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Empirical Bayesian elastic net for multiple quantitative trait
locus mapping

A Huang1, S Xu2 and X Cai1

In multiple quantitative trait locus (QTL) mapping, a high-dimensional sparse regression model is usually employed to account
for possible multiple linked QTLs. The QTL model may include closely linked and thus highly correlated genetic markers,
especially when high-density marker maps are used in QTL mapping because of the advancement in sequencing technology.
Although existing algorithms, such as Lasso, empirical Bayesian Lasso (EBlasso) and elastic net (EN) are available to infer
such QTL models, more powerful methods are highly desirable to detect more QTLs in the presence of correlated QTLs. We
developed a novel empirical Bayesian EN (EBEN) algorithm for multiple QTL mapping that inherits the efficiency of our
previously developed EBlasso algorithm. Simulation results demonstrated that EBEN provided higher power of detection and
almost the same false discovery rate compared with EN and EBlasso. Particularly, EBEN can identify correlated QTLs that the
other two algorithms may fail to identify. When analyzing a real dataset, EBEN detected more effects than EN and EBlasso.
EBEN provides a useful tool for inferring high-dimensional sparse model in multiple QTL mapping and other applications.
An R software package ‘EBEN’ implementing the EBEN algorithm is available on the Comprehensive R Archive Network
(CRAN).
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INTRODUCTION

Quantitative traits are usually controlled by multiple quantitative trait
loci (QTLs) and environmental factors. Because of the physical
linkage of multiple QTLs, gene–gene interactions (epistasis) and
gene–environment interactions, it is highly desirable to analyze a large
number of loci and environmental factors simultaneously in a single
QTL model. As technology advancement in molecular genotyping has
made high-density genomic markers available, including all markers
in a single QTL model leads to a large number of model variables,
typically much larger than the sample size. Two techniques often used
in the inference of such high dimensional QTL models are variable
selection and shrinkage operator.

Variable selection typically employs a stepwise search method in
conjunction with a selection criterion such as the Bayesian informa-
tion criterion (Schwarz, 1978) to identify a subset of all possible
genetic effects that best explain the phenotypic variation (Bogdan
et al., 2008; Li et al., 2009; Yu et al., 2009). On the other hand,
shrinkage methods such as Lasso (Tibshirani, 1996) and Bayesian
Lasso (Park and Casella, 2008; Yi and Xu, 2008) include all variables
in the model but use a penalty function of the variables or
appropriate prior distributions for the variables to shrink most
variables toward zero. Especially, the Bayesian shrinkage approach
(O’Hara and Sillanpaa, 2009) has received considerable attention
recently and been applied to multiple QTL mapping (Xu, 2003; Wang
et al., 2005; Hoti and Sillanpää, 2006; Huang et al., 2007; Yi and Xu,
2008). All these Bayesian methods rely on the Markov Chain Monte
Carlo (MCMC) simulation to fit the Bayesian model, which is

computationally intensive and time consuming when a large number
of effects are considered in the model.

Recently, we developed two efficient empirical Bayesian Lasso
(EBlasso) algorithms using a two-level hierarchical model with
normal and exponential priors (EBlasso-NE) or a three-level
hierarchical model with normal, exponential and Gamma priors
(EBlasso-NEG) for multiple QTL mapping (Cai et al., 2011;
Huang et al., 2013), which was shown to outperform other
shrinkage methods including Lasso and MCMC-based Bayesian
shrinkage methods in terms of power of detection and false discovery
rate (FDR). Similar to Lasso, our EBlasso and other Bayesian
shrinkage methods typically selects one variable out of a group
of highly correlated variables. When QTLs are located closely,
these shrinkage methods may not select all QTLs. Recently, the
elastic net (EN) (Zou and Hastie, 2005) was developed to handle
the issue of correlated variables in high-dimensional sparse models
where only a relatively small number of variables are nonzero.
An MCMC-based Bayesian EN method was also proposed (Li and
Lin, 2010).

In this paper, capitalizing on the idea of EN, we propose a Bayesian
EN (BEN) model for multiple QTL mapping, and then develop a
novel empirical Bayesian EN (EBEN) algorithm to infer the BEN
model. The EBEN algorithm is very efficient because of a coordinate
ascent strategy and other algorithmic techniques used. Simulation
studies demonstrate that our EBEN algorithm outperforms EN and
EBlasso. Real data analysis demonstrates the utility of our EBEN
algorithm.
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MATERIALS AND METHODS
Linear model of multiple QTLs
Let yi be the value of a quantitative trait of the ith individual in a mapping

population. Suppose we observe yi, i¼ 1, � � � , n, of n individuals and collect

them into a vector y¼ [y1, y2, � � � , yn]T. In these n individuals, suppose there

are p environmental covariates observed and m genetic markers genotyped. Let

covariate l and genotype of marker j of individual i be xEil and xGij, respectively.

Let us define xEi¼ [xEi1, xEi2, � � � , xEip]
T and xGi¼ [xGi1, xGi2, � � � , xGim]T.

Then we have the following linear regression model for y:

y ¼ mþXEbE þXGbG þ e; ð1Þ
where m is the population mean, vectors bE and bG represent the environ-

mental effects and the genetic effects of all markers, respectively; matrices

XE¼ [xE1, xE2, � � � , xEn]T and XG¼ [xG1, xG2, � � � , xGn]
T are the corresponding

design matrices of different effects; and e is the residual error that follows a

normal distribution with zero-mean and covariance s2
0I.

The design matrix XG depends on a specific genetic model. We adopt the

widely used Cockerham genetic model (Cockerham, 1954), which defines the

values of a marker effect as �0.5 and 0.5 for two genotypes in a back cross

design, and �1, 0 and 1 for three genotypes having additive effect, and �0.5

and 0.5 for homozygotes and heterozygotes having dominance effect in an

intercross (F2) design. For simplicity, we only consider additive effects in (1),

although the method developed in this paper is also applicable to the model

with dominance effects. Epistatic effects can also be incorporated into (1) as

carried out in (Xu, 2007; Cai et al., 2011), and the EBEN algorithm developed

in this paper is applicable to the model with epistatic effects. However, for the

ease of presentation, we will use model (1) throughout the paper.

