship
coefficient was defined as the product of coancestry coefficients between
females and males DX,Y=φfi,fj ×φmi,mj. D can be calculated by the Kronecker
product Af⊗Am after removing lines and columns corresponding to the absent
crosses. In the parent models, according to the Stuber and Cockerham (1966)
models, the relationship matrices due to the first-degree epistatic terms were
computed using the Hadamard and Kronecker products. They were defined as
follows: for additive × additive terms EAAf=Af#Af, EAAm=Am#Am,
EAfAm=Af⊗Am, for the dominance×dominance term EDD=D#D and for
the additive × dominance terms EAfD=Af#Af⊗Am and EAmD=Am#Am⊗Af.
For the progeny models, the female and male additive molecular marker-

based coancestry matrices AH
fG[c,c] and AH

mG[c,c] were derived from the
haplotypes of each progeny using Van Raden’s estimator (Van Raden, 2008):

AH
fG ¼ 1=2

ðH f � PH
f ÞðH f � PH0

f Þ
Ps

1 pfið1� pfiÞ

AH
mG ¼ 1=2

ðHm � PH
mÞðHm � PH0

m Þ
Ps

1 pmið1� pmiÞ
where Hf[c,s] and Hm[c,s] are the matrices of female and male haplotype
marker information (coded as 0 and 1 for A and a, respectively), respectively,
and c being the number of clones and s the total number of SNPs (3303 SNPs).
PHf(P

H
m) contained frequencies pfi (pmi) of the allele at each locus such that

column i of PHf(P
H
m) is 1pfi (1pmi).

The dominance relationship matrix was defined using the Hadamard
product: DH

G=AH
fG#AH

mG. The relationship matrices due to the first-
degree epistatic terms were computed using the Hadamard product, for
additive × additive terms EHAAfG=AH

fG#AH
fG, EHAAmG=AH

mG#A
H
mG,

EHAfAmG=AH
fG#A

H
mG, for the dominance×dominance term EDD=DH

G#D
H
G

and for the additive× dominance terms EAfD=AH
fG#(A

H
fG#A

H
mG),

EAmD=AH
mG#(A

H
fG#A

H
mG).

The correspondence between models and the relationship matrices are given
in Table 1.
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Model comparison
Models were compared using the Akaike information criterion (AIC; Akaike,
1974) defined as AIC=− 2ln(R)+2t, where ln(R) is the log-likelihood of the
model and t is the number of variance parameters. The model with the lowest
AIC value presented the best data fit.
To assess the dependency among variance components, we used the

procedure described in Muñoz et al. (2014): with COVES being the asymptotic
variance–covariance matrix of estimates of variance parameters, the asymptotic
sampling correlation matrix of estimates (CORES) was computed as
CORES= (VARES1/2COVES VARES− 1/2), where VARES is a diagonal matrix
containing the diagonal elements of V (variances of estimates). Analyzing the
magnitude of the correlations of the CORES matrix allows assessment of the
dependency between the pairwise estimates. To achieve an overall assessment of
dependency between the estimates, Muñoz et al. (2014) suggested assessing the
percentage of variation explained by eigenvalues of the CORESmatrix. This was
carried out by plotting the cumulative percentage of variance explained by the
model vs the eigenvalue order (Figure 1). The eigenvalues were computed using
the R statistical software function ‘eigen’, which computes eigenvalues and
eigenvectors of matrices (R Development Core Team, 2011).
Goodness-of-fit was evaluated with the full data set (1130 clones) by

assessing the correlation between predicted additive genetic values and
phenotypes of individual trees (average of three replicates of each individual
clone) r(Âfull, Ŷfull) and between predicted total genetic values and phenotypes
r(Ĝfull, Ŷfull).

The prediction accuracy was tested using the pedigree-based relationship
matrix for parent models, or the so-called P-BLUP method, and the marker
relationship matrix for parent and progeny models, that is, the G-BLUP
method (Cros et al., 2015). A cross-validation procedure was implemented to
evaluate the prediction accuracy, with the data set divided into nine subsets.
The half-sib progeny phenotypes related to one female and the half-sib progeny
phenotypes related to one male were removed at each set. As the smallest
number of parents corresponded to the nine males, nine subsets were possible.
This process allows comparison of the prediction ability of the parent and
progeny models. We chose this method to make sure that the progenies in the
training and candidate sets would not have any common parents, which would
have biased the comparison of parent and progeny models regarding their
predictive capacity. Eight of the sets, including trees with phenotype and
genotype, were used in turn for training the models to estimate the model
parameters, and the remaining set (candidates set), made of trees with only
genotypes, was used for testing the prediction accuracy. This procedure led to
different sizes of the training and candidate populations, which ranged from
794 to 1013 clones and from 117 to 336 clones, respectively. The prediction
accuracy of the models was evaluated on the candidate set by the correlation
between the predicted additive and total genetic values using the training set
and phenotypes of individual tree (average of three replicates for each
individual clone): r(Âcan, Ŷcan) and r(Ĝcan, Ŷcan).
We also used the prediction stability defined by Muñoz et al. (2014), which is

the correlation between breeding or total genetic values of clones of the

Table 1 Main characteristics of the models and the associated relationship matrix

Model type Code Relationship matrices related to the model: A additive, D dominance Variance components

Additive Dominance Epistasis

Parent P_A AfP, AmP σ2a= σ2af+σ2am
σ2g= σ2af+σ2am
σ2p= σ2af+σ2am+σ2col+σ2r:b+σ2plot+σ2e/3

G_A AfG, AmG Idem P_A

P_A+D AfP, AmP DP σ2a= σ2af+σ2am
σ2d
σ2g= σ2af+σ2am+σ2d
σ2p= σ2af+σ2am+σ2d+σ2col+σ2r:b+σ2plot+σ2e/3

G_A+D AfG, AmG DG Idem P_A+D

P_A+D+AA AfP, AmP DP AfP#AfP, AmP#AmP σ2a=σ2af+σ2am
σ2d
σ2i= σ2aaf+σ2aam+σ2afam
σ2g= σ2af+σ2am+σ2d+σ2aaf+σ2aam+σ2afam
σ2p= σ2af+σ2am+σ2d+σ2aaf+σ2aam+σ2afam+σ2col+σ2r:b+σ2plot+σ2e/3

G_A+D+AA AfG, AmG DG AfG#AfG, AmG#AmG Idem P_A+D+AA

P_A+D+AD AfP, AmP DP AfP#DP, AmP#DP σ2a= σ2af+σ2am
σ2d
σ2i= σ2afd+σ2amd

σ2g= σ2af+σ2am+σ2d+σ2aaf+σ2afd+σ2amd

σ2p= σ2af+σ2am+σ2d+σ2afd+σ2amd+σ2col+σ2r:b+σ2plot+σ2e/3

G_A+D+AD AfG, AmG DG AfG#DG, AmG#DG Idem P_A+D+AD

P_A+D+DD AfP, AmP DP DP#DP σ2a= σ2af+σ2am
σ2d
σ2i= σ2dd
σ2g= σ2af+σ2am+σ2d+σ2dd
σ2p= σ2af+σ2am+σ2d+σ2dd+σ2col+σ2r:b+σ2plot+σ2e/3

G_A+D+DD AfG, AmG DG DG#DG Idem P_A+D+DD

Progeny G_AH AHfG, AHmG Idem P_A

G_AH+DH AHfG, AHmG DH
G Idem P_A+D

G_AH+DH+AHAH AHfG, AHmG DH
G AHfG#AHmG, AHmG#AH

mG Idem P_A+D+AA

G_AH+DH+AHDH AHfG, AHmG DH
G AHfG#DH

G, AHmG#DH
G Idem P_A+D+AD

G_AH+DH+DHDH AHfG, AHmG DH
G DH

G#DH
G, DH

G#DH
G Idem P_A+D+DD

Abbreviations: F, female; G, marker; H, haplotype; M, male. σ2a, σ2d, σ2i, σ2g and σ2p being the additive, dominance, epistatic, total genetic and phenotypic variances, respectively.
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candidate population predicted with the full data set and the breeding or total
genetic values predicted with the training population: r(Âcan, Âfull) and
r(Ĝcan, Ĝfull). These correlations measured the dependency of the predicted
additive or total genetic values on the phenotypes. Associated mean square
errors MSE(Âcan, Âfull) and MSE(Ĝcan, Ĝfull) were calculated.
An analysis of variance (ANOVA) was performed to test the null hypothesis,

that is, an absence of difference among models and subsets. ANOVA was
conducted with prediction accuracy, prediction stability and MSE as dependent
variables. When the ANOVA detected a significant model effect, a pairwise
mean comparison among models was carried out for each variable using
Newman–Keuls test (Shaffer, 2007).