Defining b¼ ½bTE ; bTG�
T , and X¼ [XE, XG], we can write (1) in a more

compact form:

y ¼ mþXbþ e: ð2Þ
Given p environmental covariates and m markers with additive effects, the

size of matrix X is n� k where k¼ pþm. Our goal is to identify all possible

environmental effects on and QTLs for y manifested as the nonzero elements

of the regression coefficients b. When the number of environmental factors

and number of markers are large, b contains a large number of unknowns,

which makes model inference a challenging problem. However, we would

expect that a small portion of markers are QTLs and a small portion of

environmental factors influence the trait, which implies that b is a sparse

vector meaning that most elements of b are zero.

We have developed an efficient EBlasso algorithm to infer sparse b from (2).

However, we observed that similar to Lasso (Tibshirani, 1996), EBlasso

typically outputs at most one nonzero regression coefficient for a group of

several highly correlated variables. If several QTLs are relatively close, their

correlation is high. For example, if two QTLs have a distance d¼ 5 centi-

Morgan (cM), their correlation R¼ e�2d¼ 0.9 assuming that the distance

follows the Haldane map function (Wu et al., 2007). EBlasso apparently cannot

identify such highly correlated QTLs simultaneously. Borrowing the idea of EN

(Zou and Hastie, 2005), we will apply a two-level hierarchical prior to b in (2)

that will yield an equivalent EN prior for b. Then we will develop the EBEN

algorithm that can handle correlated QTLs, and will be shown to outperform

both EN and EBlasso.

Bayesian EN prior
The unknown parameters in model (2) are m, s2

0 and b. Although our main

concern is b, parameters m and s2
0 need to be estimated so that we can infer b.

To this end, we assign a noninformative uniform prior to m and s2
0, that is,

p(m)p1 and pðs2
0Þ / 1. Then we assume a two-level hierarchical model for b.

Let us denote the elements of b as bj, j¼ 1,2, � � � ,k. At the first level, bj,
j¼ 1,2, � � � ,k, follow independent normal distributions with mean zero and

unknown variance s2
j : bj � Nð0; s2

j Þ. Let us define aj ¼ 1=s2
j , j¼ 1, 2, � � � ,

k, as precision of the normal prior distribution, and let r2 ¼ ½s2
1;s

2
2; � � �; s2

k �
T

and a¼ [a1,a2, � � � ,ak]T. It turns out to be more convenient to estimate a

than r2. At the second level, we decompose aj as aj ¼ l1 þ ~aj, j¼ 1, 2, � � � , k,

where l1X0 is a constant and ~aj40 is a random variable whose distribution

will be specified as follows. Defining ~s2
j ¼ 1=~aj , we assign a generalized

Gamma distribution to ~s2
j :

f ð~s2
j Þ ¼ c l1~s2

j þ 1
� �� 1=2

exp � l2~s2
j

� �
; j ¼ 1; 2; � � � ; k; ð3Þ

where c is a normalization constant, and l2X0 is another constant.

The prior distribution (3) has two important properties. First, for l1¼ 0, it

becomes an exponential distribution f ð~s2
j Þ ¼ c expð� l2~s2

j Þ with c¼l2, and

the distribution of bj can be found to be the Laplace distribution

pðbjÞ / expð�
ffiffiffiffiffiffiffi
2l2

p
j bj jÞ, yielding the penalty used by Lasso (Tibshirani,

1996). Second, for given l140, l2X0 and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1l2=p

p
exp � l2=l1ð Þ, f ð~s2

j Þ
becomes a shifted Gamma distribution (Pal et al., 2005):

f ð~s2
j j a; b; gÞ ¼

ba

GðaÞ ð~s
2
j � gÞa� 1 exp � bð~s2

j � gÞ
� �

; j ¼ 1; 2; � � � ; k; ð4Þ

where a¼ 1/2, b¼ l2 and g¼ �1/l1, and the distribution of bj can be found

to be pðbjÞ / expð� l1

2 b
2
j �

ffiffiffiffiffiffiffi
2l2

p
j bj jÞ (see Appendix A for the proof),

yielding the penalty used by EN (Zou and Hastie, 2005). Throughout the

paper, we will refer to the regression model (2) with the two-level hierarchical

prior as the BEN model. Note that when l1¼ 0, the prior distribution is the

same as the normal-exponential (NE) prior of the EBlasso (EBlasso-NE)

(Huang et al., 2013), thus the EBlasso-NE model is a special case of the

BEN model.

Let us define ~r2 ¼ ½~s2
1; ~s

2
2; � � �; ~s2

k �
T and collect all parameters that need to

be estimated as h ¼ ðm; s2
0;b; ~r

2Þ. The joint posterior distribution of h can be

easily found and MCMC simulation can be employed to draw samples from

the posterior distribution for each parameter (Robert and Casella, 2004).

However, the fully Bayesian approach-based on MCMC sampling requires a

prohibitive computational cost when the number of parameters 2kþ 4

becomes relatively large. Here, we adopt the same strategy used by EBlasso

to develop an efficient empirical Bayesian algorithm to infer the BEN model.

Maximum a posteriori estimation of variance components
We will show that ~r2 can be estimated in closed-form, which will result in

the efficient EBEN algorithm. The posterior distribution of parameters h is

given by:

pðh j yÞ / pðy j m;b; s2
0ÞpðmÞpðs2

0Þpðbj~r
2Þpð~r2jl1; l2Þ ð5Þ

The marginal posterior distribution of m, ~r2 and s2
0 can be written as

pðm; ~r2;s2
0 j yÞ ¼

R
pðh j yÞdb, from which the log marginal posterior dis-

tribution of ~a is derived as follows:

Lð~aÞ ¼ � 1

2
log Cj j þ ðy�mÞTC� 1ðy�mÞ
h i

� 1

2

Xk
j

log
l1

~aj
þ 1

� �
�
Xk
j

l2

~aj
þ constant;

ð6Þ

where C¼s2
0Iþ�k

j¼1ðl1 þ ~ajÞ� 1xjx
T
j is the covariance matrix of y with a

given ~a.

Let us define C� j ¼ C�ðl1 þ ~ajÞ� 1xjx
T
j . Then we can write Lð~aÞ in (6) as

Lð~aÞ ¼ Lð~a� jÞþ Lð~ajÞ, where Lð~a� jÞ does not depend on ~aj and Lð~ajÞ is

given by

Lð~ajÞ ¼
1

2
log

~aj
~aj þ l1 þ sj

þ
q2
j

~aj þ l1 þ sj

" #
� l2

~aj
; ð7Þ

with sj ¼ xTj C
� 1
� j xj and qj ¼ xTj C

� 1
� j y� mð Þ. It is seen that (7) is similar to

L(aj) of EBlasso-NE (Huang, et al., 2013, Equation (11)) except that l1 appears

in the denominators of the first two terms. Therefore, as shown in Appendix B,

Lð~ajÞ has a unique global maximum and the optimal ~aj maximizing Lð~ajÞ is

given by

~a�j ¼
r; if q2

j � sj4l1 þ 2l2

1; otherwise;

�
ð8Þ

where r ¼ �ðsj þ l1 þ 4l2Þ �
ffiffiffi
D

p

2ðsj � q2
j
þ l1 þ 2l2Þ � ðsj þ l1Þ, and D ¼ ðsj þ l1Þ2 þ 8l2q

2
j . Of note,

if ~aj ¼ 1, then s2
j ¼ 0, which is equivalent to bj¼ 0.
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EBEN algorithm and statistical significance test
Similar to the EBlasso algorithm, EBEN employs a coordinate ascent method

to estimate unknown parameters ~a1; � � � ; ~ak, m and s2
0. After these parameters

are estimated, the posterior distribution of b, which is a Gaussian distribution,

can be found. Specifically, in each cycle of the coordinate ascent method, ~aj is

estimated from (8) with all other parameters fixed, and m and s2
0 are estimated

using Equations (15) and (16) in Cai et al. (2011), respectively. In the initial

cycle, only one appropriately selected ~aj is finite (Cai et al., 2011), which

corresponds to a model with only one variable xj. In the following cycles, a

variable xl is added to the model if ~al is finite, or is removed from the model if
~al is infinite. The iterative process continues until convergence criterion is

satisfied. Specifically, the following convergence criteria are applied: (i) no

effect can be added to or deleted from the model, (ii) the change of ~aj between

two consecutive iterations, j D~aj j, is smaller than a pre-specified small value,

and (iii) the Euclidean norm of the change of ~a between two consecutive

iterations, D~ak k2, is less than a pre-specified value. During the iteration, many
~ajs will be infinite, and the corresponding bjs are zero.

The EBEN algorithm can be obtained from the EBlasso algorithm (Cai et al.,

2011) with the following two modifications: (i) replace aj with aj ¼ l1 þ ~aj
and estimate ~aj from (8), and (ii) replace hyperparameters (a, b) in EBlasso

with l1 and l2 and use cross validation (CV) to determine l1 and l2. A step-

by-step description for the EBlasso algorithm is given in (Cai et al., 2011). The

EBEN algorithm is provided in Appendix C.

The EBEN algorithm will select k0 (typically k0ook) nonzero elements of b,

which is denoted as a k0 � 1 vector b0, that corresponds to finite ~ajs. Let â be a

k0 � 1 vector contain all finite l1 þ ~aj
� 	

s. Given â, it is not difficult to show

that the posterior distribution of b0 is a Gaussian distribution with mean b̂0 ¼
s2

0R̂ ~Xðy� mÞ and covariance R̂ ¼ ðAþ s� 2
0

~X
T ~XÞ� 1, where ~X is an n� k0

matrix that contains the columns of X corresponding to b0, and A is a diagonal

matrix with â on its diagonal. Note that given A, b̂0 is equivalent to the best

linear unbiased prediction of b0 in the linear model with k0 random effects. For

the jth element of b0,b0j , the Bayesian approach needs to calculate the Bayesian

factor to determine the significance of hypothesis H1: b0j 6¼ 0 against

hypothesis H0: b0j ¼ 0. However, the Bayesian factor is not easy to calculate.

One way to overcome this problem is to employ the EBEN algorithm to select

variables and then use the multisplit method (Meinshausen and Bühlmann,

2010) to determine the statistical significance of selected regression coefficients.

However, the multisplit method is computationally demanding and its

conservative approach to calculating P-values may reduce the power of

detection. In this paper, we will use the following t-test to determine the

significance of b0j and compare its performance with that of the multisplit

method. Because the standard deviation of b0j in the posterior distribution is

sj ¼ ð�̂jjÞ1=2, where �̂jj is the jth diagonal element of R̂, we will use the

t-statistics b̂0j=sj to test if b̂0j 6¼ 0 at 0.05 significance level. Essentially, we

assume that the posterior distribution of b0j follows Student’s t-distribution and

use the 0.95 credible interval to determine if b̂0j 6¼ 0.

Cross validation
Two hyperparameters l1X0 and l2X0 need to be determined with CV. To

facilitate CV, we define l1 and l2 in terms of other two parameters l40 and

uA[0,1]: l1¼ (1�u)l and l2¼ ul. Note that when u¼ 1, EBEN is equivalent

to EBLasso-NE for a given pair of l and u. We perform fivefold CV and

calculate the prediction error (Tibshirani, 1996) PE ¼ 1
n

Pn
i¼1 ðyi � ŷiÞ2, where

ŷi is the predicted phenotype. We calculate lmax ¼ argj max jxTj ðy�mÞj, and

chose a set of values for l decreasing from lmax to 0.001 lmax in 20 even steps

on the logarithmic scale. We vary u from 1 to 0 at a step size of 0.05, and for

each u we repeat CV for all values of l from lmax to 0.001 lmax. The pair of

(u, l) that yields the smallest prediction error is chosen to be the optimal

parameters, which are then used by EBEN to infer the model.

Simulation setup and real data analysis
We simulated a population of an F2 family derived from the cross of two

inbred lines with m¼ 481 genetic markers which were evenly spaced on a large

chromosome of 2400 cM (interval d¼ 5 cM). The dummy variable for the

three genotypes, A1A1, A1A2 and A2A2 of individual i at marker j was defined as

xij¼ 1, 0, �1, respectively. We assumed that QTLs were coincided with

markers. If QTLs were not on markers, they may still be detected because

correlation between a QTL and a nearby marker was high, although a slightly

larger sample size may be needed to give the same power of detection.