RESULTS

Variance components
The variance component estimates for the 15 models are presented in
Table 2. When comparing the 10 parent models, small-to-moderate
changes were observed in the genetic, spatial environmental and
residual variances, except for the plot variance σ2plot, which markedly
decreased by the inclusion of non-additive effects. Epistatic variances
could not be estimated with the three pedigree-based parent models,
that is, P_A+D+AA, P_A+D+AD and P_+A+D+DD, because matrix
singularities were detected and the REML algorithm did not converge.
This is partly explained by some redundancy in the dominance and
epistasis matrices (as described in the pedigree and marker relation-
ship matrices section). Otherwise, epistatic components were esti-
mated with the three equivalent marker-based models, but there were
some particularities in the estimates. σ2aaf and σ2aam were null with
G_A+D+AA, while σ2afd and σ2amd were quite high (1.022 and 4.863,

respectively) with G_A+D+AD, but the dominance variance σ2d
became null. Finally, with G_A+D+DD, the σ2dd espitatic variance
was estimated without affecting the other variances, but it had a very
high s.e., as also the σ2d estimates (see Supplementary Table S1 in
Supplementary Material).
With the five progeny models, the spatial environmental and

residual variances did not change when including non-additive effects,
but the additive variances decreased (Table 2). According to the
ASReml version 3 (Gilmour et al., 2006) algorithm output, models
that included epistatic effects converged at the boundary for the σ2aaf,
σ2aam, σ

2
afd, σ

2
amd and σ2dd espitatic variances. The components were

thus considered as null.
The comparison between the parent and progeny models showed a

minor change in the additive variance estimate but a marked change
for dominance variance, for example, for P_A+D and G_A+D,
additive and dominance were close (σ2af= 1.239, σ2am= 0.921,
σ2d= 2.640) and (σ2af= 1.260, σ2am= 0.953, σ2d= 2.395), respectively,
whereas an increase in σ2d was noted for G_AH+DH (σ2af= 1.340,
σ2am= 0.819, σ2d= 4.313). A change was also observed with residual
variance, which decreased from parent models (σ2e= 9.772 in average)
to progeny models (σ2e= 8.029 on average).
The overall degree of dependency between the model variance

estimates is clearly illustrated in Figure 1, which shows, for each
model, the cumulative proportion of variance explained by eigenvalues
compared with the diagonal representing orthogonal correlation
matrix, that is, independence between estimates. Figure 1a shows that
the cumulative percentage of genetic variance of the P_A and G_A

Figure 1 Proportion of variance explained by eigenvalues of asymptotic correlation matrices of variance estimates by considering: additive effects from the
pedigree parent model (P_A), vs the marker parent model (G_A), vs the progeny model (G_AH) (a); additive and dominance effects from the pedigree parent
model (P_A+D), vs the marker parent model (G_A+D), vs the progeny model (G_AH+DH) (b); additive, dominance and additive×dominance effects from the
marker parent model (G_A+D+A#D), vs the progeny model (G_AH+DH+ADH) (c); additive, dominance and dominance×dominance effects from the marker
parent model (G_A+D+D#D), vs the progeny model (G_AH+DH+DDH) (d). The diagonal represents an independent correlation matrix between variance
estimates.
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models was closer to the diagonal than G_AH, highlighting that these
former models led to less correlated variance estimates. A similar trend
was observed with P_A+D and G_A+D compared with G_AH+DH

(Figure 1b). On the other hand, with epistatic models, Figures 1c
and d show that the progeny models generated less correlated
variance estimates than the parent models. An examination of the
asymptotic correlation matrix of variance estimates led to similar
conclusions (Supplementary Tables S2A–C in Supplementary
Materials).
The variance ratios differed between models (Table 3). The narrow

sense heritability (h2) estimated with all of the additive effect models
(P_A, G_A and G_AH) decreased after including the dominance effect.
Adding epistatic effects led to a decrease in both additive and
dominance variance when the epistatic estimates differed from zero.
As expected, the narrow-sense heritability, h2 (h2= 0.136 in average),
was lower than the broad-sense heritability H2 with a marked
difference (H2= 0.334 on average). This observation stresses the
preponderance of non-additive effects, while the (σ2d+σ

2
i)/σ

2
a ratio

was 122, 108, 226 and 293%, with P_A+D, G_A+D, G_A+D+DD and
G_A+D+AD parent models, respectively. The same trend was

observed with the progeny model, where the (σ2d+σ
2
i)/σ

2
a ratio was

199% with G_AH+DH.

Model goodness-of-fit and prediction accuracy
The relative model quality was assessed through the AIC. The results
showed that the progeny models, with AIC ranging from 8841 to
8847, better fitted the observations than the parent models, with AIC
ranging from 8889 to 8955 (Table 2).
The goodness-of-fit was estimated using the full data set (Table 4).

With the parent models, the correlations between additive or total
genetic values and phenotypes were low, with r(Âfull, Ŷfull) varying in
the (0.361; 0.368) interval and r(Ĝfull, Ŷfull) in the (0.478; 0.490)
interval, while both did not show marked differences between models.
Regarding the progeny models, the correlations were higher, showing
a better fit to the observations, with r(Âfull, Ŷfull) varying in the (0.710;
0.770) interval and r(Ĝfull, Ŷfull) had the same value for all models
(0.858) due to the null epistatic variance estimates.
As expected, the prediction accuracy had much lower correlations

than goodness-of-fit, with r(Âcan, Ŷcan) varying in the (0.191; 0.288)
interval and r(Ĝcan, Ŷcan) in the (0.191; 0.294) interval (Table 4).

Table 2 Environmental and genetic variance components and parameters related to the quality of the different models

Model type Code Source of variation AIC Observation

σ2r:b σ2col σ2af σ2am σ2d σ2dd σ2aaf σ2aam σ2afam σ2afd σ2amd σ2plot σ2e

Parent P_A 0.620 0.029 1.393 1.206 2.605 9.784 8894.230

G_A 0.620 0.030 1.165 1.104 2.570 9.784 8890.146

P_A+D 0.621 0.027 1.239 0.921 2.640 2.177 9.772 8892.548

G_A+D 0.620 0.028 1.260 0.953 2.395 2.191 9.772 8889.140

P_A+D+AA — — — — — — — — — — — — — 8955.555 Singularities

G_A+D+AA 0.620 0.028 1.260 0.953 2.395 0.000 0.000 2.191 9.772 8893.140

P_A+D+DD — — — — — — — — — — — — — 8952.068 Singularities

G_A+D+DD 0.619 0.028 1.224 0.899 1.855 2.973 2.181 9.773 8891.045

P_A+D+AD — — — — — — — — — — — — — 8950.993 Singularities

G_A+D+AD 0.620 0.028 1.085 0.922 0.000 1.022 4.863 2.181 9.774 8892.846

Progeny G_AH 0.648 0.021 2.143 1.659 2.564 8.390 8847.049

G_AH+DH 0.648 0.024 1.340 0.819 4.313 2.575 8.029 8841.162

G_AH+DH+AHAH 0.648 0.024 1.340 0.819 4.313 0.000 0.000 2.575 8.029 8846.090

G_AH+DH+DHDH 0.648 0.024 1.340 0.819 4.313 0.000 2.575 8.029 8843.162

G_AH+DH+AHDH 0.648 0.024 1.340 0.819 4.313 0.000 0.000 2.575 8.029 8844.766

Table 3 Heritabilities and variance ratios and their s.e

Model Code h2 s.e.(h2) d2 s.e.(d2) i2 s.e.(i2) H2 s.e.(H2)

Parent P_A 0.166 0.074

G_A 0.149 0.068

P_A+D 0.124 0.068 0.152 0.087 0.276 0.091

G_A+D 0.129 0.063 0.139 0.086 0.268 0.095

P_A+D+AA — — — — — — — —

G_A+D+AA 0.129 0.063 0.139 0.086 0.000 0.000 0.268 0.095

P_A+D+DD — — — — — — — —

G_A+D+DD 0.109 0.078 0.095 0.156 0.152 0.457 0.356 0.278

P_A+D+AD — — — — — — — —

G_A+D+AD 0.098 0.057 0.000 0.000 0.287 0.150 0.385 0.135

Progeny G_AH 0.246 0.065

G_AH+DH 0.122 0.051 0.243 0.096 0.365 0.086

G_AH+DH+AHAH 0.122 0.051 0.243 0.096 0.000 0.000 0.365 0.086

G_AH+DH+DHDH 0.122 0.051 0.243 0.096 0.000 0.000 0.365 0.086

G_AH+DH+AHDH 0.122 0.051 0.243 0.096 0.000 0.000 0.365 0.086
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With parent models, r(Âcan, Ŷcan) had higher estimates with marker
than with pedigree-based relationships, for example, r(Âcan, Ŷcan)=
0.198 with P_A and r(Âcan, Ŷcan)= 0.226 with G_A (Table 4).
Regarding the progeny models, the predictive ability estimates were
higher than the parent models, that is, on average r(Âcan, Ŷcan)= 0.277.
However, although ANOVA showed a global significant model effect
(P= 0.002), only two overlapping groups were detected by the
Newman–Keuls test (Table 4). The predictive ability for total genetic
value showed higher estimates for the progeny models, that is,
r(Ĝcan, Ŷcan)= 0.294 on average, than for the parent models, that is,
r(Ĝcan, Ŷcan)= 0.199. ANOVA (P= 0.000) and the mean comparison
test (Table 4) clearly differentiated the two groups. As shown by the
boxplot graphs (Figures 2a and b), all the models presented a marked
variation in the prediction accuracy between the nine subsets of the
cross-validation process, and no clear differences were detected among
models. Parent model using a marker-based pedigree relationship
matrix (P_A and P_A+D) even showed negative values.
The prediction stability, which measured the dependency of the