We performed two sets of simulations based on the F2 population, each with

50 QTLs, whose effect sizes were randomly generated from a normal

distribution with mean zero and variance equal to four. Environmental effects

were not simulated. The true population mean was m¼ 100 and the residual

variance was s2
0 ¼ 10. In the first set of simulations (SimI), 10 groups of two

adjacent markers were selected randomly as QTLs; the minimum distance

between any two groups of QTLs was 65 cM. The remaining 30 QTLs were

selected randomly from the remaining markers. In the second set of

simulations (SimII), 10 groups of five consecutive markers were randomly

selected as 50 QTLs; the minimum distance between any two groups was

25 cM. For each set of simulations, 100 replicates were generated with sample

sizes 200, 400, 600, 800 and 1000, and analyzed using EBEN, EBLasso-NEG

(Cai et al., 2011) and EN (Zou and Hastie, 2005). Power of detection, FDR and

power of detecting groups of QTLs of three methods were compared.

We used a barley double haploid population published by Hayes et al.

(1993) as an example to test our method. The dataset consisted of n¼ 150

double haploid derived from the cross of two spring barley varieties, Morex

and Steptoe. The total number of markers was q¼ 495 distributed along seven

pairs of chromosomes of the barley genome. The traits included three

agronomic traits, grain yield, heading date and height, and five malting

quality traits, lodging, grain protein, alpha amylase, diastatic power and malt

extract. The marker intervals ranged from 0.6 to 23.3 cM, with median interval

size 1.4 cM. With such high-density markers, correlations among markers were

high. Genotype of the markers were encoded as þ 1 for genotype A (the

Steptoe parent), �1 for genotype B (the Morex parent), and 0 for missing

genotype. The total missing genotypes account for about 4.2% of all the

genotypes.

RESULTS

Estimated effects for one replicate in SimI
For a replicate of SimI shown in Table 1, we obtained the total
phenotypic variance for the trait by

s2
g ¼ s2

0 þ
Xm
j¼1

Xm
j0¼1

bjbj0covðxj; xj0 Þ; ð9Þ

where cov(xj, xj0) is the covariance between xj and xj0 if jaj0 or the
variance of xj0 if j¼ j0, which can be estimated from the data. For this
example, n¼ 1000 samples were used. The total phenotypic variance
was calculated from (9) to be s2

g ¼ 102:44 and the total genetic
variance contributed by the main effects of the markers was calculated
as 92.44. If we ignore the contributions from the covariance terms
that are relatively small, the proportions of the phenotypic variance
explained by a particular QTL effect j can be approximated by

h2
j ¼

b2
j varðxjÞ
s2
g

ð10Þ

where var(xj) is the variance of Xj. In the simulated data, the
proportion of contribution from an individual QTL varied from
0.01% to 6.61% as shown in Table 1.

The data were analyzed in R on a personal computer using EBEN,
EN (Zou and Hastie, 2005) and EBLasso-NEG (Cai et al., 2011). We
obtained the program glmnet (Friedman et al., 2010) that implements
EN. CV for EBEN determined the optimal u and l as u¼ 0.95 and
l¼ 0.0072. With the two values, EBEN identified 54 effects with a
P-value p0.05. We counted multiple identified effects that were
within 20 cM distance to a true QTL as a true effect, and all effects
with more than 20 cM distance to any true QTLs as false effects,
resulted in 47 true effects and 3 false effects (Table 1). Simulated
effects and QTLs identified by EBEN are visualized in Figure 1 (top).
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EN has the same pair of parameters u and l as EBEN, and for each
u, l is chosen from lmax to 0.001 lmax in 100 even steps on the
logarithmic scale. CV gave the optimal values (u, l)¼ (0.95, 0.0734).

Using these optimal values, EN identified 116 markers with nonzero
regression coefficients. However, EN does not give a P-value for each
estimated coefficient. If we regarded all 116 effects as QTLs, we would
get a large number of false QTLs. To avoid this problem, we refitted
an ordinary linear regression model with the 116 markers and
calculated a P-value for each marker. Among those markers with a
P-value p0.05 in the refitted model, 37 markers corresponded to
true-positive effects and 4 corresponded to false-positive effects were
identified. The estimated sizes of 37 true effects and their standard
deviations are listed along with all 50 true effects in Table 1, and QTLs
identified are depicted in Figure 1 (bottom).

EBLasso-NEG (Cai et al., 2011) has two hyperparameters a and b
controlling the degree of shrinkage, and CV chose the optimal values
(a, b)¼ (�0.9, 1). Using the values, EBlasso-NEG identified 43 true-
and 2 false-positive effects with a P-value p0.05. The estimated sizes
of true effects and their standard deviations are listed in Table 1, and
QTLs identified are plotted in Figure 1 (middle).

Comparing the results of three algorithms, we observe that EBEN
detected the most number of true effects, whereas three methods
yielded similar number of false-positive effects. To see if the three
algorithms can detect correlated effects, we highlight 10 groups that
include neighboring markers in Table 1. Because the genetic markers
were simulated with Haldane map function, the correlation between
two neighboring markers is 0.9048, and the correlation between every
other neighboring marker is 0.8187. It is seen that EBEN missed only
markers 157 and 409 but detected them from other nearby markers.
However, EN and EBlasso-NEG missed at least one QTL of 7 and
6 groups, respectively.

Results for SimI and SimII
The power of detection, FDR and power of detecting groups obtained
from Sim I using EBEN, EBLasso and EN were plotted in Figure 2. As
described in the Materials and Methods section, 10 groups of highly
correlated QTLs are present in Sim I. When computing the power of
detecting groups, a group was detected if all effects in the group were
detected. From Figure 2, we observed that EBEN offered the highest
power of detection and all three methods provided similar FDR;
EBEN also had the highest power of detecting groups of QTLs as
expected. Both EBEN and EBlasso-NEG outperformed EN. Taking
sample size n¼ 400 as an example, we see that the power of detection,
FDR and power of detecting groups are 0.82, 0.11 and 0.64,
respectively, for EBEN, 0.76, 0.11 and 0.48, respectively, for EBlasso-
NEG, and 0.53 0.15, and 0.26, respectively, for EN.

In SimI, there were several groups with three effects because of
random selection of QTL locations. However, more than 25 out of the
50 QTLs were not in any group, which means that none of its
neighboring markers were also QTL (see Table 1 for an example). In
SimII, all effects were within one of the groups. The power of
detection, FDR and power of detecting groups of the three methods
were plotted in Figure 3, which shows that EBEN performed much
better than the other two methods in terms of power of detection
whereas three methods yielded similar FDR. Again, taking sample size
n¼ 400 as an example, we see that the power of detection, FDR and
power of detecting groups are 0.81, 0.10 and 0.35, respectively, for
EBEN, 0.65, 0.12 and 0.14, respectively, for EBlasso-NEG, and 0.52,
0.16 and 0.05, respectively, for EN. Comparing the results of SimI and
SimII, we observed that the performance of EBlasso and EN were
degraded when the degree of grouping increased, whereas EBEN
offered relatively stable power of detection and FDR.