additive or total genetic values on the phenotypes, showed better
performance for the parent models, with r(Âcan, Âfull)= 0.756 and
r(Ĝcan, Ĝfull)= 0.582 on average, than for the progeny models, with
r(Âcan, Âfull)= 0.734 and r(Ĝcan, Ĝfull)= 0.548 (Table 4). However,
ANOVA did not reveal significant differences among models
(P= 0.484 and P= 0.551).
The MSE of prediction of additive values presented, on average for

all the models, lower estimates than obtained for the total genetic
values, that is, MSE(Âcan, Âfull)= 0.346 and MSE(Ĝcan, Ĝfull)= 0.734
(Table 4). For the additive value prediction, although the progeny
model G_AH+DH had a lower MSE, Fisher test was barely significant,
while two overlapping groups were detected by Newman–Keuls test
(Table 4). No significant differences between MSE were observed for
the prediction of total genetic values. MSE distributions clearly

separated the parent from the progeny models, with the latter
exhibiting a much narrower distribution (Figures 3a and b).

DISCUSSION

In this study, we used a first-generation hybrid population resulting
from the cross of two parent species, to analyze the ability of the
models to separate additive and non-additive effects and to predict
genetic values. We compared two sets of models, the first based on
pedigree and marker-based parent relationship matrices, with the
second using hybrid progeny haplotypes to define marker-based
relationship matrices. The model of Stuber and Cockerham (1966)
has been implemented with parent pedigree or maker-based relation-
ship matrices in previous studies (for example, Lorenzana and
Bernardo, 2009; Massman et al., 2013; Cros et al., 2015), whereas
one goal of our study was to develop a new set of models using
progeny haplotypes to better estimate non-additive and particularly
epistatic effects.

Modeling genetic variance in hybrid populations
Our approach relied on the variance partition of Stuber and
Cockerham (1966) while considering two parental populations and
complemented the recent study of Muñoz et al. (2014) in which
variance was modeled when considering a single population. Accord-
ing to Stuber and Cockerham (1966), distinguishing the parental
origin of alleles into models should theoretically lead to variance
components different from considering alleles originating from a
single population; in the first case we have two allele frequency
distributions at each locus and in the second case a unique distribu-
tion. We verified this assumption by estimating additive and dom-
inance variances while considering a single population in our design
(Appendix Table A1, in annex). Variance components, estimated with
a single population approach, were lower for the pedigree-based

Table 4 Comparison of models for goodness-of-fit, prediction accuracy ability and stability

Model

type

Code Goodness-of-fit

(full data set)

Prediction accuracy (cross-validation

procedure) Prediction stability (cross-validation procedure)

r(Âfull,

Ŷfull)

r(Ĝfull,

Ŷfull)

r(Âcan, Ŷcan)a

P=0.002b
r(Ĝcan, Ŷcan)

P=0.000

r(Âcan, Âfull)

P=0.484

r(Ĝcan, Ĝfull)

P=0.551

MSE(Âcan, Âfull)a

P=0.014

MSE(Ĝcan, Ĝfull)

P=0.918

Parent P_A 0.367 0.198ac 0.713a 0.478ab

G_A 0.368 0.226ab 0.783a 0.385ab

P_A+D 0.361 0.490 0.191a 0.191a 0.720a 0.523a 0.372ab 0.809a

G_A+D 0.364 0.478 0.225ab 0.202a 0.794a 0.598a 0.353ab 0.711a

P_A+D+AA — — — — — — — —

G_A+D+AA 0.364 0.478 0.203a 0.199a 0.710a 0.594a 0.404ab 0.711a

P_A+D+DD — — — — — — — —

G_A+D+DD 0.363 0.480 0.222ab 0.205a 0.795a 0.600a 0.327ab 0.719a

P_A+D+AD — — — — — — — —

G_A+D+AD 0.366 0.481 0.215a 0.200a 0.779a 0.597a 0.315ab 0.722a

Progeny G_AH 0.770 0.266ab 0.665a 0.574b

G_AH+DH 0.710 0.858 0.288b 0.294b 0.752a 0.548a 0.236a 0.754a

G_AH+DH

+AHAH

0.710 0.858 0.288b 0.294b 0.752a 0.548a 0.236a 0.754a

G_AH+DH

+DHDH

0.710 0.858 0.288b 0.294b 0.752a 0.548a 0.236a 0.754a

G_AH+DH

+AHDH

0.710 0.858 0.288b 0.294b 0.752a 0.548a 0.236a 0.754a

aCorrelations and mean square errors are calculated as the average over nine subsets of the cross-validation procedure.
bProbability associated with Fisher test of the analysis of variance comparing the models.
cLetters a and b correspond to the groups defined by Newman–Keuls test for mean comparison. The alpha risk is 5%.
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relationship P_A+D model (σ2a= 1.959 and σ2d= 1.097) and much
lower with the marker-based relationship G_A+D model (σ2a= 0.08
and σ2d= 0.01) as compared with the estimates presented in Table 2.
With the dual population approach, a first set of nested models

based on the parent relationship was implemented. Variance compo-
nents were affected by the use of marker-based (AfG, AmG, DG) or
pedigree-based relationship matrices (AfP, AmP, DP). The additive
variance decreased from P_A to G_A (16% for σ2af and 8% for σ2am)
but increased from P_A+D to G_A+D (1.6% for σ2af and 3.4% for σ2am),
while the dominance variance decreased (9%) (Table 2). However,
these variations were much smaller than the additive and dominance
variance s.es. (Supplementary Table S1 in Supplementary Material),
reflecting the moderate impact of using marker- or pedigree-based
relationship matrices. This result could first be explained by the ability
of AfG, AmG and DG to reflect the assumption of an absence of genetic
relationship between E. urophylla parents and between E. grandis
parents. This assumption was suggested by the fact that parents are
progenies of trees selected in natural populations and the mating
pattern in Eucalyptus is instead panmixy. Second, the set of markers
used for establishing AfG, AmG and DG, resulting from strong selection

(3303 SNPs were selected among 20000), was of sufficiently good
quality to correctly reflect the relationship. Our findings were
consistent with those obtained in previous studies comparing the
use of pedigree- and marker-based relationship matrices in modeling
(Forni et al., 2011; Wang et al., 2014).
Using the dual population approach, we developed the so-called

progeny models based on the female and male haplotypes of each
hybrid progeny. The relationship estimation was based on the classic
formula of Van Raden (2008), that is, using SNPs of each haplotype
independently to estimate the coancestry coefficient. It differs from
approaches constructing haplotype segments surrounding putative
QTLs to estimate the relationship coefficient (Makgahlela et al.,
2013). Our progeny models estimated variances with smaller errors
as compared with parent models (Table 3). However, they did not
perform better in estimating the non-additive effects (epistatic
variance estimates were all null). As already mentioned, this result
could be attributed to an overparametrization of the model.
Our results showed that including non-additive effects in parent

and progeny models decreased the additive variance (Table 2) and
consequently the narrow-sense heritability (Table 3). This trend was

Figure 2 Comparison of the distribution of prediction accuracy for the breeding value (r(Âcan, Ŷcan)) (a), total genetic value (r(Ĝcan, Ŷcan)) (b), resulting from
the cross-validation procedure among the pedigree-based parent models (P_A, P_A+D), marker-based parent models (G_A, G_A+D, G_A+D+AA, G_A+D+DD,
G_A+D+AD) and progeny models (G_AH, G_AH+DH).
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expected from a theoretical standpoint (Gallais, 1990,Falconer and
Mackay, 1996) as additive variance in the additive-only model actually
captures non-additive variation, as confirmed experimentally in other
studies (Su et al., 2012; Muñoz et al., 2014; Sun et al., 2014).

Estimating non-additive effects
One of the goals of our study was to evaluate the extent of epistatic
variance in a hybrid population. We used the Hadamard product to
define the relationship coefficients of epistatic variance–covariance
matrices. This way of calculating the coefficients supposes that the
population is in linkage equilibrium and the markers are not linked
(Schnell, 1963). To assess the potential biais of our approach, we
estimated the linkage disequilibrium (LD) using the ‘genetics’ R
package (R Development Core Team, 2011) and the LD estimators
‘r2’ from Hill and Robertson (1968). The mean and s.d of r2 were
r2= 0.03 (0.11) for E. urophylla and r2= 0.05 (0.12) for E. grandis.
These values showed very low LD, indicating that Hadamard matrix
multiplication should not substantially bias epistatic variance esti-
mates. Regarding the linkage between markers, Schnell (1963) showed
that the recombination rate should be taken into account in the

epistatic coefficient matrices. Omitting this parameter upward biased
the epistatic variance components. For Eucalyptus, the recombination
rate is not well known and there are wide variations in estimates
(Silva-Junior and Grattapaglia, 2015), which makes bias evaluation
difficult.
Our analyses of the data used for the model did not lead to

conclusive results. With parent models, non-null epistatic variances
were estimated with G_A+D+DD and G_A+D+AD; however, the s.es.
of σ2dd, σ

2
afd and σ2amd were very substantial, that is, twofold the

variance estimates (Supplementary Table S1 in Supplementary
Material). With the progeny models, we estimated null epistatic
variances and a very high dominance variance. Null epistatic variance
may result from a small contribution of this effect to the genetic
variance of growth traits, as observed in other forest tree studies
(Lepoittevin et al., 2011; Araújo et al., 2012) and/or because we
implemented an overfitted model, which could lead to null variance
estimates. Increasing the number of parents and reducing the
imbalance in the mating design could be a way to better estimate
non-null epistatic variances and reduce their s.e.