As described in the Materials and Methods section, the multisplit
method (Meinshausen et al., 2009) can be another choice for testing

Table 1 True and estimated effects for the simulated data

Locusa cM True b̂ h2
� 	

EBEN b̂b EN b̂c EBlasso b̂

1 0 0.73 (0.0027) 0.65 �0.54d 0.94

39 190 0.52 (0.0013) 0.60 — —

40 195 0.52 (0.0013) 0.49 — 0.77

67 330 0.22 (0.0002) 0.21d — 0.27d

96 475 0.37 (0.0007) 0.46 0.45 0.48

128 635 2.32 (0.0271) 2.18 2.37 2.20

146 725 0.79 (0.0029) 0.79 0.87 1.18

147 730 0.70 (0.0023) 0.67 — —

148 735 1.29 (0.0079) 1.30 1.23 1.74

156 775 0.37 (0.0007) 3.26 — —

157 780 3.48 (0.0593) 0.53d 3.26 3.87

168 835 �3.31 (0.0509) �3.42 �3.54 �3.64

172 855 �0.87 (0.0036) �0.56 — �0.80d

184 915 �0.63 (0.0019) �0.51d �0.89d �0.51d

196 975 1.11 (0.0060) 0.68 — 0.84

197 980 2.24 (0.0251) 2.32 2.44 2.46

217 1080 2.04 (0.0203) 1.66 1.59 1.73

218 1085 2.72 (0.0357) 2.87 3.15 3.72

245 1220 2.35 (0.0272) 2.17 2.19 2.49

261 1300 1.27 (0.0076) 1.21 0.98 1.37

268 1335 1.47 (0.0108) 1.21 1.21 1.37

283 1410 �0.95 (0.0044) �1.19 �1.22 �1.16

284 1415 �1.05 (0.0052) �0.83 �0.98 �1.03

288 1435 1.44 (0.0102) 1.25 1.65 1.59

290 1445 �1.38 (0.0097) �1.08 �1.19 �1.42

294 1465 �2.13 (0.0222) �1.87 �1.74 �2.19

304 1515 �3.59 (0.0661) �3.12 �2.94 �3.53

315 1570 1.09 (0.0057) 0.79 0.81 1.08

351 1750 �0.95 (0.0041) �1.07 �1.02 �1.51

352 1755 �1.16 (0.0063) �0.71 — —

353 1760 �1.13 (0.0062) �1.39 �1.48 �1.85

358 1785 1.67 (0.0133) 1.21 1.28 1.69

361 1800 �3.25 (0.0514) �2.74 �2.55 �3.10

370 1845 �3.43 (0.0571) �4.01 �3.60 �3.77

371 1850 �1.36 (0.0090) �1.08 �1.73 �1.43

375 1870 0.96 (0.0044) 0.83 1.23 0.96

382 1905 �2.93 (0.0415) �2.83 �3.06 �2.99

392 1955 1.20 (0.0073) 0.99 1.15 1.17

397 1980 �2.06 (0.0212) �1.77 �1.86 �1.91

408 2035 �1.15 (0.0064) �0.96 �0.92 �1.14

409 2040 �0.53 (0.0013) �0.94d �0.96d �1.10d

411 2050 �1.67 (0.0141) �0.89 — �1.22

426 2125 0.22 (0.0002) — — —

436 2175 0.10 (0.0001) — — —

442 2205 1.37 (0.0090) 1.20 1.30 1.27

457 2280 �1.72 (0.0138) �1.90 �1.81 �2.08

462 2305 �0.42 (0.0008) — — —

476 2375 1.29 (0.0079) 0.67 — 0.64

477 2380 1.57 (0.0118) 1.75 1.64 1.66

478 2385 1.67 (0.0137) 1.99 2.01 2.09

True/False positive 47/3 37/4 43/2

Abbreviations: cM, centi-Morgan; EBEN, empirical Bayesian elastic net; EBlasso, empirical
Bayesian Lasso; EN, elastic net.
aGroups of neighboring QTLs are highlighted.
bThe estimated effect is denoted by b̂.
cEN selected variables were refitted to a linear regression model to obtain b̂.
dThe estimated marker effect was obtained from a neighboring marker (p20cM) rather than
from the true QTL.
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the significance of nonzero regression coefficients (Li and Sillanpää,
2012). To see the performance of the mulisplit method, we applied it
to SimI and SimII with two sample sizes N¼ 400 and N¼ 600 and
compared the power of detection, FDR and power of detecting groups
of the multisplit method and the t-test, at a family-wise error rate of
0.05. The results are shown in Supplementary Figures S1 and S2 in the
Supplementary Information. From Supplementary Figure S1 and S2,
we observe that the t-test offered significantly higher power of
detection than the multisplit method; its FDR was higher than
the zero FDR of the multisplit method, but was still very low,
less than 0.04.

Real data analysis
This dataset was used as an example for the application of EBEN in
QTL mapping with high-density markers. We analyzed all eight traits
but only presented results for three agronomic traits while leaving
results for the five malting quality traits in the Supplementary
Information.

In QTL mapping for grain yield, fivefold CV chose (u, l)¼ (0.35,
0.1710) for EBEN. With these values, EBEN identified 12 QTLs with a

P-value p0.05, which explained 57.93% of the total phenotypic
variance (Table 2). Fivefold CV determined optimal parameters
(u, l)¼ (0.65, 0.0354) for EN. Using the optimal values, EN identified
42 nonzero effects; after refitting the phenotype to the ordinary
linear regression model with these 42 markers, six QTLs with a
P-value p0.05 were identified. The total phenotypic variance
explained by six QTLs was 23.72%. Fivefold CV selected
(a, b)¼ (0.01, 0.05) for EBlasso-NEG, with which six effects with a
P-value p0.05 were identified. These six effects explained 51.08% of
the total phenotypic variance. The identified QTLs using the three
methods are listed in Table 2.