Figure 3 Comparison of the distribution of MSEs for breeding values (MSE(Âcan, Âfull)) (a) and total genetic values (MSE(Ĝcan, Ĝfull)) (b) resulting from the
cross-validation procedure among the pedigree-based parent models (P_A, P_A+D), marker-based parent models (G_A, G_A+D, G_A+D+AA, G_A+D+DD,
G_A+D+AD) and progeny models (G_AH, G_AH+DH).

Variance components in hybrid populations
J-M Bouvet et al

154

Heredity



As shown in previous forest tree studies (Araújo et al., 2012), with
an experimental design involving cloned full-sibs and pedigree-based
models, modeling cannot separate actual additive and dominance
variance from epistatic variance. This design upwardly biased the
estimation of true additive and dominance variances and downwardly
biased epistatic variance. Lee et al. (2010) and Muñoz et al. (2014)
have shown that the use of a marker-based relationship can disen-
tangle non-additive effects from additive and dominance effects. Our
models, using a marker-based relationship matrix, had this property
(Figures 1a–d), but they were not able to clearly estimate the epistatic
variance.
In addition, with the Stuber and Cockerham (1966) model, we

could not separate the pure dominance effect from the female-
additive×male-additive effect because the relationship matrices
{φmφf} used to estimate σ2d and σ2afam were identical. Hence, the
dominance variance was inflated and the additive × additive variance
was downwardly biased.
Although epistatic variance cannot be clearly estimated, our results

have shown that non-additive variance explained a significant part of
the total genetic variance, that is, the same extent of additive variance
with parent models and twofold higher additive variance with progeny
models (Table 3). In the case of height at 32 months, our results
stressed the importance of non-additive effects and confirmed the
findings of previous studies of Baltunis et al. (2009) with radiata pine
and Araújo et al. (2012) with E. globulus dealing with growth traits.
However, they differed from earlier forest tree studies using full-sib
families with clonal replicates and analyzing growth traits, which
revealed a very low or limited proportion of non-additive variance, for
example, Lepoittevin et al. (2011) with maritime pine. Our results
could be explained by the inter-species hybrid nature of our
material, which can exacerbate heterosis (Melchinger et al., 2007).
Some examples have been reported in poplar (Wu, 2000), rice
(Zhou et al., 2012) and maize hybrids (Guo et al., 2014).

Impact of modeling on the prediction accuracy
We tested the prediction accuracy of the models using the
G-BLUP approach, which is among the most widely used parametric
methods in genomic selection and giving good results (Heslot et al.,
2015). Our results revealed that the prediction accuracy estimated in
the candidate population (on average r(Âcan, Ŷcan)= 0.242 and r(Ĝcan,
Ŷcan)= 0.242) remained low compared with the goodness-of-fit
(on average r(Âfull, Ŷfull)= 0.513 and r(Ĝfull, Ŷfull)= 0.649) and
prediction stability (on average r(Âcan, Âfull)= 0.747 and
r(Ĝcan, Ĝfull)= 0.567) using the full data set. Although comparisons
with other studies should be carried out with caution because the
prediction accuracies are calculated according to different methods
and formulas, the prediction stability values assessed in our study were
similar to those estimated in previous forest tree studies for growth
traits (Resende et al., 2012; Muñoz et al., 2014; Beaulieu et al., 2014a, b;
Gamal El-Dien et al., 2015). The prediction accuracy defined in our
study by r(Âcan, Ŷcan) and r(Ĝcan, Ŷcan) is supposed to give a more
objective genomic selection potential. With our experimental breeding
data, these parameters were quite low (on average r(Âcan, Ŷcan)= 0.242
and r(Ĝcan, Ŷcan)= 0.242), which could be explained by factors
influencing the genomic selection performance, such as: heritability,
training population size, and LD. In our case, narrow- and broad-
sense heritabilities of height at 32 months presented low-to-moderate
estimates (Table 3), which partially explained the low genomic
selection accuracy. LD, which was very low, that is, r2= 0.03 and
r2= 0.05 for female and male populations, respectively, was likely also
a key factor explaining our accuracy. Finally, the training population

size, ranging from 794 to 1013 clones to predict 117 to 336 clones, was
probably not sufficiently large, as this factor is critical, especially when
non-additive effects are included in the model (Denis and Bouvet,
2013).
Our model comparison for prediction ability showed some

unexpected results. Surprisingly, for parent models, r(Ĝcan, Ŷcan) were
smaller than r(Âcan, Ŷcan), whereas we expected a higher value because
the total genetic value was more related to the phenotype than to the
breeding value. This result could be attributed to the less accurate
prediction of non-additive effects owing to overparameterization of
the model.
Our study has shown that the prediction accuracy and stability were

improved by using marker-based instead of pedigree-based relation-
ship matrices (Table 4). The marker-based matrix had the advantage
of capturing both the Mendelian segregation within full-sib families
and genetic links through unknown common ancestors, which are not
available in the known pedigree. This feature has been observed in
genomic selection for animal (Chen et al., 2011) or plant breeding
(Zapata-Valenzuela et al., 2013; Muñoz et al., 2014; Beaulieu et al.,
2014a; Cros et al., 2015). The comparison of parent and progeny
models revealed the higher prediction accuracy of the latter, which
better assessed the relationship among progenies by capturing the
Mendelian segregation. Note that the performance of this model is
improved by reducing the error related to haplotype reconstruction,
which can be done by using well-known and multi-generation
pedigrees when imputing the data (Hayes et al., 2012).
We tested how the inclusion of non-additive genetic effects affected

the prediction accuracy and stability. In our parent model, adding
dominance or epistatic effects did not improve the prediction, that is,
r(Âcan, Ŷcan) or r(Ĝcan, Ŷcan) even decreased from G_A to G_A+D and
G_A+D+AA. However, with progeny models, the prediction accuracy
regarding the breeding value increased from G_AH to G_AH+DH. Our
study generated new findings to supplement previously published
results based on experimental data that had diverse conclusions, for
example, in plants, Dudley and Johnson (2009), Hu et al. (2011) and
Wang et al. (2012) found that including marker interactions substan-
tially increased the prediction accuracy, but Lorenzana and Bernardo
(2009) and Muñoz et al. (2014) came to opposite conclusions. With
animals, Su et al. (2012) and Sun et al. (2014) showed that including
non-additive effects improved the prediction. According to Denis and
Bouvet (2013), with simulated data, the inclusion of non-additive
effects improved the prediction accuracy when non-additive effects
were preponderant, the training data set size was high and updated
over selection cycles to reassess the relationship between markers
and QTLs.

Implications for breeding
In the case of single populations, marker-based estimates of coancestry
have proved to be a useful alternative to genealogical information for
estimating variance components as well as for predicting genetic values
(Muñoz et al., 2014). In hybrid populations, we have shown that using
genome-wide information can improve the variance partition,
although epistasis detection requires further investigation to effectively
evaluate its relative magnitude. Using progeny models with a higher
number of parents and a more balanced design could improve their
performance. The modeling approach incorporating molecular data
could reduce the overestimation of additive variance and improve the
estimation of non-additive effects and is crucial for accurately
predicting genetic gain in hybrid breeding programs, as previously
mentioned, for example, in maize (Parvez et al., 2007), oil palm
(Cros et al., 2015) or Eucalyptus (Bouvet et al., 2009). Regarding the
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prediction accuracy, our study has shown that the inclusion of non-
additive effects in genomic selection depends on the modeling
approach—as compared with parent models, our progeny models,
using parental haplotypes, improved the prediction accuracy in the
hybrid population.
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ANNEX

Estimation of variance components with a single population model.
The single population progeny model was developed based on the

relationship among the (c= 1130) hybrid progenies.

y ¼ Xbþ Zcolcolþ Zr:br :b
þZpplotþ Zcaþ Zcd þ e� single population model

The definition of the fixed and environmental random effects was
similar to that of the parent model. For the marker-based model using
the 3303 SNPs, additive and dominance effects were defined by: a~N
(0, σ2aAG) and d~N(0, σ2dDG). Molecular-based relationship matrices
among the 1130 clones were defined using the van Raden (2008)
formula for AG[c,c] and the formula by Su et al. (2012) for DG[c,c].
Genetic effects of the pedigree-based model were defined as: a~N(0,
σ2aAP) and d~N(0, σ2dDP), with AP[c,c] and DP[c,c] calculated using
pedigree information.

Table A1 Environmental and genetic variance components and

AIC of the different models considering a single population model

Variance components
Pedigree-based relationship Marker-based relationship

Single P_A+D Single G_A+D

σ2r:b 0.649 0.600

σ2col 0.019 0.033

σ2a 1.959 0.080

σ2d 1.097 0.010

σ2plot 2.331 3.492

σ2e 8.055 9.179

Loglik −4416.060 −4444.057

Parameters 6 6

AIC 8844.120 8900.1138
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