In QTL mapping for heading date, EBEN identified 14 QTLs
having a P-value p0.05 with CV selected optimal parameters, and
93.87% of the total phenotypic variance were explained (Table 3). EN
identified 59 nonzero effects; after refitting the phenotype to the
ordinary linear regression model with these 59 markers, 11 QTLs with
a P-value p0.05 were identified. The total phenotypic variance
explained by six QTLs was 70.28%. EBlasso-NEG identified eight
effects with a P-value p0.05, which explained 91.13% of the total
phenotypic variance. The identified QTLs using the three methods are
listed in Table 3.

-3

-1

1

3

True effect
EBEN estimated effect

1 50 100 150 200 250 300 350 400 450 481

-3

-1

1

3

marker

ef
fe
ct

EN estimated effect

-4

-2

0

2

4

marker

EBlasso estimated effect

Figure 1 Effects estimated with EBEN, EBlasso and EN for the simulated data.
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In QTL mapping for the height of barley, using CV-selected
optimal parameter values, EBEN identified 16 QTLs with a
P-value p0.05, which explained 93.29% of the total phenotypic
variance (Table 4); EN identified 52 nonzero effects, with which 9
QTLs with a P-value p0.05 were identified by refitting the phenotype
to the ordinary linear regression model, and 44.30% of the total
phenotypic variance were explained; EBlasso-NEG identified 9 effects
with a P-value p0.05, which explained 87.67% of the total
phenotypic variance. The identified QTLs using the three methods
are listed in Table 4.

Apparently, EBEN detected more effects than EN and EBlasso-
NEG, although it also missed some of the effects detected by EN and
EBlasso-NEG. Moreover, effects detected by EBEN explained more
phenotypic variance than those detected by EN or EBlasso-NEG.
Particularly, EBEN detected markers 403 and 406 for grain yield, 96,
97 and 98 for heading date, 74 and 75 for height, which were 4.1, 0.7
and 0.8 cM apart, respectively, and were highly correlated, but both
EN and EBlasso-NEG were able to detect only one effect for each
group. Results for other five traits are listed in Supplementary
Tables S1–S5, which also shows that EBEN detected more effects,
and these effects explained more phenotypic variance for all five traits
compared with EN and EBlasso-NEG.

In computer simulations, it was observed that the computational
time for the three methods was mainly determined by the number of
nonzero markers in the inferred QTL model, and that EBEN had a
speed similar to EN and EBlasso-NEG. In the analysis of the grain
yield with the optimal hyperparameters chosen by CV, the

200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

po
w

er
 o

f d
et

ec
tio

n

EBEN
EBasso
EN

200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

fa
ls

e 
di

sc
ov

er
y 

ra
te

200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

sample size

po
w

er
 o

f d
et

ec
tin

g 
gr

ou
ps

Figure 2 Power of detection, FDR and power of detecting groups for EBEN,

EBlasso and EN in SimI.
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Figure 3 Power of detection, FDR and power of detecting groups for EBEN,

EBlasso and EN in SimII.

Table 2 QTLs and their effects obtained with EBEN, EN and

EBlasso-NEG for the grain yield of barley

Marker IDs Position (Chr,cM) EBEN b̂a EN b̂b EBlasso-NEG b̂

10 (1, 29.1) �0.04 �0.09 —

40 (1, 97.8) 0.03 — —

49 (1, 127.8) — — 0.06

57 (1, 139.6) 0.05 — —

65 (2, 15.8) �0.04 — —

145 (3, 9.8) — — �0.03

161 (3, 55.7) 0.29 — 0.25

193 (3, 118.1) 0.03 — —

262 (4, 90.9) — — 0.03

294 (5, 45.4) — 0.09 —

314 (5, 70.8) �0.06 �0.12 —

347 (5, 154) 0.07 0.10 0.04

403 (6, 66.7) �0.04 �0.11 �0.06

406 (6, 70.8) �0.04 — —

429 (7, 0.0) �0.07 �0.12 —

492 (7, 134.8) 0.03 — —

Parametersc (0.35, 0.1710) (0.65, 0.0354) (0.01, 0.05)

Number of QTLs 12 6 6

ĥ2 0.58 0.24 0.51

Abbreviations: cM, centi-Morgan; EBEN, empirical Bayesian elastic net; EBlasso, empirical
Bayesian Lasso; EBlasso-NEG, empirical Bayesian Lasso-normal, exponential and Gamma;
EN, elastic net; QTL, quantitative trait locus.
aThe estimated marker effect is denoted by b̂.
bMarkers selected by EN were refitted to a linear regression model to obtain b̂.
cParameters are (n, l) for EBEN and EN, and (a, b) for EBlasso-NEG.

EB-elastic net for multiple QTL mapping
A Huang et al

112

Heredity



computational time was 0.10 s for EBEN, 0.05 s for EN and 0.06 s for
EBlasso-NEG. All computations were performed on a personal
computer with a 2.6 GHz Intel Core 2 CPU and 4 Gb memory
running Windows7.

DISCUSSION

We have developed a novel EBEN algorithm for multiple QTL
mapping. Simulation results demonstrated that our EBEN outper-
formed two other algorithms EN (Zou and Hastie, 2005) and
EBlasso-NEG (Cai et al., 2011). Particularly, EBEN could detect more
correlated effects than other two algorithms. When applied to a real
barley dataset, EBEN was able to detect more QTLs and explain
higher proportion of phenotypic variance than other two algorithms.

Our EBEN model essentially uses the same prior for regression
coefficients as the one used by EN. For model inference, our EBEN
first estimates the covariance of regression coefficients. During the
estimation process, many coefficients are shrunk to zero if the
corresponding variance is zero. After the covariance is obtained, the
nonzero coefficients were estimated as a Gaussian random vector with
an estimated mean and an estimated covariance. On the other hand,
EN directly estimates the nonzero regression coefficients without
estimating the covariance. Because our EBEN yields not only a point
estimate of regression coefficients but also an estimate of their
covariance, this gives more information than the point estimate of
EN, which may help to improve performance. Our EBEN model and

the Bayesian EN model in Li and Lin (2010) have some similarities
and differences. The model of Li and Lin assumes the following prior:

b js; s2
0 �
Qk

j¼1 Nð0; ½l2

s2
0

tj
tj � 1�

� 1Þ, s js2
0 �
Qk

j¼1 TG
1
2 ; 0;

8l2s2
0

l2
1

; ð1;1Þ
� �

,

s2
0 � 1=s2

0, where TG( � ) is a truncated Gamma distribution. Unlike

the model of Li and Lin, where prior of bj is conditioned on the noise

variance s2
0, the prior of bj in our BEN model is independent of s2

0,

because only a point estimate of s2
0 is needed in our model inference.

In the model of Li and Lin (2010), if we define ~tj ¼ tj � 1, then

s2
0=s

2
j ¼ l2 þ l2=~tj, this decomposition of s2

0=s
2
j is similar to that in

our BEN model: aj ¼ l1 þ ~aj. Because tj follows a truncated Gamma

distribution with a support of (1, N), ~tj obeys a shifted Gamma

distribution similar to the prior for ~s2
j in our BEN model. We

assigned a uniform prior to s2
0, whereas Li and Lin (2010) used the

Jeffrey’s prior for s2
0. Li and Lin (2010) employed MCMC for model

inference, which is computationally demanding, whereas our EBEN
algorithm does not rely on MCMC and is more efficient.

Simulations demonstrated that our EBEN algorithm improves
performance in terms of power of detection and FDR by taking into
account the possible correlations among QTLs, which agrees with
previous observations (Gianola et al., 2003). Several methods for
predicting genetic values incorporate the spatial correlations among
markers. Yang and Tempelman (2012) included a first-order ante-
dependence correlation structure for regression coefficients b into
their Bayesian hierarchical mixed effects model so that bj depends on
bj�1, 2pjpk, resulted in increased accuracy in predicting genetic
values. Shen et al. (2011) incorporated a specific correlation structure
in their smoothed double hierarchical generalized linear model, and a
spatial correlation parameter was introduced to control correlation
between two markers. Although our EBEN exploits the possible

Table 3 QTLs and their effects obtained with EBEN, EN and

EBlasso-NEG for the heading date of barley

Marker IDs Position (Chr,cM) EBEN b̂a EN b̂b EBlasso-NEG b̂

11 (1,34.7) — 0.48 —

51 (1,129.9) 0.32 — 0.28

74 (2,35.5) �3.60 �2.61 �3.55

76 (2,37.8) — �0.55 —

96 (2,66.9) 0.22 — —

97 (2,67.6) 0.57 1.22 1.39

98 (2,68.3) 0.34 — —

129 (2,148.4) — �0.40 —

132 (2,155.3) — 0.38 —

141 (3,3.6) — �0.38 —

164 (3,61.3) — — 0.24

176 (3,80.2) 0.14 — —

244 (4,54.3) 0.22 — —

252 (4,68.2) 0.25 — 0.47

271 (4,107.5) 0.24 0.24 0.25

278 (4,139) 0.17 — —

352 (5,166.4) 0.15 — 0.1

375 (6,5.9) �0.26 — —

430 (7,1.3) — 0.29 —

440 (7,13.7) — �0.68 —

445 (7,22.2) — — �0.40

449 (7,29.2) �0.19 — —

452 (7,34) — �0.46 —

482 (7,101.8) 0.17 — —

Parametersc (0.70, 0.2139) (0.85, 0.0652) (1, 1)

Number of QTLs 14 11 8

ĥ2 0.94 0.70 0.91

Abbreviations: cM, centi-Morgan; EBEN, empirical Bayesian elastic net; EBlasso, empirical
Bayesian Lasso; EBlasso-NEG, empirical Bayesian Lasso-normal, exponential and Gamma; EN,
elastic net; QTL, quantitative trait locus.
aThe estimated marker effect is denoted by b̂.
bMarkers selected by EN were refitted to a linear regression model to obtain b̂.
cParameters are (n, l) for EBEN and EN, and (a, b) for EBlasso-NEG.

Table 4 QTLs and their effects obtained with EBEN, EN and

EBlasso-NEG for the height of barley

Marker IDs Position (Chr,cM) EBEN b̂a EN b̂b EBlasso-NEG b̂

74 (2,35.5) �4.10 �2.88 �5.61

75 (2,36.3) �0.74 — —

97 (2,67.6) 0.66 — 1.29

128 (2,146.3) �1.17 �1.06 �1.31

151 (3,32.5) �0.58 — —

159 (3,54.4) �2.62 �2.08 �2.99

169 (3,68.2) �0.34 �0.94 —

216 (3,157.7) �0.36 — —

240 (4,50.8) 0.84 — 1.08

321 (5,80.5) �1.90 �2.67 �2.60

339 (5,139.3) 0.80 1.00 0.94

368 (5,200.2) — �0.50 —

375 (6,5.9) �0.51 �1.01 —

415 (6,81.1) 0.50 0.92 —

474 (7,76.1) 0.77 — 0.89

481 (7,96.2) 0.34 — —

487 (7,113.1) — — 1.11

488 (7,114.4) 0.50 — —

Parametersc (1.00, 0. 0657) (0.85, 0.2341) (�0.6, 0.1)

Number of QTLs 16 9 9

ĥ2 0.93 0.44 0.88

Abbreviations: cM, centi-Morgan; EBEN, empirical Bayesian elastic net; EBlasso, empirical
Bayesian Lasso; EBlasso-NEG, empirical Bayesian Lasso-normal, exponential and Gamma; EN,
elastic net; QTL, quantitative trait locus.
aThe estimated marker effect is denoted by b̂.
bMarkers selected by EN were refitted to a linear regression model to obtain b̂.
cParameters are (n, l) for EBEN and EN, and (a, b) for EBlasso-NEG.
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correlations among QTLs, unlike those of Shen et al. (2011), Yang and
Tempelman (2012), our EBEN does not specify a correlation structure
for markers in the QTL model. Therefore, our EBEN is more robust,
because a mis-specified correlation structure may significantly
degrade performance. Our EBEN can shrink most variables in the
QTL model to zero, yielding a sparse QTL model, which significantly
decreases FDR without sacrificing the power of detection; whereas the
method of Shen et al. (2011) does not employ the shrinkage
technique, and it is not clear if the method of Yang and
Tempelman (2012) can shrink variables in the QTL model to zero.
Although performance of predicting genetic values may not degrade
without using the shrinkage technique or an appropriate variable
selection method to identify QTLs, shrinkage is very important to the
performance of QTL mapping.

The EBEN algorithm inherits the efficiency of the EBlasso algo-
rithm, because it is modified from the later, although the BEN model
used by the EBEN algorithm is different from the Bayesian Lasso
model used by the EBlasso algorithm. Our simulations (Cai et al.,
2011; Huang et al., 2013) have shown that EBlasso outperformed a
number of other competing algorithms in terms of detection power
and FDR, and it offered a speed comparable to Lasso implemented
with glmnet (Friedman et al., 2010) but faster than other algorithms
compared. EBEN improves the power of detection relative to EBlasso
by detecting more correlated effects as shown in the simulation.
However, in real data analysis, we observed that although EBEN
detected more effects, it also missed several effects detected by
EBlasso. One explanation is that EBEN outputs smaller estimates
for the absolute amplitudes of correlated effects than EBlasso.
A similar effect was observed for EN (Zou and Hastie, 2005)
compared with Lasso. This may reduce the significance of the
estimated effects. Therefore, when analyzing real data, we may apply
both EBEN and EBlasso and take QTLs identified by either algorithm.

The EBEN algorithm was developed for quantitative traits, it can
also be easily extended to QTL mapping with a logistic regression
model for binary traits, following the derivations in (Huang et al.,
2013). Moreover, thanks to the regression model, it is straightforward
to incorporate other covariates and maker interactions into the EBEN
model. Recently, EBlasso has been applied to whole-genome QTL
mapping (Huang et al., 2014b) and pathway-based genome-wide
association study (Huang et al., 2014a), where linear regression
models with millions of variables were inferred with EBLasso. Because
EBEN inherits the computational efficiency of EBlasso, it can also be
applied to both whole-genome QTL mapping and genome-wide
association study. In conclusion, EBEN algorithm provides a useful
tool for inference of high-dimensional sparse regression model in
multiple QTL mapping and other applications.
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APPENDIX A

Proof of the EN prior distribution

The joint prior distribution for bj and ~s2
j can be written as:

pðbj; ~s2
j jl1; l2Þ ¼ pðbjj~s2

j Þpð~s2
j jl1; l2Þ; j ¼ 1; 2; � � � ; k;

where pðbjj~s2
j Þ is a normal distribution: bj � Nð0; ~s2

j

l1~s2
j
þ 1
Þ and

pð~s2
j jl1; l2Þ is a generalized Gamma distribution: pð~s2

j jl1; l2Þ ¼

C l1~s2
j þ 1

� �� 1=2

exp � l2~s2
j

� �
; with C being a normalization con-

stant. The marginal prior distribution of bj can be found as

pðbjjl1; l2Þ ¼ C

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1~s2

j þ 1

2p~s2
j

s
exp �

b2
j

2~s2
j =ðl1~s2

j þ 1Þ

 !

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1~s2

j þ 1
q exp � l2~s2

j

� �
d~s2

j

¼ C exp �
l1b

2
j

2

 !Z
1ffiffiffiffiffiffiffiffiffiffi

2p~s2
j

q exp �
b2
j

2~s2
j

� l2~s2
j

 !
d~s2

j :

Using the result in Andrews and Mallows (1974), the integral can
be found in a closed-form for l240, and p(bj|l1, l2) is simplified as
pðbjjl1; l2Þ ¼ C expð� l1b2

j

2 �
ffiffiffiffiffiffiffi
2l2

p
j bj jÞ, which is the EN prior

distribution.

APPENDIX B

Derivation of equation (8)

Note that lim
~aj!0

Lð~ajÞ ¼ �1, lim
~aj!1

Lð~ajÞ ¼ 0, and the derivative of

Lð~ajÞis given by:

@L

@~aj

¼
ðsj þ l1 � q2

j þ 2l2Þ~a2
j þðsj þ l1 þ 4l2Þðsj þ l1Þ~aj þ 2l2ðsj þ l1Þ2

2~a2
j ð~aj þ sj þ l1Þ2 :

Let us write the numerator of the derivative as Jð~ajÞ ¼
ðsj þ l1 � q2

j þ 2l2Þ~a2
j þðsj þ l1 þ 4l2Þðsj þ l1Þ~aj þ 2l2ðsj þ l1Þ2,

and define D ¼ ðsj þ l1Þ2 þ 8l2q
2
j . Because l240, we have DX0,

which implies that Jð~ajÞ ¼ 0 have two roots: r1 ¼ �ðsj þ l1 þ 4l2Þ�
ffiffiffi
D

p

2ðsj þ l1 � q2
j
þ 2l2Þ �

ðsj þ l1Þ and r2 ¼ �ðsj þ l1 þ 4l2Þþ
ffiffiffi
D

p

2ðsj þ l1 � q2
j
þ 2l2Þ � ðsj þ l1Þ. Next let us consider

the following three cases:

Case 1: sj þ l1 � q2
j þ 2l240

We have r1o0 and r2o0 because sj40 and l240. Therefore,
@L


@~aj40 for ~aj40 and Lð~ajÞ is an increasing function of ~aj. This

implies that Lð~ajÞ is maximized at ~a�j ¼ 1.

Case 2: sj þ l1 � q2
j þ 2l2 ¼ 0

In this case, we have Jð~ajÞ ¼ ðsj þ l1 þ 4l2Þðsj þ l1Þ~aj
þ 2l2ðsj þ l1Þ2. It is clear that Jð~ajÞ40 for ~aj40. Hence
@L


@~aj40 and Lð~ajÞ is an increasing function of ~aj. Then Lð~ajÞ is

maximized at ~a�j ¼ 1.

Case 3: sj þ l1 � q2
j þ 2l2o0

We have r140 and r2o0. Therefore, @L


@~aj40 for 0o~ajor1,

@L


@~aj ¼ 0 for ~aj ¼ r1, and @L



@~ajo0 for ~aj4r1. This implies

that Lð~ajÞ is maximized at ~a�j ¼ r1 and Lð~a�j Þ40 because

lim
~aj!1

Lð~ajÞ ¼ 0.

Summarizing the results in three cases, we obtain ~a�j given in (8).

APPENDIX C

EBEN algorithm

1. Initialize parameters: choose uA[0,1] and l40, calculate
m¼ 1Ty/n, ~y¼ y�m and set s2

0 to be a small number, e.g., 0.1�
~yT~y/n.

2. Initialize the model: Find j ¼ argi maxfjxTi ~y j; 8ig; and calculate aj
from (8); set all other aj0, j0aj to be N and ~X ¼ xj.

3. Calculate R, sj and qj, 8j.
4. Update the model.

Apply the EBlasso algorithm (Cai et al., 2011) to update A with â

obtained from (8).
If the global convergence criterion is not satisfied, go to step 4.

5. Output b̂0 and covariance R̂.
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